PageRenderTime 35ms CodeModel.GetById 17ms RepoModel.GetById 0ms app.codeStats 0ms

/net/ipv4/tcp.c

https://bitbucket.org/jdstroy/ipaq214
C | 2936 lines | 1912 code | 415 blank | 609 comment | 463 complexity | 041eb2ede91c6ab6d2191023bbb937f4 MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. *
  20. * Fixes:
  21. * Alan Cox : Numerous verify_area() calls
  22. * Alan Cox : Set the ACK bit on a reset
  23. * Alan Cox : Stopped it crashing if it closed while
  24. * sk->inuse=1 and was trying to connect
  25. * (tcp_err()).
  26. * Alan Cox : All icmp error handling was broken
  27. * pointers passed where wrong and the
  28. * socket was looked up backwards. Nobody
  29. * tested any icmp error code obviously.
  30. * Alan Cox : tcp_err() now handled properly. It
  31. * wakes people on errors. poll
  32. * behaves and the icmp error race
  33. * has gone by moving it into sock.c
  34. * Alan Cox : tcp_send_reset() fixed to work for
  35. * everything not just packets for
  36. * unknown sockets.
  37. * Alan Cox : tcp option processing.
  38. * Alan Cox : Reset tweaked (still not 100%) [Had
  39. * syn rule wrong]
  40. * Herp Rosmanith : More reset fixes
  41. * Alan Cox : No longer acks invalid rst frames.
  42. * Acking any kind of RST is right out.
  43. * Alan Cox : Sets an ignore me flag on an rst
  44. * receive otherwise odd bits of prattle
  45. * escape still
  46. * Alan Cox : Fixed another acking RST frame bug.
  47. * Should stop LAN workplace lockups.
  48. * Alan Cox : Some tidyups using the new skb list
  49. * facilities
  50. * Alan Cox : sk->keepopen now seems to work
  51. * Alan Cox : Pulls options out correctly on accepts
  52. * Alan Cox : Fixed assorted sk->rqueue->next errors
  53. * Alan Cox : PSH doesn't end a TCP read. Switched a
  54. * bit to skb ops.
  55. * Alan Cox : Tidied tcp_data to avoid a potential
  56. * nasty.
  57. * Alan Cox : Added some better commenting, as the
  58. * tcp is hard to follow
  59. * Alan Cox : Removed incorrect check for 20 * psh
  60. * Michael O'Reilly : ack < copied bug fix.
  61. * Johannes Stille : Misc tcp fixes (not all in yet).
  62. * Alan Cox : FIN with no memory -> CRASH
  63. * Alan Cox : Added socket option proto entries.
  64. * Also added awareness of them to accept.
  65. * Alan Cox : Added TCP options (SOL_TCP)
  66. * Alan Cox : Switched wakeup calls to callbacks,
  67. * so the kernel can layer network
  68. * sockets.
  69. * Alan Cox : Use ip_tos/ip_ttl settings.
  70. * Alan Cox : Handle FIN (more) properly (we hope).
  71. * Alan Cox : RST frames sent on unsynchronised
  72. * state ack error.
  73. * Alan Cox : Put in missing check for SYN bit.
  74. * Alan Cox : Added tcp_select_window() aka NET2E
  75. * window non shrink trick.
  76. * Alan Cox : Added a couple of small NET2E timer
  77. * fixes
  78. * Charles Hedrick : TCP fixes
  79. * Toomas Tamm : TCP window fixes
  80. * Alan Cox : Small URG fix to rlogin ^C ack fight
  81. * Charles Hedrick : Rewrote most of it to actually work
  82. * Linus : Rewrote tcp_read() and URG handling
  83. * completely
  84. * Gerhard Koerting: Fixed some missing timer handling
  85. * Matthew Dillon : Reworked TCP machine states as per RFC
  86. * Gerhard Koerting: PC/TCP workarounds
  87. * Adam Caldwell : Assorted timer/timing errors
  88. * Matthew Dillon : Fixed another RST bug
  89. * Alan Cox : Move to kernel side addressing changes.
  90. * Alan Cox : Beginning work on TCP fastpathing
  91. * (not yet usable)
  92. * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
  93. * Alan Cox : TCP fast path debugging
  94. * Alan Cox : Window clamping
  95. * Michael Riepe : Bug in tcp_check()
  96. * Matt Dillon : More TCP improvements and RST bug fixes
  97. * Matt Dillon : Yet more small nasties remove from the
  98. * TCP code (Be very nice to this man if
  99. * tcp finally works 100%) 8)
  100. * Alan Cox : BSD accept semantics.
  101. * Alan Cox : Reset on closedown bug.
  102. * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
  103. * Michael Pall : Handle poll() after URG properly in
  104. * all cases.
  105. * Michael Pall : Undo the last fix in tcp_read_urg()
  106. * (multi URG PUSH broke rlogin).
  107. * Michael Pall : Fix the multi URG PUSH problem in
  108. * tcp_readable(), poll() after URG
  109. * works now.
  110. * Michael Pall : recv(...,MSG_OOB) never blocks in the
  111. * BSD api.
  112. * Alan Cox : Changed the semantics of sk->socket to
  113. * fix a race and a signal problem with
  114. * accept() and async I/O.
  115. * Alan Cox : Relaxed the rules on tcp_sendto().
  116. * Yury Shevchuk : Really fixed accept() blocking problem.
  117. * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
  118. * clients/servers which listen in on
  119. * fixed ports.
  120. * Alan Cox : Cleaned the above up and shrank it to
  121. * a sensible code size.
  122. * Alan Cox : Self connect lockup fix.
  123. * Alan Cox : No connect to multicast.
  124. * Ross Biro : Close unaccepted children on master
  125. * socket close.
  126. * Alan Cox : Reset tracing code.
  127. * Alan Cox : Spurious resets on shutdown.
  128. * Alan Cox : Giant 15 minute/60 second timer error
  129. * Alan Cox : Small whoops in polling before an
  130. * accept.
  131. * Alan Cox : Kept the state trace facility since
  132. * it's handy for debugging.
  133. * Alan Cox : More reset handler fixes.
  134. * Alan Cox : Started rewriting the code based on
  135. * the RFC's for other useful protocol
  136. * references see: Comer, KA9Q NOS, and
  137. * for a reference on the difference
  138. * between specifications and how BSD
  139. * works see the 4.4lite source.
  140. * A.N.Kuznetsov : Don't time wait on completion of tidy
  141. * close.
  142. * Linus Torvalds : Fin/Shutdown & copied_seq changes.
  143. * Linus Torvalds : Fixed BSD port reuse to work first syn
  144. * Alan Cox : Reimplemented timers as per the RFC
  145. * and using multiple timers for sanity.
  146. * Alan Cox : Small bug fixes, and a lot of new
  147. * comments.
  148. * Alan Cox : Fixed dual reader crash by locking
  149. * the buffers (much like datagram.c)
  150. * Alan Cox : Fixed stuck sockets in probe. A probe
  151. * now gets fed up of retrying without
  152. * (even a no space) answer.
  153. * Alan Cox : Extracted closing code better
  154. * Alan Cox : Fixed the closing state machine to
  155. * resemble the RFC.
  156. * Alan Cox : More 'per spec' fixes.
  157. * Jorge Cwik : Even faster checksumming.
  158. * Alan Cox : tcp_data() doesn't ack illegal PSH
  159. * only frames. At least one pc tcp stack
  160. * generates them.
  161. * Alan Cox : Cache last socket.
  162. * Alan Cox : Per route irtt.
  163. * Matt Day : poll()->select() match BSD precisely on error
  164. * Alan Cox : New buffers
  165. * Marc Tamsky : Various sk->prot->retransmits and
  166. * sk->retransmits misupdating fixed.
  167. * Fixed tcp_write_timeout: stuck close,
  168. * and TCP syn retries gets used now.
  169. * Mark Yarvis : In tcp_read_wakeup(), don't send an
  170. * ack if state is TCP_CLOSED.
  171. * Alan Cox : Look up device on a retransmit - routes may
  172. * change. Doesn't yet cope with MSS shrink right
  173. * but it's a start!
  174. * Marc Tamsky : Closing in closing fixes.
  175. * Mike Shaver : RFC1122 verifications.
  176. * Alan Cox : rcv_saddr errors.
  177. * Alan Cox : Block double connect().
  178. * Alan Cox : Small hooks for enSKIP.
  179. * Alexey Kuznetsov: Path MTU discovery.
  180. * Alan Cox : Support soft errors.
  181. * Alan Cox : Fix MTU discovery pathological case
  182. * when the remote claims no mtu!
  183. * Marc Tamsky : TCP_CLOSE fix.
  184. * Colin (G3TNE) : Send a reset on syn ack replies in
  185. * window but wrong (fixes NT lpd problems)
  186. * Pedro Roque : Better TCP window handling, delayed ack.
  187. * Joerg Reuter : No modification of locked buffers in
  188. * tcp_do_retransmit()
  189. * Eric Schenk : Changed receiver side silly window
  190. * avoidance algorithm to BSD style
  191. * algorithm. This doubles throughput
  192. * against machines running Solaris,
  193. * and seems to result in general
  194. * improvement.
  195. * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
  196. * Willy Konynenberg : Transparent proxying support.
  197. * Mike McLagan : Routing by source
  198. * Keith Owens : Do proper merging with partial SKB's in
  199. * tcp_do_sendmsg to avoid burstiness.
  200. * Eric Schenk : Fix fast close down bug with
  201. * shutdown() followed by close().
  202. * Andi Kleen : Make poll agree with SIGIO
  203. * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
  204. * lingertime == 0 (RFC 793 ABORT Call)
  205. * Hirokazu Takahashi : Use copy_from_user() instead of
  206. * csum_and_copy_from_user() if possible.
  207. *
  208. * This program is free software; you can redistribute it and/or
  209. * modify it under the terms of the GNU General Public License
  210. * as published by the Free Software Foundation; either version
  211. * 2 of the License, or(at your option) any later version.
  212. *
  213. * Description of States:
  214. *
  215. * TCP_SYN_SENT sent a connection request, waiting for ack
  216. *
  217. * TCP_SYN_RECV received a connection request, sent ack,
  218. * waiting for final ack in three-way handshake.
  219. *
  220. * TCP_ESTABLISHED connection established
  221. *
  222. * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
  223. * transmission of remaining buffered data
  224. *
  225. * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
  226. * to shutdown
  227. *
  228. * TCP_CLOSING both sides have shutdown but we still have
  229. * data we have to finish sending
  230. *
  231. * TCP_TIME_WAIT timeout to catch resent junk before entering
  232. * closed, can only be entered from FIN_WAIT2
  233. * or CLOSING. Required because the other end
  234. * may not have gotten our last ACK causing it
  235. * to retransmit the data packet (which we ignore)
  236. *
  237. * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
  238. * us to finish writing our data and to shutdown
  239. * (we have to close() to move on to LAST_ACK)
  240. *
  241. * TCP_LAST_ACK out side has shutdown after remote has
  242. * shutdown. There may still be data in our
  243. * buffer that we have to finish sending
  244. *
  245. * TCP_CLOSE socket is finished
  246. */
  247. #include <linux/kernel.h>
  248. #include <linux/module.h>
  249. #include <linux/types.h>
  250. #include <linux/fcntl.h>
  251. #include <linux/poll.h>
  252. #include <linux/init.h>
  253. #include <linux/fs.h>
  254. #include <linux/skbuff.h>
  255. #include <linux/scatterlist.h>
  256. #include <linux/splice.h>
  257. #include <linux/net.h>
  258. #include <linux/socket.h>
  259. #include <linux/random.h>
  260. #include <linux/bootmem.h>
  261. #include <linux/highmem.h>
  262. #include <linux/swap.h>
  263. #include <linux/cache.h>
  264. #include <linux/err.h>
  265. #include <linux/crypto.h>
  266. #include <net/icmp.h>
  267. #include <net/tcp.h>
  268. #include <net/xfrm.h>
  269. #include <net/ip.h>
  270. #include <net/netdma.h>
  271. #include <net/sock.h>
  272. #include <asm/uaccess.h>
  273. #include <asm/ioctls.h>
  274. int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
  275. struct percpu_counter tcp_orphan_count;
  276. EXPORT_SYMBOL_GPL(tcp_orphan_count);
  277. int sysctl_tcp_mem[3] __read_mostly;
  278. int sysctl_tcp_wmem[3] __read_mostly;
  279. int sysctl_tcp_rmem[3] __read_mostly;
  280. EXPORT_SYMBOL(sysctl_tcp_mem);
  281. EXPORT_SYMBOL(sysctl_tcp_rmem);
  282. EXPORT_SYMBOL(sysctl_tcp_wmem);
  283. atomic_t tcp_memory_allocated; /* Current allocated memory. */
  284. EXPORT_SYMBOL(tcp_memory_allocated);
  285. /*
  286. * Current number of TCP sockets.
  287. */
  288. struct percpu_counter tcp_sockets_allocated;
  289. EXPORT_SYMBOL(tcp_sockets_allocated);
  290. /*
  291. * TCP splice context
  292. */
  293. struct tcp_splice_state {
  294. struct pipe_inode_info *pipe;
  295. size_t len;
  296. unsigned int flags;
  297. };
  298. /*
  299. * Pressure flag: try to collapse.
  300. * Technical note: it is used by multiple contexts non atomically.
  301. * All the __sk_mem_schedule() is of this nature: accounting
  302. * is strict, actions are advisory and have some latency.
  303. */
  304. int tcp_memory_pressure __read_mostly;
  305. EXPORT_SYMBOL(tcp_memory_pressure);
  306. void tcp_enter_memory_pressure(struct sock *sk)
  307. {
  308. if (!tcp_memory_pressure) {
  309. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
  310. tcp_memory_pressure = 1;
  311. }
  312. }
  313. EXPORT_SYMBOL(tcp_enter_memory_pressure);
  314. /*
  315. * Wait for a TCP event.
  316. *
  317. * Note that we don't need to lock the socket, as the upper poll layers
  318. * take care of normal races (between the test and the event) and we don't
  319. * go look at any of the socket buffers directly.
  320. */
  321. unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
  322. {
  323. unsigned int mask;
  324. struct sock *sk = sock->sk;
  325. struct tcp_sock *tp = tcp_sk(sk);
  326. poll_wait(file, sk->sk_sleep, wait);
  327. if (sk->sk_state == TCP_LISTEN)
  328. return inet_csk_listen_poll(sk);
  329. /* Socket is not locked. We are protected from async events
  330. * by poll logic and correct handling of state changes
  331. * made by other threads is impossible in any case.
  332. */
  333. mask = 0;
  334. if (sk->sk_err)
  335. mask = POLLERR;
  336. /*
  337. * POLLHUP is certainly not done right. But poll() doesn't
  338. * have a notion of HUP in just one direction, and for a
  339. * socket the read side is more interesting.
  340. *
  341. * Some poll() documentation says that POLLHUP is incompatible
  342. * with the POLLOUT/POLLWR flags, so somebody should check this
  343. * all. But careful, it tends to be safer to return too many
  344. * bits than too few, and you can easily break real applications
  345. * if you don't tell them that something has hung up!
  346. *
  347. * Check-me.
  348. *
  349. * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
  350. * our fs/select.c). It means that after we received EOF,
  351. * poll always returns immediately, making impossible poll() on write()
  352. * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
  353. * if and only if shutdown has been made in both directions.
  354. * Actually, it is interesting to look how Solaris and DUX
  355. * solve this dilemma. I would prefer, if POLLHUP were maskable,
  356. * then we could set it on SND_SHUTDOWN. BTW examples given
  357. * in Stevens' books assume exactly this behaviour, it explains
  358. * why POLLHUP is incompatible with POLLOUT. --ANK
  359. *
  360. * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
  361. * blocking on fresh not-connected or disconnected socket. --ANK
  362. */
  363. if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
  364. mask |= POLLHUP;
  365. if (sk->sk_shutdown & RCV_SHUTDOWN)
  366. mask |= POLLIN | POLLRDNORM | POLLRDHUP;
  367. /* Connected? */
  368. if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
  369. int target = sock_rcvlowat(sk, 0, INT_MAX);
  370. if (tp->urg_seq == tp->copied_seq &&
  371. !sock_flag(sk, SOCK_URGINLINE) &&
  372. tp->urg_data)
  373. target--;
  374. /* Potential race condition. If read of tp below will
  375. * escape above sk->sk_state, we can be illegally awaken
  376. * in SYN_* states. */
  377. if (tp->rcv_nxt - tp->copied_seq >= target)
  378. mask |= POLLIN | POLLRDNORM;
  379. if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
  380. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
  381. mask |= POLLOUT | POLLWRNORM;
  382. } else { /* send SIGIO later */
  383. set_bit(SOCK_ASYNC_NOSPACE,
  384. &sk->sk_socket->flags);
  385. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  386. /* Race breaker. If space is freed after
  387. * wspace test but before the flags are set,
  388. * IO signal will be lost.
  389. */
  390. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
  391. mask |= POLLOUT | POLLWRNORM;
  392. }
  393. }
  394. if (tp->urg_data & TCP_URG_VALID)
  395. mask |= POLLPRI;
  396. }
  397. return mask;
  398. }
  399. int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
  400. {
  401. struct tcp_sock *tp = tcp_sk(sk);
  402. int answ;
  403. switch (cmd) {
  404. case SIOCINQ:
  405. if (sk->sk_state == TCP_LISTEN)
  406. return -EINVAL;
  407. lock_sock(sk);
  408. if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
  409. answ = 0;
  410. else if (sock_flag(sk, SOCK_URGINLINE) ||
  411. !tp->urg_data ||
  412. before(tp->urg_seq, tp->copied_seq) ||
  413. !before(tp->urg_seq, tp->rcv_nxt)) {
  414. answ = tp->rcv_nxt - tp->copied_seq;
  415. /* Subtract 1, if FIN is in queue. */
  416. if (answ && !skb_queue_empty(&sk->sk_receive_queue))
  417. answ -=
  418. tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
  419. } else
  420. answ = tp->urg_seq - tp->copied_seq;
  421. release_sock(sk);
  422. break;
  423. case SIOCATMARK:
  424. answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
  425. break;
  426. case SIOCOUTQ:
  427. if (sk->sk_state == TCP_LISTEN)
  428. return -EINVAL;
  429. if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
  430. answ = 0;
  431. else
  432. answ = tp->write_seq - tp->snd_una;
  433. break;
  434. default:
  435. return -ENOIOCTLCMD;
  436. }
  437. return put_user(answ, (int __user *)arg);
  438. }
  439. static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
  440. {
  441. TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
  442. tp->pushed_seq = tp->write_seq;
  443. }
  444. static inline int forced_push(struct tcp_sock *tp)
  445. {
  446. return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
  447. }
  448. static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
  449. {
  450. struct tcp_sock *tp = tcp_sk(sk);
  451. struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
  452. skb->csum = 0;
  453. tcb->seq = tcb->end_seq = tp->write_seq;
  454. tcb->flags = TCPCB_FLAG_ACK;
  455. tcb->sacked = 0;
  456. skb_header_release(skb);
  457. tcp_add_write_queue_tail(sk, skb);
  458. sk->sk_wmem_queued += skb->truesize;
  459. sk_mem_charge(sk, skb->truesize);
  460. if (tp->nonagle & TCP_NAGLE_PUSH)
  461. tp->nonagle &= ~TCP_NAGLE_PUSH;
  462. }
  463. static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
  464. struct sk_buff *skb)
  465. {
  466. if (flags & MSG_OOB)
  467. tp->snd_up = tp->write_seq;
  468. }
  469. static inline void tcp_push(struct sock *sk, int flags, int mss_now,
  470. int nonagle)
  471. {
  472. struct tcp_sock *tp = tcp_sk(sk);
  473. if (tcp_send_head(sk)) {
  474. struct sk_buff *skb = tcp_write_queue_tail(sk);
  475. if (!(flags & MSG_MORE) || forced_push(tp))
  476. tcp_mark_push(tp, skb);
  477. tcp_mark_urg(tp, flags, skb);
  478. __tcp_push_pending_frames(sk, mss_now,
  479. (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
  480. }
  481. }
  482. static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
  483. unsigned int offset, size_t len)
  484. {
  485. struct tcp_splice_state *tss = rd_desc->arg.data;
  486. int ret;
  487. ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
  488. tss->flags);
  489. if (ret > 0)
  490. rd_desc->count -= ret;
  491. return ret;
  492. }
  493. static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
  494. {
  495. /* Store TCP splice context information in read_descriptor_t. */
  496. read_descriptor_t rd_desc = {
  497. .arg.data = tss,
  498. .count = tss->len,
  499. };
  500. return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
  501. }
  502. /**
  503. * tcp_splice_read - splice data from TCP socket to a pipe
  504. * @sock: socket to splice from
  505. * @ppos: position (not valid)
  506. * @pipe: pipe to splice to
  507. * @len: number of bytes to splice
  508. * @flags: splice modifier flags
  509. *
  510. * Description:
  511. * Will read pages from given socket and fill them into a pipe.
  512. *
  513. **/
  514. ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
  515. struct pipe_inode_info *pipe, size_t len,
  516. unsigned int flags)
  517. {
  518. struct sock *sk = sock->sk;
  519. struct tcp_splice_state tss = {
  520. .pipe = pipe,
  521. .len = len,
  522. .flags = flags,
  523. };
  524. long timeo;
  525. ssize_t spliced;
  526. int ret;
  527. /*
  528. * We can't seek on a socket input
  529. */
  530. if (unlikely(*ppos))
  531. return -ESPIPE;
  532. ret = spliced = 0;
  533. lock_sock(sk);
  534. timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
  535. while (tss.len) {
  536. ret = __tcp_splice_read(sk, &tss);
  537. if (ret < 0)
  538. break;
  539. else if (!ret) {
  540. if (spliced)
  541. break;
  542. if (sock_flag(sk, SOCK_DONE))
  543. break;
  544. if (sk->sk_err) {
  545. ret = sock_error(sk);
  546. break;
  547. }
  548. if (sk->sk_shutdown & RCV_SHUTDOWN)
  549. break;
  550. if (sk->sk_state == TCP_CLOSE) {
  551. /*
  552. * This occurs when user tries to read
  553. * from never connected socket.
  554. */
  555. if (!sock_flag(sk, SOCK_DONE))
  556. ret = -ENOTCONN;
  557. break;
  558. }
  559. if (!timeo) {
  560. ret = -EAGAIN;
  561. break;
  562. }
  563. sk_wait_data(sk, &timeo);
  564. if (signal_pending(current)) {
  565. ret = sock_intr_errno(timeo);
  566. break;
  567. }
  568. continue;
  569. }
  570. tss.len -= ret;
  571. spliced += ret;
  572. if (!timeo)
  573. break;
  574. release_sock(sk);
  575. lock_sock(sk);
  576. if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
  577. (sk->sk_shutdown & RCV_SHUTDOWN) ||
  578. signal_pending(current))
  579. break;
  580. }
  581. release_sock(sk);
  582. if (spliced)
  583. return spliced;
  584. return ret;
  585. }
  586. struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
  587. {
  588. struct sk_buff *skb;
  589. /* The TCP header must be at least 32-bit aligned. */
  590. size = ALIGN(size, 4);
  591. skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
  592. if (skb) {
  593. if (sk_wmem_schedule(sk, skb->truesize)) {
  594. /*
  595. * Make sure that we have exactly size bytes
  596. * available to the caller, no more, no less.
  597. */
  598. skb_reserve(skb, skb_tailroom(skb) - size);
  599. return skb;
  600. }
  601. __kfree_skb(skb);
  602. } else {
  603. sk->sk_prot->enter_memory_pressure(sk);
  604. sk_stream_moderate_sndbuf(sk);
  605. }
  606. return NULL;
  607. }
  608. static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
  609. int large_allowed)
  610. {
  611. struct tcp_sock *tp = tcp_sk(sk);
  612. u32 xmit_size_goal, old_size_goal;
  613. xmit_size_goal = mss_now;
  614. if (large_allowed && sk_can_gso(sk)) {
  615. xmit_size_goal = ((sk->sk_gso_max_size - 1) -
  616. inet_csk(sk)->icsk_af_ops->net_header_len -
  617. inet_csk(sk)->icsk_ext_hdr_len -
  618. tp->tcp_header_len);
  619. xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
  620. /* We try hard to avoid divides here */
  621. old_size_goal = tp->xmit_size_goal_segs * mss_now;
  622. if (likely(old_size_goal <= xmit_size_goal &&
  623. old_size_goal + mss_now > xmit_size_goal)) {
  624. xmit_size_goal = old_size_goal;
  625. } else {
  626. tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
  627. xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
  628. }
  629. }
  630. return max(xmit_size_goal, mss_now);
  631. }
  632. static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
  633. {
  634. int mss_now;
  635. mss_now = tcp_current_mss(sk);
  636. *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
  637. return mss_now;
  638. }
  639. static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
  640. size_t psize, int flags)
  641. {
  642. struct tcp_sock *tp = tcp_sk(sk);
  643. int mss_now, size_goal;
  644. int err;
  645. ssize_t copied;
  646. long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
  647. /* Wait for a connection to finish. */
  648. if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  649. if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
  650. goto out_err;
  651. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  652. mss_now = tcp_send_mss(sk, &size_goal, flags);
  653. copied = 0;
  654. err = -EPIPE;
  655. if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
  656. goto out_err;
  657. while (psize > 0) {
  658. struct sk_buff *skb = tcp_write_queue_tail(sk);
  659. struct page *page = pages[poffset / PAGE_SIZE];
  660. int copy, i, can_coalesce;
  661. int offset = poffset % PAGE_SIZE;
  662. int size = min_t(size_t, psize, PAGE_SIZE - offset);
  663. if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
  664. new_segment:
  665. if (!sk_stream_memory_free(sk))
  666. goto wait_for_sndbuf;
  667. skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
  668. if (!skb)
  669. goto wait_for_memory;
  670. skb_entail(sk, skb);
  671. copy = size_goal;
  672. }
  673. if (copy > size)
  674. copy = size;
  675. i = skb_shinfo(skb)->nr_frags;
  676. can_coalesce = skb_can_coalesce(skb, i, page, offset);
  677. if (!can_coalesce && i >= MAX_SKB_FRAGS) {
  678. tcp_mark_push(tp, skb);
  679. goto new_segment;
  680. }
  681. if (!sk_wmem_schedule(sk, copy))
  682. goto wait_for_memory;
  683. if (can_coalesce) {
  684. skb_shinfo(skb)->frags[i - 1].size += copy;
  685. } else {
  686. get_page(page);
  687. skb_fill_page_desc(skb, i, page, offset, copy);
  688. }
  689. skb->len += copy;
  690. skb->data_len += copy;
  691. skb->truesize += copy;
  692. sk->sk_wmem_queued += copy;
  693. sk_mem_charge(sk, copy);
  694. skb->ip_summed = CHECKSUM_PARTIAL;
  695. tp->write_seq += copy;
  696. TCP_SKB_CB(skb)->end_seq += copy;
  697. skb_shinfo(skb)->gso_segs = 0;
  698. if (!copied)
  699. TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
  700. copied += copy;
  701. poffset += copy;
  702. if (!(psize -= copy))
  703. goto out;
  704. if (skb->len < size_goal || (flags & MSG_OOB))
  705. continue;
  706. if (forced_push(tp)) {
  707. tcp_mark_push(tp, skb);
  708. __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
  709. } else if (skb == tcp_send_head(sk))
  710. tcp_push_one(sk, mss_now);
  711. continue;
  712. wait_for_sndbuf:
  713. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  714. wait_for_memory:
  715. if (copied)
  716. tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
  717. if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
  718. goto do_error;
  719. mss_now = tcp_send_mss(sk, &size_goal, flags);
  720. }
  721. out:
  722. if (copied)
  723. tcp_push(sk, flags, mss_now, tp->nonagle);
  724. return copied;
  725. do_error:
  726. if (copied)
  727. goto out;
  728. out_err:
  729. return sk_stream_error(sk, flags, err);
  730. }
  731. ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
  732. size_t size, int flags)
  733. {
  734. ssize_t res;
  735. struct sock *sk = sock->sk;
  736. if (!(sk->sk_route_caps & NETIF_F_SG) ||
  737. !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
  738. return sock_no_sendpage(sock, page, offset, size, flags);
  739. lock_sock(sk);
  740. TCP_CHECK_TIMER(sk);
  741. res = do_tcp_sendpages(sk, &page, offset, size, flags);
  742. TCP_CHECK_TIMER(sk);
  743. release_sock(sk);
  744. return res;
  745. }
  746. #define TCP_PAGE(sk) (sk->sk_sndmsg_page)
  747. #define TCP_OFF(sk) (sk->sk_sndmsg_off)
  748. static inline int select_size(struct sock *sk)
  749. {
  750. struct tcp_sock *tp = tcp_sk(sk);
  751. int tmp = tp->mss_cache;
  752. if (sk->sk_route_caps & NETIF_F_SG) {
  753. if (sk_can_gso(sk))
  754. tmp = 0;
  755. else {
  756. int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
  757. if (tmp >= pgbreak &&
  758. tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
  759. tmp = pgbreak;
  760. }
  761. }
  762. return tmp;
  763. }
  764. int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
  765. size_t size)
  766. {
  767. struct sock *sk = sock->sk;
  768. struct iovec *iov;
  769. struct tcp_sock *tp = tcp_sk(sk);
  770. struct sk_buff *skb;
  771. int iovlen, flags;
  772. int mss_now, size_goal;
  773. int err, copied;
  774. long timeo;
  775. lock_sock(sk);
  776. TCP_CHECK_TIMER(sk);
  777. flags = msg->msg_flags;
  778. timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
  779. /* Wait for a connection to finish. */
  780. if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  781. if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
  782. goto out_err;
  783. /* This should be in poll */
  784. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  785. mss_now = tcp_send_mss(sk, &size_goal, flags);
  786. /* Ok commence sending. */
  787. iovlen = msg->msg_iovlen;
  788. iov = msg->msg_iov;
  789. copied = 0;
  790. err = -EPIPE;
  791. if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
  792. goto out_err;
  793. while (--iovlen >= 0) {
  794. int seglen = iov->iov_len;
  795. unsigned char __user *from = iov->iov_base;
  796. iov++;
  797. while (seglen > 0) {
  798. int copy;
  799. skb = tcp_write_queue_tail(sk);
  800. if (!tcp_send_head(sk) ||
  801. (copy = size_goal - skb->len) <= 0) {
  802. new_segment:
  803. /* Allocate new segment. If the interface is SG,
  804. * allocate skb fitting to single page.
  805. */
  806. if (!sk_stream_memory_free(sk))
  807. goto wait_for_sndbuf;
  808. skb = sk_stream_alloc_skb(sk, select_size(sk),
  809. sk->sk_allocation);
  810. if (!skb)
  811. goto wait_for_memory;
  812. /*
  813. * Check whether we can use HW checksum.
  814. */
  815. if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
  816. skb->ip_summed = CHECKSUM_PARTIAL;
  817. skb_entail(sk, skb);
  818. copy = size_goal;
  819. }
  820. /* Try to append data to the end of skb. */
  821. if (copy > seglen)
  822. copy = seglen;
  823. /* Where to copy to? */
  824. if (skb_tailroom(skb) > 0) {
  825. /* We have some space in skb head. Superb! */
  826. if (copy > skb_tailroom(skb))
  827. copy = skb_tailroom(skb);
  828. if ((err = skb_add_data(skb, from, copy)) != 0)
  829. goto do_fault;
  830. } else {
  831. int merge = 0;
  832. int i = skb_shinfo(skb)->nr_frags;
  833. struct page *page = TCP_PAGE(sk);
  834. int off = TCP_OFF(sk);
  835. if (skb_can_coalesce(skb, i, page, off) &&
  836. off != PAGE_SIZE) {
  837. /* We can extend the last page
  838. * fragment. */
  839. merge = 1;
  840. } else if (i == MAX_SKB_FRAGS ||
  841. (!i &&
  842. !(sk->sk_route_caps & NETIF_F_SG))) {
  843. /* Need to add new fragment and cannot
  844. * do this because interface is non-SG,
  845. * or because all the page slots are
  846. * busy. */
  847. tcp_mark_push(tp, skb);
  848. goto new_segment;
  849. } else if (page) {
  850. if (off == PAGE_SIZE) {
  851. put_page(page);
  852. TCP_PAGE(sk) = page = NULL;
  853. off = 0;
  854. }
  855. } else
  856. off = 0;
  857. if (copy > PAGE_SIZE - off)
  858. copy = PAGE_SIZE - off;
  859. if (!sk_wmem_schedule(sk, copy))
  860. goto wait_for_memory;
  861. if (!page) {
  862. /* Allocate new cache page. */
  863. if (!(page = sk_stream_alloc_page(sk)))
  864. goto wait_for_memory;
  865. }
  866. /* Time to copy data. We are close to
  867. * the end! */
  868. err = skb_copy_to_page(sk, from, skb, page,
  869. off, copy);
  870. if (err) {
  871. /* If this page was new, give it to the
  872. * socket so it does not get leaked.
  873. */
  874. if (!TCP_PAGE(sk)) {
  875. TCP_PAGE(sk) = page;
  876. TCP_OFF(sk) = 0;
  877. }
  878. goto do_error;
  879. }
  880. /* Update the skb. */
  881. if (merge) {
  882. skb_shinfo(skb)->frags[i - 1].size +=
  883. copy;
  884. } else {
  885. skb_fill_page_desc(skb, i, page, off, copy);
  886. if (TCP_PAGE(sk)) {
  887. get_page(page);
  888. } else if (off + copy < PAGE_SIZE) {
  889. get_page(page);
  890. TCP_PAGE(sk) = page;
  891. }
  892. }
  893. TCP_OFF(sk) = off + copy;
  894. }
  895. if (!copied)
  896. TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
  897. tp->write_seq += copy;
  898. TCP_SKB_CB(skb)->end_seq += copy;
  899. skb_shinfo(skb)->gso_segs = 0;
  900. from += copy;
  901. copied += copy;
  902. if ((seglen -= copy) == 0 && iovlen == 0)
  903. goto out;
  904. if (skb->len < size_goal || (flags & MSG_OOB))
  905. continue;
  906. if (forced_push(tp)) {
  907. tcp_mark_push(tp, skb);
  908. __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
  909. } else if (skb == tcp_send_head(sk))
  910. tcp_push_one(sk, mss_now);
  911. continue;
  912. wait_for_sndbuf:
  913. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  914. wait_for_memory:
  915. if (copied)
  916. tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
  917. if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
  918. goto do_error;
  919. mss_now = tcp_send_mss(sk, &size_goal, flags);
  920. }
  921. }
  922. out:
  923. if (copied)
  924. tcp_push(sk, flags, mss_now, tp->nonagle);
  925. TCP_CHECK_TIMER(sk);
  926. release_sock(sk);
  927. return copied;
  928. do_fault:
  929. if (!skb->len) {
  930. tcp_unlink_write_queue(skb, sk);
  931. /* It is the one place in all of TCP, except connection
  932. * reset, where we can be unlinking the send_head.
  933. */
  934. tcp_check_send_head(sk, skb);
  935. sk_wmem_free_skb(sk, skb);
  936. }
  937. do_error:
  938. if (copied)
  939. goto out;
  940. out_err:
  941. err = sk_stream_error(sk, flags, err);
  942. TCP_CHECK_TIMER(sk);
  943. release_sock(sk);
  944. return err;
  945. }
  946. /*
  947. * Handle reading urgent data. BSD has very simple semantics for
  948. * this, no blocking and very strange errors 8)
  949. */
  950. static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
  951. {
  952. struct tcp_sock *tp = tcp_sk(sk);
  953. /* No URG data to read. */
  954. if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
  955. tp->urg_data == TCP_URG_READ)
  956. return -EINVAL; /* Yes this is right ! */
  957. if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
  958. return -ENOTCONN;
  959. if (tp->urg_data & TCP_URG_VALID) {
  960. int err = 0;
  961. char c = tp->urg_data;
  962. if (!(flags & MSG_PEEK))
  963. tp->urg_data = TCP_URG_READ;
  964. /* Read urgent data. */
  965. msg->msg_flags |= MSG_OOB;
  966. if (len > 0) {
  967. if (!(flags & MSG_TRUNC))
  968. err = memcpy_toiovec(msg->msg_iov, &c, 1);
  969. len = 1;
  970. } else
  971. msg->msg_flags |= MSG_TRUNC;
  972. return err ? -EFAULT : len;
  973. }
  974. if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
  975. return 0;
  976. /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
  977. * the available implementations agree in this case:
  978. * this call should never block, independent of the
  979. * blocking state of the socket.
  980. * Mike <pall@rz.uni-karlsruhe.de>
  981. */
  982. return -EAGAIN;
  983. }
  984. /* Clean up the receive buffer for full frames taken by the user,
  985. * then send an ACK if necessary. COPIED is the number of bytes
  986. * tcp_recvmsg has given to the user so far, it speeds up the
  987. * calculation of whether or not we must ACK for the sake of
  988. * a window update.
  989. */
  990. void tcp_cleanup_rbuf(struct sock *sk, int copied)
  991. {
  992. struct tcp_sock *tp = tcp_sk(sk);
  993. int time_to_ack = 0;
  994. #if TCP_DEBUG
  995. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  996. WARN_ON(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
  997. #endif
  998. if (inet_csk_ack_scheduled(sk)) {
  999. const struct inet_connection_sock *icsk = inet_csk(sk);
  1000. /* Delayed ACKs frequently hit locked sockets during bulk
  1001. * receive. */
  1002. if (icsk->icsk_ack.blocked ||
  1003. /* Once-per-two-segments ACK was not sent by tcp_input.c */
  1004. tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
  1005. /*
  1006. * If this read emptied read buffer, we send ACK, if
  1007. * connection is not bidirectional, user drained
  1008. * receive buffer and there was a small segment
  1009. * in queue.
  1010. */
  1011. (copied > 0 &&
  1012. ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
  1013. ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
  1014. !icsk->icsk_ack.pingpong)) &&
  1015. !atomic_read(&sk->sk_rmem_alloc)))
  1016. time_to_ack = 1;
  1017. }
  1018. /* We send an ACK if we can now advertise a non-zero window
  1019. * which has been raised "significantly".
  1020. *
  1021. * Even if window raised up to infinity, do not send window open ACK
  1022. * in states, where we will not receive more. It is useless.
  1023. */
  1024. if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
  1025. __u32 rcv_window_now = tcp_receive_window(tp);
  1026. /* Optimize, __tcp_select_window() is not cheap. */
  1027. if (2*rcv_window_now <= tp->window_clamp) {
  1028. __u32 new_window = __tcp_select_window(sk);
  1029. /* Send ACK now, if this read freed lots of space
  1030. * in our buffer. Certainly, new_window is new window.
  1031. * We can advertise it now, if it is not less than current one.
  1032. * "Lots" means "at least twice" here.
  1033. */
  1034. if (new_window && new_window >= 2 * rcv_window_now)
  1035. time_to_ack = 1;
  1036. }
  1037. }
  1038. if (time_to_ack)
  1039. tcp_send_ack(sk);
  1040. }
  1041. static void tcp_prequeue_process(struct sock *sk)
  1042. {
  1043. struct sk_buff *skb;
  1044. struct tcp_sock *tp = tcp_sk(sk);
  1045. NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
  1046. /* RX process wants to run with disabled BHs, though it is not
  1047. * necessary */
  1048. local_bh_disable();
  1049. while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
  1050. sk_backlog_rcv(sk, skb);
  1051. local_bh_enable();
  1052. /* Clear memory counter. */
  1053. tp->ucopy.memory = 0;
  1054. }
  1055. static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
  1056. {
  1057. struct sk_buff *skb;
  1058. u32 offset;
  1059. skb_queue_walk(&sk->sk_receive_queue, skb) {
  1060. offset = seq - TCP_SKB_CB(skb)->seq;
  1061. if (tcp_hdr(skb)->syn)
  1062. offset--;
  1063. if (offset < skb->len || tcp_hdr(skb)->fin) {
  1064. *off = offset;
  1065. return skb;
  1066. }
  1067. }
  1068. return NULL;
  1069. }
  1070. /*
  1071. * This routine provides an alternative to tcp_recvmsg() for routines
  1072. * that would like to handle copying from skbuffs directly in 'sendfile'
  1073. * fashion.
  1074. * Note:
  1075. * - It is assumed that the socket was locked by the caller.
  1076. * - The routine does not block.
  1077. * - At present, there is no support for reading OOB data
  1078. * or for 'peeking' the socket using this routine
  1079. * (although both would be easy to implement).
  1080. */
  1081. int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
  1082. sk_read_actor_t recv_actor)
  1083. {
  1084. struct sk_buff *skb;
  1085. struct tcp_sock *tp = tcp_sk(sk);
  1086. u32 seq = tp->copied_seq;
  1087. u32 offset;
  1088. int copied = 0;
  1089. if (sk->sk_state == TCP_LISTEN)
  1090. return -ENOTCONN;
  1091. while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
  1092. if (offset < skb->len) {
  1093. int used;
  1094. size_t len;
  1095. len = skb->len - offset;
  1096. /* Stop reading if we hit a patch of urgent data */
  1097. if (tp->urg_data) {
  1098. u32 urg_offset = tp->urg_seq - seq;
  1099. if (urg_offset < len)
  1100. len = urg_offset;
  1101. if (!len)
  1102. break;
  1103. }
  1104. used = recv_actor(desc, skb, offset, len);
  1105. if (used < 0) {
  1106. if (!copied)
  1107. copied = used;
  1108. break;
  1109. } else if (used <= len) {
  1110. seq += used;
  1111. copied += used;
  1112. offset += used;
  1113. }
  1114. /*
  1115. * If recv_actor drops the lock (e.g. TCP splice
  1116. * receive) the skb pointer might be invalid when
  1117. * getting here: tcp_collapse might have deleted it
  1118. * while aggregating skbs from the socket queue.
  1119. */
  1120. skb = tcp_recv_skb(sk, seq-1, &offset);
  1121. if (!skb || (offset+1 != skb->len))
  1122. break;
  1123. }
  1124. if (tcp_hdr(skb)->fin) {
  1125. sk_eat_skb(sk, skb, 0);
  1126. ++seq;
  1127. break;
  1128. }
  1129. sk_eat_skb(sk, skb, 0);
  1130. if (!desc->count)
  1131. break;
  1132. }
  1133. tp->copied_seq = seq;
  1134. tcp_rcv_space_adjust(sk);
  1135. /* Clean up data we have read: This will do ACK frames. */
  1136. if (copied > 0)
  1137. tcp_cleanup_rbuf(sk, copied);
  1138. return copied;
  1139. }
  1140. /*
  1141. * This routine copies from a sock struct into the user buffer.
  1142. *
  1143. * Technical note: in 2.3 we work on _locked_ socket, so that
  1144. * tricks with *seq access order and skb->users are not required.
  1145. * Probably, code can be easily improved even more.
  1146. */
  1147. int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
  1148. size_t len, int nonblock, int flags, int *addr_len)
  1149. {
  1150. struct tcp_sock *tp = tcp_sk(sk);
  1151. int copied = 0;
  1152. u32 peek_seq;
  1153. u32 *seq;
  1154. unsigned long used;
  1155. int err;
  1156. int target; /* Read at least this many bytes */
  1157. long timeo;
  1158. struct task_struct *user_recv = NULL;
  1159. int copied_early = 0;
  1160. struct sk_buff *skb;
  1161. lock_sock(sk);
  1162. TCP_CHECK_TIMER(sk);
  1163. err = -ENOTCONN;
  1164. if (sk->sk_state == TCP_LISTEN)
  1165. goto out;
  1166. timeo = sock_rcvtimeo(sk, nonblock);
  1167. /* Urgent data needs to be handled specially. */
  1168. if (flags & MSG_OOB)
  1169. goto recv_urg;
  1170. seq = &tp->copied_seq;
  1171. if (flags & MSG_PEEK) {
  1172. peek_seq = tp->copied_seq;
  1173. seq = &peek_seq;
  1174. }
  1175. target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
  1176. #ifdef CONFIG_NET_DMA
  1177. tp->ucopy.dma_chan = NULL;
  1178. preempt_disable();
  1179. skb = skb_peek_tail(&sk->sk_receive_queue);
  1180. {
  1181. int available = 0;
  1182. if (skb)
  1183. available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
  1184. if ((available < target) &&
  1185. (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
  1186. !sysctl_tcp_low_latency &&
  1187. dma_find_channel(DMA_MEMCPY)) {
  1188. preempt_enable_no_resched();
  1189. tp->ucopy.pinned_list =
  1190. dma_pin_iovec_pages(msg->msg_iov, len);
  1191. } else {
  1192. preempt_enable_no_resched();
  1193. }
  1194. }
  1195. #endif
  1196. do {
  1197. u32 offset;
  1198. /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
  1199. if (tp->urg_data && tp->urg_seq == *seq) {
  1200. if (copied)
  1201. break;
  1202. if (signal_pending(current)) {
  1203. copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
  1204. break;
  1205. }
  1206. }
  1207. /* Next get a buffer. */
  1208. skb = skb_peek(&sk->sk_receive_queue);
  1209. do {
  1210. if (!skb)
  1211. break;
  1212. /* Now that we have two receive queues this
  1213. * shouldn't happen.
  1214. */
  1215. if (before(*seq, TCP_SKB_CB(skb)->seq)) {
  1216. printk(KERN_INFO "recvmsg bug: copied %X "
  1217. "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
  1218. break;
  1219. }
  1220. offset = *seq - TCP_SKB_CB(skb)->seq;
  1221. if (tcp_hdr(skb)->syn)
  1222. offset--;
  1223. if (offset < skb->len)
  1224. goto found_ok_skb;
  1225. if (tcp_hdr(skb)->fin)
  1226. goto found_fin_ok;
  1227. WARN_ON(!(flags & MSG_PEEK));
  1228. skb = skb->next;
  1229. } while (skb != (struct sk_buff *)&sk->sk_receive_queue);
  1230. /* Well, if we have backlog, try to process it now yet. */
  1231. if (copied >= target && !sk->sk_backlog.tail)
  1232. break;
  1233. if (copied) {
  1234. if (sk->sk_err ||
  1235. sk->sk_state == TCP_CLOSE ||
  1236. (sk->sk_shutdown & RCV_SHUTDOWN) ||
  1237. !timeo ||
  1238. signal_pending(current))
  1239. break;
  1240. } else {
  1241. if (sock_flag(sk, SOCK_DONE))
  1242. break;
  1243. if (sk->sk_err) {
  1244. copied = sock_error(sk);
  1245. break;
  1246. }
  1247. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1248. break;
  1249. if (sk->sk_state == TCP_CLOSE) {
  1250. if (!sock_flag(sk, SOCK_DONE)) {
  1251. /* This occurs when user tries to read
  1252. * from never connected socket.
  1253. */
  1254. copied = -ENOTCONN;
  1255. break;
  1256. }
  1257. break;
  1258. }
  1259. if (!timeo) {
  1260. copied = -EAGAIN;
  1261. break;
  1262. }
  1263. if (signal_pending(current)) {
  1264. copied = sock_intr_errno(timeo);
  1265. break;
  1266. }
  1267. }
  1268. tcp_cleanup_rbuf(sk, copied);
  1269. if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
  1270. /* Install new reader */
  1271. if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
  1272. user_recv = current;
  1273. tp->ucopy.task = user_recv;
  1274. tp->ucopy.iov = msg->msg_iov;
  1275. }
  1276. tp->ucopy.len = len;
  1277. WARN_ON(tp->copied_seq != tp->rcv_nxt &&
  1278. !(flags & (MSG_PEEK | MSG_TRUNC)));
  1279. /* Ugly... If prequeue is not empty, we have to
  1280. * process it before releasing socket, otherwise
  1281. * order will be broken at second iteration.
  1282. * More elegant solution is required!!!
  1283. *
  1284. * Look: we have the following (pseudo)queues:
  1285. *
  1286. * 1. packets in flight
  1287. * 2. backlog
  1288. * 3. prequeue
  1289. * 4. receive_queue
  1290. *
  1291. * Each queue can be processed only if the next ones
  1292. * are empty. At this point we have empty receive_queue.
  1293. * But prequeue _can_ be not empty after 2nd iteration,
  1294. * when we jumped to start of loop because backlog
  1295. * processing added something to receive_queue.
  1296. * We cannot release_sock(), because backlog contains
  1297. * packets arrived _after_ prequeued ones.
  1298. *
  1299. * Shortly, algorithm is clear --- to process all
  1300. * the queues in order. We could make it more directly,
  1301. * requeueing packets from backlog to prequeue, if
  1302. * is not empty. It is more elegant, but eats cycles,
  1303. * unfortunately.
  1304. */
  1305. if (!skb_queue_empty(&tp->ucopy.prequeue))
  1306. goto do_prequeue;
  1307. /* __ Set realtime policy in scheduler __ */
  1308. }
  1309. if (copied >= target) {
  1310. /* Do not sleep, just process backlog. */
  1311. release_sock(sk);
  1312. lock_sock(sk);
  1313. } else
  1314. sk_wait_data(sk, &timeo);
  1315. #ifdef CONFIG_NET_DMA
  1316. tp->ucopy.wakeup = 0;
  1317. #endif
  1318. if (user_recv) {
  1319. int chunk;
  1320. /* __ Restore normal policy in scheduler __ */
  1321. if ((chunk = len - tp->ucopy.len) != 0) {
  1322. NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
  1323. len -= chunk;
  1324. copied += chunk;
  1325. }
  1326. if (tp->rcv_nxt == tp->copied_seq &&
  1327. !skb_queue_empty(&tp->ucopy.prequeue)) {
  1328. do_prequeue:
  1329. tcp_prequeue_process(sk);
  1330. if ((chunk = len - tp->ucopy.len) != 0) {
  1331. NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
  1332. len -= chunk;
  1333. copied += chunk;
  1334. }
  1335. }
  1336. }
  1337. if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
  1338. if (net_ratelimit())
  1339. printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
  1340. current->comm, task_pid_nr(current));
  1341. peek_seq = tp->copied_seq;
  1342. }
  1343. continue;
  1344. found_ok_skb:
  1345. /* Ok so how much can we use? */
  1346. used = skb->len - offset;
  1347. if (len < used)
  1348. used = len;
  1349. /* Do we have urgent data here? */
  1350. if (tp->urg_data) {
  1351. u32 urg_offset = tp->urg_seq - *seq;
  1352. if (urg_offset < used) {
  1353. if (!urg_offset) {
  1354. if (!sock_flag(sk, SOCK_URGINLINE)) {
  1355. ++*seq;
  1356. offset++;
  1357. used--;
  1358. if (!used)
  1359. goto skip_copy;
  1360. }
  1361. } else
  1362. used = urg_offset;
  1363. }
  1364. }
  1365. if (!(flags & MSG_TRUNC)) {
  1366. #ifdef CONFIG_NET_DMA
  1367. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  1368. tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
  1369. if (tp->ucopy.dma_chan) {
  1370. tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
  1371. tp->ucopy.dma_chan, skb, offset,
  1372. msg->msg_iov, used,
  1373. tp->ucopy.pinned_list);
  1374. if (tp->ucopy.dma_cookie < 0) {
  1375. printk(KERN_ALERT "dma_cookie < 0\n");
  1376. /* Exception. Bailout! */
  1377. if (!copied)
  1378. copied = -EFAULT;
  1379. break;
  1380. }
  1381. if ((offset + used) == skb->len)
  1382. copied_early = 1;
  1383. } else
  1384. #endif
  1385. {
  1386. err = skb_copy_datagram_iovec(skb, offset,
  1387. msg->msg_iov, used);
  1388. if (err) {
  1389. /* Exception. Bailout! */
  1390. if (!copied)
  1391. copied = -EFAULT;
  1392. break;
  1393. }
  1394. }
  1395. }
  1396. *seq += used;
  1397. copied += used;
  1398. len -= used;
  1399. tcp_rcv_space_adjust(sk);
  1400. skip_copy:
  1401. if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
  1402. tp->urg_data = 0;
  1403. tcp_fast_path_check(sk);
  1404. }
  1405. if (used + offset < skb->len)
  1406. continue;
  1407. if (tcp_hdr(skb)->fin)
  1408. goto found_fin_ok;
  1409. if (!(flags & MSG_PEEK)) {
  1410. sk_eat_skb(sk, skb, copied_early);
  1411. copied_early = 0;
  1412. }
  1413. continue;
  1414. found_fin_ok:
  1415. /* Process the FIN. */
  1416. ++*seq;
  1417. if (!(flags & MSG_PEEK)) {
  1418. sk_eat_skb(sk, skb, copied_early);
  1419. copied_early = 0;
  1420. }
  1421. break;
  1422. } while (len > 0);
  1423. if (user_recv) {
  1424. if (!skb_queue_empty(&tp->ucopy.prequeue)) {
  1425. int chunk;
  1426. tp->ucopy.len = copied > 0 ? len : 0;
  1427. tcp_prequeue_process(sk);
  1428. if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
  1429. NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
  1430. len -= chunk;
  1431. copied += chunk;
  1432. }
  1433. }
  1434. tp->ucopy.task = NULL;
  1435. tp->ucopy.len = 0;
  1436. }
  1437. #ifdef CONFIG_NET_DMA
  1438. if (tp->ucopy.dma_chan) {
  1439. dma_cookie_t done, used;
  1440. dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
  1441. while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
  1442. tp->ucopy.dma_cookie, &done,
  1443. &used) == DMA_IN_PROGRESS) {
  1444. /* do partial cleanup of sk_async_wait_queue */
  1445. while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
  1446. (dma_async_is_complete(skb->dma_cookie, done,
  1447. used) == DMA_SUCCESS)) {
  1448. __skb_dequeue(&sk->sk_async_wait_queue);
  1449. kfree_skb(skb);
  1450. }
  1451. }
  1452. /* Safe to free early-copied skbs now */
  1453. __skb_queue_purge(&sk->sk_async_wait_queue);
  1454. tp->ucopy.dma_chan = NULL;
  1455. }
  1456. if (tp->ucopy.pinned_list) {
  1457. dma_unpin_iovec_pages(tp->ucopy.pinned_list);
  1458. tp->ucopy.pinned_list = NULL;
  1459. }
  1460. #endif
  1461. /* According to UNIX98, msg_name/msg_namelen are ignored
  1462. * on connected socket. I was just happy when found this 8) --ANK
  1463. */
  1464. /* Clean up data we have read: This will do ACK frames. */
  1465. tcp_cleanup_rbuf(sk, copied);
  1466. TCP_CHECK_TIMER(sk);
  1467. release_sock(sk);
  1468. return copied;
  1469. out:
  1470. TCP_CHECK_TIMER(sk);
  1471. release_sock(sk);
  1472. return err;
  1473. recv_urg:
  1474. err = tcp_recv_urg(sk, msg, len, flags);
  1475. goto out;
  1476. }
  1477. void tcp_set_state(struct sock *sk, int state)
  1478. {
  1479. int oldstate = sk->sk_state;
  1480. switch (state) {
  1481. case TCP_ESTABLISHED:
  1482. if (oldstate != TCP_ESTABLISHED)
  1483. TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
  1484. break;
  1485. case TCP_CLOSE:
  1486. if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
  1487. TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
  1488. sk->sk_prot->unhash(sk);
  1489. if (inet_csk(sk)->icsk_bind_hash &&
  1490. !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
  1491. inet_put_port(sk);
  1492. /* fall through */
  1493. default:
  1494. if (oldstate == TCP_ESTABLISHED)
  1495. TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
  1496. }
  1497. /* Change state AFTER socket is unhashed to avoid closed
  1498. * socket sitting in hash tables.
  1499. */
  1500. sk->sk_state = state;
  1501. #ifdef STATE_TRACE
  1502. SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
  1503. #endif
  1504. }
  1505. EXPORT_SYMBOL_GPL(tcp_set_state);
  1506. /*
  1507. * State processing on a close. This implements the state shift for
  1508. * sending our FIN frame. Note that we only send a FIN for some
  1509. * states. A shutdown() may have already sent the FIN, or we may be
  1510. * closed.
  1511. */
  1512. static const unsigned char new_state[16] = {
  1513. /* current state: new state: action: */
  1514. /* (Invalid) */ TCP_CLOSE,
  1515. /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
  1516. /* TCP_SYN_SENT */ TCP_CLOSE,
  1517. /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
  1518. /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
  1519. /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
  1520. /* TCP_TIME_WAIT */ TCP_CLOSE,
  1521. /* TCP_CLOSE */ TCP_CLOSE,
  1522. /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
  1523. /* TCP_LAST_ACK */ TCP_LAST_ACK,
  1524. /* TCP_LISTEN */ TCP_CLOSE,
  1525. /* TCP_CLOSING */ TCP_CLOSING,
  1526. };
  1527. static int tcp_close_state(struct sock *sk)
  1528. {
  1529. int next = (int)new_state[sk->sk_state];
  1530. int ns = next & TCP_STATE_MASK;
  1531. tcp_set_state(sk, ns);
  1532. return next & TCP_ACTION_FIN;
  1533. }
  1534. /*
  1535. * Shutdown the sending side of a connection. Much like close except
  1536. * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
  1537. */
  1538. void tcp_shutdown(struct sock *sk, int how)
  1539. {
  1540. /* We need to grab some memory, and put together a FIN,
  1541. * and then put it into the queue to be sent.
  1542. * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
  1543. */
  1544. if (!(how & SEND_SHUTDOWN))
  1545. return;
  1546. /* If we've already sent a FIN, or it's a closed state, skip this. */
  1547. if ((1 << sk->sk_state) &
  1548. (TCPF_ESTABLISHED | TCPF_SYN_SENT |
  1549. TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
  1550. /* Clear out any half completed packets. FIN if needed. */
  1551. if (tcp_close_state(sk))
  1552. tcp_send_fin(sk);
  1553. }
  1554. }
  1555. void tcp_close(struct sock *sk, long timeout)
  1556. {
  1557. struct sk_buff *skb;
  1558. int data_was_unread = 0;
  1559. int state;
  1560. lock_sock(sk);
  1561. sk->sk_shutdown = SHUTDOWN_MASK;
  1562. if (sk->sk_state == TCP_LISTEN) {
  1563. tcp_set_state(sk, TCP_CLOSE);
  1564. /* Special case. */
  1565. inet_csk_listen_stop(sk);
  1566. goto adjudge_to_death;
  1567. }
  1568. /* We need to flush the recv. buffs. We do this only on the
  1569. * descriptor close, not protocol-sourced closes, because the
  1570. * reader process may not have drained the data yet!
  1571. */
  1572. while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
  1573. u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
  1574. tcp_hdr(skb)->fin;
  1575. data_was_unread += len;
  1576. __kfree_skb(skb);
  1577. }
  1578. sk_mem_reclaim(sk);
  1579. /* As outlined in RFC 2525, section 2.17, we send a RST here because
  1580. * data was lost. To witness the awful effects of the old behavior of
  1581. * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
  1582. * GET in an FTP client, suspend the process, wait for the client to
  1583. * advertise a zero window, then kill -9 the FTP client, wheee...
  1584. * Note: timeout is always zero in such a case.
  1585. */
  1586. if (data_was_unread) {
  1587. /* Unread data was tossed, zap the connection. */
  1588. NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
  1589. tcp_set_state(sk, TCP_CLOSE);
  1590. tcp_send_active_reset(sk, GFP_KERNEL);
  1591. } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
  1592. /* Check zero linger _after_ checking for unread data. */
  1593. sk->sk_prot->disconnect(sk, 0);
  1594. NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  1595. } else if (tcp_close_state(sk)) {
  1596. /* We FIN if the application ate all the data before
  1597. * zapping the connection.
  1598. */
  1599. /* RED-PEN. Formally speaking, we have broken TCP state
  1600. * machine. State transitions:
  1601. *
  1602. * TCP_ESTABLISHED -> TCP_FIN_WAIT1
  1603. * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
  1604. * TCP_CLOSE_WAIT -> TCP_LAST_ACK
  1605. *
  1606. * are legal only when FIN has been sent (i.e. in window),
  1607. * rather than queued out of window. Purists blame.
  1608. *
  1609. * F.e. "RFC state" is ESTABLISHED,
  1610. * if Linux state is FIN-WAIT-1, but FIN is still not sent.
  1611. *
  1612. * The visible declinations are that sometimes
  1613. * we enter time-wait state, when it is not required really
  1614. * (harmless), do not send active resets, when they are
  1615. * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
  1616. * they look as CLOSING or LAST_ACK for Linux)
  1617. * Probably, I missed some more holelets.
  1618. * --ANK
  1619. */
  1620. tcp_send_fin(sk);
  1621. }
  1622. sk_stream_wait_close(sk, timeout);
  1623. adjudge_to_death:
  1624. state = sk->sk_state;
  1625. sock_hold(sk);
  1626. sock_orphan(sk);
  1627. /* It is the last release_sock in its life. It will remove backlog. */
  1628. release_sock(sk);
  1629. /* Now socket is owned by kernel and we acquire BH lock
  1630. to finish close. No need to check for user refs.
  1631. */
  1632. local_bh_disable();
  1633. bh_lock_sock(sk);
  1634. WARN_ON(sock_owned_by_user(sk));
  1635. percpu_counter_inc(sk->sk_prot->orphan_count);
  1636. /* Have we already been destroyed by a softirq or backlog? */
  1637. if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
  1638. goto out;
  1639. /* This is a (useful) BSD violating of the RFC. There is a
  1640. * problem with TCP as specified in that the other end could
  1641. * keep a socket open forever with no application left this end.
  1642. * We use a 3 minute timeout (about the same as BSD) then kill
  1643. * our end. If they send after that then tough - BUT: long enough
  1644. * that we won't make the old 4*rto = almost no time - whoops
  1645. * reset mistake.
  1646. *
  1647. * Nope, it was not mistake. It is really desired behaviour
  1648. * f.e. on http servers, when such sockets are useless, but
  1649. * consume significant resources. Let's do it with special
  1650. * linger2 option. --ANK
  1651. */
  1652. if (sk->sk_state == TCP_FIN_WAIT2) {
  1653. struct tcp_sock *tp = tcp_sk(sk);
  1654. if (tp->linger2 < 0) {
  1655. tcp_set_state(sk, TCP_CLOSE);
  1656. tcp_send_active_reset(sk, GFP_ATOMIC);
  1657. NET_INC_STATS_BH(sock_net(sk),
  1658. LINUX_MIB_TCPABORTONLINGER);
  1659. } else {
  1660. const int tmo = tcp_fin_time(sk);
  1661. if (tmo > TCP_TIMEWAIT_LEN) {
  1662. inet_csk_reset_keepalive_timer(sk,
  1663. tmo - TCP_TIMEWAIT_LEN);
  1664. } else {
  1665. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  1666. goto out;
  1667. }
  1668. }
  1669. }
  1670. if (sk->sk_state != TCP_CLOSE) {
  1671. int orphan_count = percpu_counter_read_positive(
  1672. sk->sk_prot->orphan_count);
  1673. sk_mem_reclaim(sk);
  1674. if (tcp_too_many_orphans(sk, orphan_count)) {
  1675. if (net_ratelimit())
  1676. printk(KERN_INFO "TCP: too many of orphaned "
  1677. "sockets\n");
  1678. tcp_set_state(sk, TCP_CLOSE);
  1679. tcp_send_active_reset(sk, GFP_ATOMIC);
  1680. NET_INC_STATS_BH(sock_net(sk),
  1681. LINUX_MIB_TCPABORTONMEMORY);
  1682. }
  1683. }
  1684. if (sk->sk_state == TCP_CLOSE)
  1685. inet_csk_destroy_sock(sk);
  1686. /* Otherwise, socket is reprieved until protocol close. */
  1687. out:
  1688. bh_unlock_sock(sk);
  1689. local_bh_enable();
  1690. sock_put(sk);
  1691. }
  1692. /* These states need RST on ABORT according to RFC793 */
  1693. static inline int tcp_need_reset(int state)
  1694. {
  1695. return (1 << state) &
  1696. (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
  1697. TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
  1698. }
  1699. int tcp_disconnect(struct sock *sk, int flags)
  1700. {
  1701. struct inet_sock *inet = inet_sk(sk);
  1702. struct inet_connection_sock *icsk = inet_csk(sk);
  1703. struct tcp_sock *tp = tcp_sk(sk);
  1704. int err = 0;
  1705. int old_state = sk->sk_state;
  1706. if (old_state != TCP_CLOSE)
  1707. tcp_set_state(sk, TCP_CLOSE);
  1708. /* ABORT function of RFC793 */
  1709. if (old_state == TCP_LISTEN) {
  1710. inet_csk_listen_stop(sk);
  1711. } else if (tcp_need_reset(old_state) ||
  1712. (tp->snd_nxt != tp->write_seq &&
  1713. (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
  1714. /* The last check adjusts for discrepancy of Linux wrt. RFC
  1715. * states
  1716. */
  1717. tcp_send_active_reset(sk, gfp_any());
  1718. sk->sk_err = ECONNRESET;
  1719. } else if (old_state == TCP_SYN_SENT)
  1720. sk->sk_err = ECONNRESET;
  1721. tcp_clear_xmit_timers(sk);
  1722. __skb_queue_purge(&sk->sk_receive_queue);
  1723. tcp_write_queue_purge(sk);
  1724. __skb_queue_purge(&tp->out_of_order_queue);
  1725. #ifdef CONFIG_NET_DMA
  1726. __skb_queue_purge(&sk->sk_async_wait_queue);
  1727. #endif
  1728. inet->dport = 0;
  1729. if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
  1730. inet_reset_saddr(sk);
  1731. sk->sk_shutdown = 0;
  1732. sock_reset_flag(sk, SOCK_DONE);
  1733. tp->srtt = 0;
  1734. if ((tp->write_seq += tp->max_window + 2) == 0)
  1735. tp->write_seq = 1;
  1736. icsk->icsk_backoff = 0;
  1737. tp->snd_cwnd = 2;
  1738. icsk->icsk_probes_out = 0;
  1739. tp->packets_out = 0;
  1740. tp->snd_ssthresh = 0x7fffffff;
  1741. tp->snd_cwnd_cnt = 0;
  1742. tp->bytes_acked = 0;
  1743. tcp_set_ca_state(sk, TCP_CA_Open);
  1744. tcp_clear_retrans(tp);
  1745. inet_csk_delack_init(sk);
  1746. tcp_init_send_head(sk);
  1747. memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
  1748. __sk_dst_reset(sk);
  1749. WARN_ON(inet->num && !icsk->icsk_bind_hash);
  1750. sk->sk_error_report(sk);
  1751. return err;
  1752. }
  1753. /*
  1754. * Socket option code for TCP.
  1755. */
  1756. static int do_tcp_setsockopt(struct sock *sk, int level,
  1757. int optname, char __user *optval, int optlen)
  1758. {
  1759. struct tcp_sock *tp = tcp_sk(sk);
  1760. struct inet_connection_sock *icsk = inet_csk(sk);
  1761. int val;
  1762. int err = 0;
  1763. /* This is a string value all the others are int's */
  1764. if (optname == TCP_CONGESTION) {
  1765. char name[TCP_CA_NAME_MAX];
  1766. if (optlen < 1)
  1767. return -EINVAL;
  1768. val = strncpy_from_user(name, optval,
  1769. min(TCP_CA_NAME_MAX-1, optlen));
  1770. if (val < 0)
  1771. return -EFAULT;
  1772. name[val] = 0;
  1773. lock_sock(sk);
  1774. err = tcp_set_congestion_control(sk, name);
  1775. release_sock(sk);
  1776. return err;
  1777. }
  1778. if (optlen < sizeof(int))
  1779. return -EINVAL;
  1780. if (get_user(val, (int __user *)optval))
  1781. return -EFAULT;
  1782. lock_sock(sk);
  1783. switch (optname) {
  1784. case TCP_MAXSEG:
  1785. /* Values greater than interface MTU won't take effect. However
  1786. * at the point when this call is done we typically don't yet
  1787. * know which interface is going to be used */
  1788. if (val < 8 || val > MAX_TCP_WINDOW) {
  1789. err = -EINVAL;
  1790. break;
  1791. }
  1792. tp->rx_opt.user_mss = val;
  1793. break;
  1794. case TCP_NODELAY:
  1795. if (val) {
  1796. /* TCP_NODELAY is weaker than TCP_CORK, so that
  1797. * this option on corked socket is remembered, but
  1798. * it is not activated until cork is cleared.
  1799. *
  1800. * However, when TCP_NODELAY is set we make
  1801. * an explicit push, which overrides even TCP_CORK
  1802. * for currently queued segments.
  1803. */
  1804. tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
  1805. tcp_push_pending_frames(sk);
  1806. } else {
  1807. tp->nonagle &= ~TCP_NAGLE_OFF;
  1808. }
  1809. break;
  1810. case TCP_CORK:
  1811. /* When set indicates to always queue non-full frames.
  1812. * Later the user clears this option and we transmit
  1813. * any pending partial frames in the queue. This is
  1814. * meant to be used alongside sendfile() to get properly
  1815. * filled frames when the user (for example) must write
  1816. * out headers with a write() call first and then use
  1817. * sendfile to send out the data parts.
  1818. *
  1819. * TCP_CORK can be set together with TCP_NODELAY and it is
  1820. * stronger than TCP_NODELAY.
  1821. */
  1822. if (val) {
  1823. tp->nonagle |= TCP_NAGLE_CORK;
  1824. } else {
  1825. tp->nonagle &= ~TCP_NAGLE_CORK;
  1826. if (tp->nonagle&TCP_NAGLE_OFF)
  1827. tp->nonagle |= TCP_NAGLE_PUSH;
  1828. tcp_push_pending_frames(sk);
  1829. }
  1830. break;
  1831. case TCP_KEEPIDLE:
  1832. if (val < 1 || val > MAX_TCP_KEEPIDLE)
  1833. err = -EINVAL;
  1834. else {
  1835. tp->keepalive_time = val * HZ;
  1836. if (sock_flag(sk, SOCK_KEEPOPEN) &&
  1837. !((1 << sk->sk_state) &
  1838. (TCPF_CLOSE | TCPF_LISTEN))) {
  1839. __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
  1840. if (tp->keepalive_time > elapsed)
  1841. elapsed = tp->keepalive_time - elapsed;
  1842. else
  1843. elapsed = 0;
  1844. inet_csk_reset_keepalive_timer(sk, elapsed);
  1845. }
  1846. }
  1847. break;
  1848. case TCP_KEEPINTVL:
  1849. if (val < 1 || val > MAX_TCP_KEEPINTVL)
  1850. err = -EINVAL;
  1851. else
  1852. tp->keepalive_intvl = val * HZ;
  1853. break;
  1854. case TCP_KEEPCNT:
  1855. if (val < 1 || val > MAX_TCP_KEEPCNT)
  1856. err = -EINVAL;
  1857. else
  1858. tp->keepalive_probes = val;
  1859. break;
  1860. case TCP_SYNCNT:
  1861. if (val < 1 || val > MAX_TCP_SYNCNT)
  1862. err = -EINVAL;
  1863. else
  1864. icsk->icsk_syn_retries = val;
  1865. break;
  1866. case TCP_LINGER2:
  1867. if (val < 0)
  1868. tp->linger2 = -1;
  1869. else if (val > sysctl_tcp_fin_timeout / HZ)
  1870. tp->linger2 = 0;
  1871. else
  1872. tp->linger2 = val * HZ;
  1873. break;
  1874. case TCP_DEFER_ACCEPT:
  1875. icsk->icsk_accept_queue.rskq_defer_accept = 0;
  1876. if (val > 0) {
  1877. /* Translate value in seconds to number of
  1878. * retransmits */
  1879. while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
  1880. val > ((TCP_TIMEOUT_INIT / HZ) <<
  1881. icsk->icsk_accept_queue.rskq_defer_accept))
  1882. icsk->icsk_accept_queue.rskq_defer_accept++;
  1883. icsk->icsk_accept_queue.rskq_defer_accept++;
  1884. }
  1885. break;
  1886. case TCP_WINDOW_CLAMP:
  1887. if (!val) {
  1888. if (sk->sk_state != TCP_CLOSE) {
  1889. err = -EINVAL;
  1890. break;
  1891. }
  1892. tp->window_clamp = 0;
  1893. } else
  1894. tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
  1895. SOCK_MIN_RCVBUF / 2 : val;
  1896. break;
  1897. case TCP_QUICKACK:
  1898. if (!val) {
  1899. icsk->icsk_ack.pingpong = 1;
  1900. } else {
  1901. icsk->icsk_ack.pingpong = 0;
  1902. if ((1 << sk->sk_state) &
  1903. (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
  1904. inet_csk_ack_scheduled(sk)) {
  1905. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  1906. tcp_cleanup_rbuf(sk, 1);
  1907. if (!(val & 1))
  1908. icsk->icsk_ack.pingpong = 1;
  1909. }
  1910. }
  1911. break;
  1912. #ifdef CONFIG_TCP_MD5SIG
  1913. case TCP_MD5SIG:
  1914. /* Read the IP->Key mappings from userspace */
  1915. err = tp->af_specific->md5_parse(sk, optval, optlen);
  1916. break;
  1917. #endif
  1918. default:
  1919. err = -ENOPROTOOPT;
  1920. break;
  1921. }
  1922. release_sock(sk);
  1923. return err;
  1924. }
  1925. int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
  1926. int optlen)
  1927. {
  1928. struct inet_connection_sock *icsk = inet_csk(sk);
  1929. if (level != SOL_TCP)
  1930. return icsk->icsk_af_ops->setsockopt(sk, level, optname,
  1931. optval, optlen);
  1932. return do_tcp_setsockopt(sk, level, optname, optval, optlen);
  1933. }
  1934. #ifdef CONFIG_COMPAT
  1935. int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
  1936. char __user *optval, int optlen)
  1937. {
  1938. if (level != SOL_TCP)
  1939. return inet_csk_compat_setsockopt(sk, level, optname,
  1940. optval, optlen);
  1941. return do_tcp_setsockopt(sk, level, optname, optval, optlen);
  1942. }
  1943. EXPORT_SYMBOL(compat_tcp_setsockopt);
  1944. #endif
  1945. /* Return information about state of tcp endpoint in API format. */
  1946. void tcp_get_info(struct sock *sk, struct tcp_info *info)
  1947. {
  1948. struct tcp_sock *tp = tcp_sk(sk);
  1949. const struct inet_connection_sock *icsk = inet_csk(sk);
  1950. u32 now = tcp_time_stamp;
  1951. memset(info, 0, sizeof(*info));
  1952. info->tcpi_state = sk->sk_state;
  1953. info->tcpi_ca_state = icsk->icsk_ca_state;
  1954. info->tcpi_retransmits = icsk->icsk_retransmits;
  1955. info->tcpi_probes = icsk->icsk_probes_out;
  1956. info->tcpi_backoff = icsk->icsk_backoff;
  1957. if (tp->rx_opt.tstamp_ok)
  1958. info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
  1959. if (tcp_is_sack(tp))
  1960. info->tcpi_options |= TCPI_OPT_SACK;
  1961. if (tp->rx_opt.wscale_ok) {
  1962. info->tcpi_options |= TCPI_OPT_WSCALE;
  1963. info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
  1964. info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
  1965. }
  1966. if (tp->ecn_flags&TCP_ECN_OK)
  1967. info->tcpi_options |= TCPI_OPT_ECN;
  1968. info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
  1969. info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
  1970. info->tcpi_snd_mss = tp->mss_cache;
  1971. info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
  1972. if (sk->sk_state == TCP_LISTEN) {
  1973. info->tcpi_unacked = sk->sk_ack_backlog;
  1974. info->tcpi_sacked = sk->sk_max_ack_backlog;
  1975. } else {
  1976. info->tcpi_unacked = tp->packets_out;
  1977. info->tcpi_sacked = tp->sacked_out;
  1978. }
  1979. info->tcpi_lost = tp->lost_out;
  1980. info->tcpi_retrans = tp->retrans_out;
  1981. info->tcpi_fackets = tp->fackets_out;
  1982. info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
  1983. info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
  1984. info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
  1985. info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
  1986. info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
  1987. info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
  1988. info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
  1989. info->tcpi_snd_ssthresh = tp->snd_ssthresh;
  1990. info->tcpi_snd_cwnd = tp->snd_cwnd;
  1991. info->tcpi_advmss = tp->advmss;
  1992. info->tcpi_reordering = tp->reordering;
  1993. info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
  1994. info->tcpi_rcv_space = tp->rcvq_space.space;
  1995. info->tcpi_total_retrans = tp->total_retrans;
  1996. }
  1997. EXPORT_SYMBOL_GPL(tcp_get_info);
  1998. static int do_tcp_getsockopt(struct sock *sk, int level,
  1999. int optname, char __user *optval, int __user *optlen)
  2000. {
  2001. struct inet_connection_sock *icsk = inet_csk(sk);
  2002. struct tcp_sock *tp = tcp_sk(sk);
  2003. int val, len;
  2004. if (get_user(len, optlen))
  2005. return -EFAULT;
  2006. len = min_t(unsigned int, len, sizeof(int));
  2007. if (len < 0)
  2008. return -EINVAL;
  2009. switch (optname) {
  2010. case TCP_MAXSEG:
  2011. val = tp->mss_cache;
  2012. if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
  2013. val = tp->rx_opt.user_mss;
  2014. break;
  2015. case TCP_NODELAY:
  2016. val = !!(tp->nonagle&TCP_NAGLE_OFF);
  2017. break;
  2018. case TCP_CORK:
  2019. val = !!(tp->nonagle&TCP_NAGLE_CORK);
  2020. break;
  2021. case TCP_KEEPIDLE:
  2022. val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
  2023. break;
  2024. case TCP_KEEPINTVL:
  2025. val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
  2026. break;
  2027. case TCP_KEEPCNT:
  2028. val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
  2029. break;
  2030. case TCP_SYNCNT:
  2031. val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
  2032. break;
  2033. case TCP_LINGER2:
  2034. val = tp->linger2;
  2035. if (val >= 0)
  2036. val = (val ? : sysctl_tcp_fin_timeout) / HZ;
  2037. break;
  2038. case TCP_DEFER_ACCEPT:
  2039. val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
  2040. ((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
  2041. break;
  2042. case TCP_WINDOW_CLAMP:
  2043. val = tp->window_clamp;
  2044. break;
  2045. case TCP_INFO: {
  2046. struct tcp_info info;
  2047. if (get_user(len, optlen))
  2048. return -EFAULT;
  2049. tcp_get_info(sk, &info);
  2050. len = min_t(unsigned int, len, sizeof(info));
  2051. if (put_user(len, optlen))
  2052. return -EFAULT;
  2053. if (copy_to_user(optval, &info, len))
  2054. return -EFAULT;
  2055. return 0;
  2056. }
  2057. case TCP_QUICKACK:
  2058. val = !icsk->icsk_ack.pingpong;
  2059. break;
  2060. case TCP_CONGESTION:
  2061. if (get_user(len, optlen))
  2062. return -EFAULT;
  2063. len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
  2064. if (put_user(len, optlen))
  2065. return -EFAULT;
  2066. if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
  2067. return -EFAULT;
  2068. return 0;
  2069. default:
  2070. return -ENOPROTOOPT;
  2071. }
  2072. if (put_user(len, optlen))
  2073. return -EFAULT;
  2074. if (copy_to_user(optval, &val, len))
  2075. return -EFAULT;
  2076. return 0;
  2077. }
  2078. int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
  2079. int __user *optlen)
  2080. {
  2081. struct inet_connection_sock *icsk = inet_csk(sk);
  2082. if (level != SOL_TCP)
  2083. return icsk->icsk_af_ops->getsockopt(sk, level, optname,
  2084. optval, optlen);
  2085. return do_tcp_getsockopt(sk, level, optname, optval, optlen);
  2086. }
  2087. #ifdef CONFIG_COMPAT
  2088. int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
  2089. char __user *optval, int __user *optlen)
  2090. {
  2091. if (level != SOL_TCP)
  2092. return inet_csk_compat_getsockopt(sk, level, optname,
  2093. optval, optlen);
  2094. return do_tcp_getsockopt(sk, level, optname, optval, optlen);
  2095. }
  2096. EXPORT_SYMBOL(compat_tcp_getsockopt);
  2097. #endif
  2098. struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
  2099. {
  2100. struct sk_buff *segs = ERR_PTR(-EINVAL);
  2101. struct tcphdr *th;
  2102. unsigned thlen;
  2103. unsigned int seq;
  2104. __be32 delta;
  2105. unsigned int oldlen;
  2106. unsigned int mss;
  2107. if (!pskb_may_pull(skb, sizeof(*th)))
  2108. goto out;
  2109. th = tcp_hdr(skb);
  2110. thlen = th->doff * 4;
  2111. if (thlen < sizeof(*th))
  2112. goto out;
  2113. if (!pskb_may_pull(skb, thlen))
  2114. goto out;
  2115. oldlen = (u16)~skb->len;
  2116. __skb_pull(skb, thlen);
  2117. mss = skb_shinfo(skb)->gso_size;
  2118. if (unlikely(skb->len <= mss))
  2119. goto out;
  2120. if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
  2121. /* Packet is from an untrusted source, reset gso_segs. */
  2122. int type = skb_shinfo(skb)->gso_type;
  2123. if (unlikely(type &
  2124. ~(SKB_GSO_TCPV4 |
  2125. SKB_GSO_DODGY |
  2126. SKB_GSO_TCP_ECN |
  2127. SKB_GSO_TCPV6 |
  2128. 0) ||
  2129. !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
  2130. goto out;
  2131. skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
  2132. segs = NULL;
  2133. goto out;
  2134. }
  2135. segs = skb_segment(skb, features);
  2136. if (IS_ERR(segs))
  2137. goto out;
  2138. delta = htonl(oldlen + (thlen + mss));
  2139. skb = segs;
  2140. th = tcp_hdr(skb);
  2141. seq = ntohl(th->seq);
  2142. do {
  2143. th->fin = th->psh = 0;
  2144. th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
  2145. (__force u32)delta));
  2146. if (skb->ip_summed != CHECKSUM_PARTIAL)
  2147. th->check =
  2148. csum_fold(csum_partial(skb_transport_header(skb),
  2149. thlen, skb->csum));
  2150. seq += mss;
  2151. skb = skb->next;
  2152. th = tcp_hdr(skb);
  2153. th->seq = htonl(seq);
  2154. th->cwr = 0;
  2155. } while (skb->next);
  2156. delta = htonl(oldlen + (skb->tail - skb->transport_header) +
  2157. skb->data_len);
  2158. th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
  2159. (__force u32)delta));
  2160. if (skb->ip_summed != CHECKSUM_PARTIAL)
  2161. th->check = csum_fold(csum_partial(skb_transport_header(skb),
  2162. thlen, skb->csum));
  2163. out:
  2164. return segs;
  2165. }
  2166. EXPORT_SYMBOL(tcp_tso_segment);
  2167. struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
  2168. {
  2169. struct sk_buff **pp = NULL;
  2170. struct sk_buff *p;
  2171. struct tcphdr *th;
  2172. struct tcphdr *th2;
  2173. unsigned int thlen;
  2174. unsigned int flags;
  2175. unsigned int mss = 1;
  2176. int flush = 1;
  2177. int i;
  2178. th = skb_gro_header(skb, sizeof(*th));
  2179. if (unlikely(!th))
  2180. goto out;
  2181. thlen = th->doff * 4;
  2182. if (thlen < sizeof(*th))
  2183. goto out;
  2184. th = skb_gro_header(skb, thlen);
  2185. if (unlikely(!th))
  2186. goto out;
  2187. skb_gro_pull(skb, thlen);
  2188. flags = tcp_flag_word(th);
  2189. for (; (p = *head); head = &p->next) {
  2190. if (!NAPI_GRO_CB(p)->same_flow)
  2191. continue;
  2192. th2 = tcp_hdr(p);
  2193. if ((th->source ^ th2->source) | (th->dest ^ th2->dest)) {
  2194. NAPI_GRO_CB(p)->same_flow = 0;
  2195. continue;
  2196. }
  2197. goto found;
  2198. }
  2199. goto out_check_final;
  2200. found:
  2201. flush = NAPI_GRO_CB(p)->flush;
  2202. flush |= flags & TCP_FLAG_CWR;
  2203. flush |= (flags ^ tcp_flag_word(th2)) &
  2204. ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH);
  2205. flush |= (th->ack_seq ^ th2->ack_seq) | (th->window ^ th2->window);
  2206. for (i = sizeof(*th); !flush && i < thlen; i += 4)
  2207. flush |= *(u32 *)((u8 *)th + i) ^
  2208. *(u32 *)((u8 *)th2 + i);
  2209. mss = skb_shinfo(p)->gso_size;
  2210. flush |= (skb_gro_len(skb) > mss) | !skb_gro_len(skb);
  2211. flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
  2212. if (flush || skb_gro_receive(head, skb)) {
  2213. mss = 1;
  2214. goto out_check_final;
  2215. }
  2216. p = *head;
  2217. th2 = tcp_hdr(p);
  2218. tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
  2219. out_check_final:
  2220. flush = skb_gro_len(skb) < mss;
  2221. flush |= flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST |
  2222. TCP_FLAG_SYN | TCP_FLAG_FIN);
  2223. if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
  2224. pp = head;
  2225. out:
  2226. NAPI_GRO_CB(skb)->flush |= flush;
  2227. return pp;
  2228. }
  2229. EXPORT_SYMBOL(tcp_gro_receive);
  2230. int tcp_gro_complete(struct sk_buff *skb)
  2231. {
  2232. struct tcphdr *th = tcp_hdr(skb);
  2233. skb->csum_start = skb_transport_header(skb) - skb->head;
  2234. skb->csum_offset = offsetof(struct tcphdr, check);
  2235. skb->ip_summed = CHECKSUM_PARTIAL;
  2236. skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
  2237. if (th->cwr)
  2238. skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
  2239. return 0;
  2240. }
  2241. EXPORT_SYMBOL(tcp_gro_complete);
  2242. #ifdef CONFIG_TCP_MD5SIG
  2243. static unsigned long tcp_md5sig_users;
  2244. static struct tcp_md5sig_pool **tcp_md5sig_pool;
  2245. static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
  2246. static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
  2247. {
  2248. int cpu;
  2249. for_each_possible_cpu(cpu) {
  2250. struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
  2251. if (p) {
  2252. if (p->md5_desc.tfm)
  2253. crypto_free_hash(p->md5_desc.tfm);
  2254. kfree(p);
  2255. p = NULL;
  2256. }
  2257. }
  2258. free_percpu(pool);
  2259. }
  2260. void tcp_free_md5sig_pool(void)
  2261. {
  2262. struct tcp_md5sig_pool **pool = NULL;
  2263. spin_lock_bh(&tcp_md5sig_pool_lock);
  2264. if (--tcp_md5sig_users == 0) {
  2265. pool = tcp_md5sig_pool;
  2266. tcp_md5sig_pool = NULL;
  2267. }
  2268. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2269. if (pool)
  2270. __tcp_free_md5sig_pool(pool);
  2271. }
  2272. EXPORT_SYMBOL(tcp_free_md5sig_pool);
  2273. static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
  2274. {
  2275. int cpu;
  2276. struct tcp_md5sig_pool **pool;
  2277. pool = alloc_percpu(struct tcp_md5sig_pool *);
  2278. if (!pool)
  2279. return NULL;
  2280. for_each_possible_cpu(cpu) {
  2281. struct tcp_md5sig_pool *p;
  2282. struct crypto_hash *hash;
  2283. p = kzalloc(sizeof(*p), GFP_KERNEL);
  2284. if (!p)
  2285. goto out_free;
  2286. *per_cpu_ptr(pool, cpu) = p;
  2287. hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
  2288. if (!hash || IS_ERR(hash))
  2289. goto out_free;
  2290. p->md5_desc.tfm = hash;
  2291. }
  2292. return pool;
  2293. out_free:
  2294. __tcp_free_md5sig_pool(pool);
  2295. return NULL;
  2296. }
  2297. struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
  2298. {
  2299. struct tcp_md5sig_pool **pool;
  2300. int alloc = 0;
  2301. retry:
  2302. spin_lock_bh(&tcp_md5sig_pool_lock);
  2303. pool = tcp_md5sig_pool;
  2304. if (tcp_md5sig_users++ == 0) {
  2305. alloc = 1;
  2306. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2307. } else if (!pool) {
  2308. tcp_md5sig_users--;
  2309. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2310. cpu_relax();
  2311. goto retry;
  2312. } else
  2313. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2314. if (alloc) {
  2315. /* we cannot hold spinlock here because this may sleep. */
  2316. struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
  2317. spin_lock_bh(&tcp_md5sig_pool_lock);
  2318. if (!p) {
  2319. tcp_md5sig_users--;
  2320. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2321. return NULL;
  2322. }
  2323. pool = tcp_md5sig_pool;
  2324. if (pool) {
  2325. /* oops, it has already been assigned. */
  2326. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2327. __tcp_free_md5sig_pool(p);
  2328. } else {
  2329. tcp_md5sig_pool = pool = p;
  2330. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2331. }
  2332. }
  2333. return pool;
  2334. }
  2335. EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
  2336. struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
  2337. {
  2338. struct tcp_md5sig_pool **p;
  2339. spin_lock_bh(&tcp_md5sig_pool_lock);
  2340. p = tcp_md5sig_pool;
  2341. if (p)
  2342. tcp_md5sig_users++;
  2343. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2344. return (p ? *per_cpu_ptr(p, cpu) : NULL);
  2345. }
  2346. EXPORT_SYMBOL(__tcp_get_md5sig_pool);
  2347. void __tcp_put_md5sig_pool(void)
  2348. {
  2349. tcp_free_md5sig_pool();
  2350. }
  2351. EXPORT_SYMBOL(__tcp_put_md5sig_pool);
  2352. int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
  2353. struct tcphdr *th)
  2354. {
  2355. struct scatterlist sg;
  2356. int err;
  2357. __sum16 old_checksum = th->check;
  2358. th->check = 0;
  2359. /* options aren't included in the hash */
  2360. sg_init_one(&sg, th, sizeof(struct tcphdr));
  2361. err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
  2362. th->check = old_checksum;
  2363. return err;
  2364. }
  2365. EXPORT_SYMBOL(tcp_md5_hash_header);
  2366. int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
  2367. struct sk_buff *skb, unsigned header_len)
  2368. {
  2369. struct scatterlist sg;
  2370. const struct tcphdr *tp = tcp_hdr(skb);
  2371. struct hash_desc *desc = &hp->md5_desc;
  2372. unsigned i;
  2373. const unsigned head_data_len = skb_headlen(skb) > header_len ?
  2374. skb_headlen(skb) - header_len : 0;
  2375. const struct skb_shared_info *shi = skb_shinfo(skb);
  2376. sg_init_table(&sg, 1);
  2377. sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
  2378. if (crypto_hash_update(desc, &sg, head_data_len))
  2379. return 1;
  2380. for (i = 0; i < shi->nr_frags; ++i) {
  2381. const struct skb_frag_struct *f = &shi->frags[i];
  2382. sg_set_page(&sg, f->page, f->size, f->page_offset);
  2383. if (crypto_hash_update(desc, &sg, f->size))
  2384. return 1;
  2385. }
  2386. return 0;
  2387. }
  2388. EXPORT_SYMBOL(tcp_md5_hash_skb_data);
  2389. int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
  2390. {
  2391. struct scatterlist sg;
  2392. sg_init_one(&sg, key->key, key->keylen);
  2393. return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
  2394. }
  2395. EXPORT_SYMBOL(tcp_md5_hash_key);
  2396. #endif
  2397. void tcp_done(struct sock *sk)
  2398. {
  2399. if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
  2400. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
  2401. tcp_set_state(sk, TCP_CLOSE);
  2402. tcp_clear_xmit_timers(sk);
  2403. sk->sk_shutdown = SHUTDOWN_MASK;
  2404. if (!sock_flag(sk, SOCK_DEAD))
  2405. sk->sk_state_change(sk);
  2406. else
  2407. inet_csk_destroy_sock(sk);
  2408. }
  2409. EXPORT_SYMBOL_GPL(tcp_done);
  2410. extern struct tcp_congestion_ops tcp_reno;
  2411. static __initdata unsigned long thash_entries;
  2412. static int __init set_thash_entries(char *str)
  2413. {
  2414. if (!str)
  2415. return 0;
  2416. thash_entries = simple_strtoul(str, &str, 0);
  2417. return 1;
  2418. }
  2419. __setup("thash_entries=", set_thash_entries);
  2420. void __init tcp_init(void)
  2421. {
  2422. struct sk_buff *skb = NULL;
  2423. unsigned long nr_pages, limit;
  2424. int order, i, max_share;
  2425. BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
  2426. percpu_counter_init(&tcp_sockets_allocated, 0);
  2427. percpu_counter_init(&tcp_orphan_count, 0);
  2428. tcp_hashinfo.bind_bucket_cachep =
  2429. kmem_cache_create("tcp_bind_bucket",
  2430. sizeof(struct inet_bind_bucket), 0,
  2431. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  2432. /* Size and allocate the main established and bind bucket
  2433. * hash tables.
  2434. *
  2435. * The methodology is similar to that of the buffer cache.
  2436. */
  2437. tcp_hashinfo.ehash =
  2438. alloc_large_system_hash("TCP established",
  2439. sizeof(struct inet_ehash_bucket),
  2440. thash_entries,
  2441. (num_physpages >= 128 * 1024) ?
  2442. 13 : 15,
  2443. 0,
  2444. &tcp_hashinfo.ehash_size,
  2445. NULL,
  2446. thash_entries ? 0 : 512 * 1024);
  2447. tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
  2448. for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
  2449. INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
  2450. INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
  2451. }
  2452. if (inet_ehash_locks_alloc(&tcp_hashinfo))
  2453. panic("TCP: failed to alloc ehash_locks");
  2454. tcp_hashinfo.bhash =
  2455. alloc_large_system_hash("TCP bind",
  2456. sizeof(struct inet_bind_hashbucket),
  2457. tcp_hashinfo.ehash_size,
  2458. (num_physpages >= 128 * 1024) ?
  2459. 13 : 15,
  2460. 0,
  2461. &tcp_hashinfo.bhash_size,
  2462. NULL,
  2463. 64 * 1024);
  2464. tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
  2465. for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
  2466. spin_lock_init(&tcp_hashinfo.bhash[i].lock);
  2467. INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
  2468. }
  2469. /* Try to be a bit smarter and adjust defaults depending
  2470. * on available memory.
  2471. */
  2472. for (order = 0; ((1 << order) << PAGE_SHIFT) <
  2473. (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
  2474. order++)
  2475. ;
  2476. if (order >= 4) {
  2477. tcp_death_row.sysctl_max_tw_buckets = 180000;
  2478. sysctl_tcp_max_orphans = 4096 << (order - 4);
  2479. sysctl_max_syn_backlog = 1024;
  2480. } else if (order < 3) {
  2481. tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
  2482. sysctl_tcp_max_orphans >>= (3 - order);
  2483. sysctl_max_syn_backlog = 128;
  2484. }
  2485. /* Set the pressure threshold to be a fraction of global memory that
  2486. * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
  2487. * memory, with a floor of 128 pages.
  2488. */
  2489. nr_pages = totalram_pages - totalhigh_pages;
  2490. limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
  2491. limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
  2492. limit = max(limit, 128UL);
  2493. sysctl_tcp_mem[0] = limit / 4 * 3;
  2494. sysctl_tcp_mem[1] = limit;
  2495. sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
  2496. /* Set per-socket limits to no more than 1/128 the pressure threshold */
  2497. limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
  2498. max_share = min(4UL*1024*1024, limit);
  2499. sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
  2500. sysctl_tcp_wmem[1] = 16*1024;
  2501. sysctl_tcp_wmem[2] = max(64*1024, max_share);
  2502. sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
  2503. sysctl_tcp_rmem[1] = 87380;
  2504. sysctl_tcp_rmem[2] = max(87380, max_share);
  2505. printk(KERN_INFO "TCP: Hash tables configured "
  2506. "(established %d bind %d)\n",
  2507. tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
  2508. tcp_register_congestion_control(&tcp_reno);
  2509. }
  2510. EXPORT_SYMBOL(tcp_close);
  2511. EXPORT_SYMBOL(tcp_disconnect);
  2512. EXPORT_SYMBOL(tcp_getsockopt);
  2513. EXPORT_SYMBOL(tcp_ioctl);
  2514. EXPORT_SYMBOL(tcp_poll);
  2515. EXPORT_SYMBOL(tcp_read_sock);
  2516. EXPORT_SYMBOL(tcp_recvmsg);
  2517. EXPORT_SYMBOL(tcp_sendmsg);
  2518. EXPORT_SYMBOL(tcp_splice_read);
  2519. EXPORT_SYMBOL(tcp_sendpage);
  2520. EXPORT_SYMBOL(tcp_setsockopt);
  2521. EXPORT_SYMBOL(tcp_shutdown);