PageRenderTime 74ms CodeModel.GetById 27ms RepoModel.GetById 0ms app.codeStats 1ms

/drivers/net/atlx/atl1.c

https://bitbucket.org/ndreys/linux-sunxi
C | 3672 lines | 2659 code | 457 blank | 556 comment | 389 complexity | 75b6eb1456f287e935808b55aad80592 MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
  1. /*
  2. * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
  3. * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
  4. * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
  5. *
  6. * Derived from Intel e1000 driver
  7. * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the Free
  11. * Software Foundation; either version 2 of the License, or (at your option)
  12. * any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program; if not, write to the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22. *
  23. * The full GNU General Public License is included in this distribution in the
  24. * file called COPYING.
  25. *
  26. * Contact Information:
  27. * Xiong Huang <xiong.huang@atheros.com>
  28. * Jie Yang <jie.yang@atheros.com>
  29. * Chris Snook <csnook@redhat.com>
  30. * Jay Cliburn <jcliburn@gmail.com>
  31. *
  32. * This version is adapted from the Attansic reference driver.
  33. *
  34. * TODO:
  35. * Add more ethtool functions.
  36. * Fix abstruse irq enable/disable condition described here:
  37. * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
  38. *
  39. * NEEDS TESTING:
  40. * VLAN
  41. * multicast
  42. * promiscuous mode
  43. * interrupt coalescing
  44. * SMP torture testing
  45. */
  46. #include <asm/atomic.h>
  47. #include <asm/byteorder.h>
  48. #include <linux/compiler.h>
  49. #include <linux/crc32.h>
  50. #include <linux/delay.h>
  51. #include <linux/dma-mapping.h>
  52. #include <linux/etherdevice.h>
  53. #include <linux/hardirq.h>
  54. #include <linux/if_ether.h>
  55. #include <linux/if_vlan.h>
  56. #include <linux/in.h>
  57. #include <linux/interrupt.h>
  58. #include <linux/ip.h>
  59. #include <linux/irqflags.h>
  60. #include <linux/irqreturn.h>
  61. #include <linux/jiffies.h>
  62. #include <linux/mii.h>
  63. #include <linux/module.h>
  64. #include <linux/moduleparam.h>
  65. #include <linux/net.h>
  66. #include <linux/netdevice.h>
  67. #include <linux/pci.h>
  68. #include <linux/pci_ids.h>
  69. #include <linux/pm.h>
  70. #include <linux/skbuff.h>
  71. #include <linux/slab.h>
  72. #include <linux/spinlock.h>
  73. #include <linux/string.h>
  74. #include <linux/tcp.h>
  75. #include <linux/timer.h>
  76. #include <linux/types.h>
  77. #include <linux/workqueue.h>
  78. #include <net/checksum.h>
  79. #include "atl1.h"
  80. #define ATLX_DRIVER_VERSION "2.1.3"
  81. MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
  82. "Chris Snook <csnook@redhat.com>, "
  83. "Jay Cliburn <jcliburn@gmail.com>");
  84. MODULE_LICENSE("GPL");
  85. MODULE_VERSION(ATLX_DRIVER_VERSION);
  86. /* Temporary hack for merging atl1 and atl2 */
  87. #include "atlx.c"
  88. static const struct ethtool_ops atl1_ethtool_ops;
  89. /*
  90. * This is the only thing that needs to be changed to adjust the
  91. * maximum number of ports that the driver can manage.
  92. */
  93. #define ATL1_MAX_NIC 4
  94. #define OPTION_UNSET -1
  95. #define OPTION_DISABLED 0
  96. #define OPTION_ENABLED 1
  97. #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
  98. /*
  99. * Interrupt Moderate Timer in units of 2 us
  100. *
  101. * Valid Range: 10-65535
  102. *
  103. * Default Value: 100 (200us)
  104. */
  105. static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
  106. static unsigned int num_int_mod_timer;
  107. module_param_array_named(int_mod_timer, int_mod_timer, int,
  108. &num_int_mod_timer, 0);
  109. MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
  110. #define DEFAULT_INT_MOD_CNT 100 /* 200us */
  111. #define MAX_INT_MOD_CNT 65000
  112. #define MIN_INT_MOD_CNT 50
  113. struct atl1_option {
  114. enum { enable_option, range_option, list_option } type;
  115. char *name;
  116. char *err;
  117. int def;
  118. union {
  119. struct { /* range_option info */
  120. int min;
  121. int max;
  122. } r;
  123. struct { /* list_option info */
  124. int nr;
  125. struct atl1_opt_list {
  126. int i;
  127. char *str;
  128. } *p;
  129. } l;
  130. } arg;
  131. };
  132. static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
  133. struct pci_dev *pdev)
  134. {
  135. if (*value == OPTION_UNSET) {
  136. *value = opt->def;
  137. return 0;
  138. }
  139. switch (opt->type) {
  140. case enable_option:
  141. switch (*value) {
  142. case OPTION_ENABLED:
  143. dev_info(&pdev->dev, "%s enabled\n", opt->name);
  144. return 0;
  145. case OPTION_DISABLED:
  146. dev_info(&pdev->dev, "%s disabled\n", opt->name);
  147. return 0;
  148. }
  149. break;
  150. case range_option:
  151. if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
  152. dev_info(&pdev->dev, "%s set to %i\n", opt->name,
  153. *value);
  154. return 0;
  155. }
  156. break;
  157. case list_option:{
  158. int i;
  159. struct atl1_opt_list *ent;
  160. for (i = 0; i < opt->arg.l.nr; i++) {
  161. ent = &opt->arg.l.p[i];
  162. if (*value == ent->i) {
  163. if (ent->str[0] != '\0')
  164. dev_info(&pdev->dev, "%s\n",
  165. ent->str);
  166. return 0;
  167. }
  168. }
  169. }
  170. break;
  171. default:
  172. break;
  173. }
  174. dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
  175. opt->name, *value, opt->err);
  176. *value = opt->def;
  177. return -1;
  178. }
  179. /*
  180. * atl1_check_options - Range Checking for Command Line Parameters
  181. * @adapter: board private structure
  182. *
  183. * This routine checks all command line parameters for valid user
  184. * input. If an invalid value is given, or if no user specified
  185. * value exists, a default value is used. The final value is stored
  186. * in a variable in the adapter structure.
  187. */
  188. static void __devinit atl1_check_options(struct atl1_adapter *adapter)
  189. {
  190. struct pci_dev *pdev = adapter->pdev;
  191. int bd = adapter->bd_number;
  192. if (bd >= ATL1_MAX_NIC) {
  193. dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
  194. dev_notice(&pdev->dev, "using defaults for all values\n");
  195. }
  196. { /* Interrupt Moderate Timer */
  197. struct atl1_option opt = {
  198. .type = range_option,
  199. .name = "Interrupt Moderator Timer",
  200. .err = "using default of "
  201. __MODULE_STRING(DEFAULT_INT_MOD_CNT),
  202. .def = DEFAULT_INT_MOD_CNT,
  203. .arg = {.r = {.min = MIN_INT_MOD_CNT,
  204. .max = MAX_INT_MOD_CNT} }
  205. };
  206. int val;
  207. if (num_int_mod_timer > bd) {
  208. val = int_mod_timer[bd];
  209. atl1_validate_option(&val, &opt, pdev);
  210. adapter->imt = (u16) val;
  211. } else
  212. adapter->imt = (u16) (opt.def);
  213. }
  214. }
  215. /*
  216. * atl1_pci_tbl - PCI Device ID Table
  217. */
  218. static DEFINE_PCI_DEVICE_TABLE(atl1_pci_tbl) = {
  219. {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
  220. /* required last entry */
  221. {0,}
  222. };
  223. MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
  224. static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  225. NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
  226. static int debug = -1;
  227. module_param(debug, int, 0);
  228. MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
  229. /*
  230. * Reset the transmit and receive units; mask and clear all interrupts.
  231. * hw - Struct containing variables accessed by shared code
  232. * return : 0 or idle status (if error)
  233. */
  234. static s32 atl1_reset_hw(struct atl1_hw *hw)
  235. {
  236. struct pci_dev *pdev = hw->back->pdev;
  237. struct atl1_adapter *adapter = hw->back;
  238. u32 icr;
  239. int i;
  240. /*
  241. * Clear Interrupt mask to stop board from generating
  242. * interrupts & Clear any pending interrupt events
  243. */
  244. /*
  245. * iowrite32(0, hw->hw_addr + REG_IMR);
  246. * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
  247. */
  248. /*
  249. * Issue Soft Reset to the MAC. This will reset the chip's
  250. * transmit, receive, DMA. It will not effect
  251. * the current PCI configuration. The global reset bit is self-
  252. * clearing, and should clear within a microsecond.
  253. */
  254. iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
  255. ioread32(hw->hw_addr + REG_MASTER_CTRL);
  256. iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
  257. ioread16(hw->hw_addr + REG_PHY_ENABLE);
  258. /* delay about 1ms */
  259. msleep(1);
  260. /* Wait at least 10ms for All module to be Idle */
  261. for (i = 0; i < 10; i++) {
  262. icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
  263. if (!icr)
  264. break;
  265. /* delay 1 ms */
  266. msleep(1);
  267. /* FIXME: still the right way to do this? */
  268. cpu_relax();
  269. }
  270. if (icr) {
  271. if (netif_msg_hw(adapter))
  272. dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
  273. return icr;
  274. }
  275. return 0;
  276. }
  277. /* function about EEPROM
  278. *
  279. * check_eeprom_exist
  280. * return 0 if eeprom exist
  281. */
  282. static int atl1_check_eeprom_exist(struct atl1_hw *hw)
  283. {
  284. u32 value;
  285. value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  286. if (value & SPI_FLASH_CTRL_EN_VPD) {
  287. value &= ~SPI_FLASH_CTRL_EN_VPD;
  288. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  289. }
  290. value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
  291. return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
  292. }
  293. static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
  294. {
  295. int i;
  296. u32 control;
  297. if (offset & 3)
  298. /* address do not align */
  299. return false;
  300. iowrite32(0, hw->hw_addr + REG_VPD_DATA);
  301. control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
  302. iowrite32(control, hw->hw_addr + REG_VPD_CAP);
  303. ioread32(hw->hw_addr + REG_VPD_CAP);
  304. for (i = 0; i < 10; i++) {
  305. msleep(2);
  306. control = ioread32(hw->hw_addr + REG_VPD_CAP);
  307. if (control & VPD_CAP_VPD_FLAG)
  308. break;
  309. }
  310. if (control & VPD_CAP_VPD_FLAG) {
  311. *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
  312. return true;
  313. }
  314. /* timeout */
  315. return false;
  316. }
  317. /*
  318. * Reads the value from a PHY register
  319. * hw - Struct containing variables accessed by shared code
  320. * reg_addr - address of the PHY register to read
  321. */
  322. static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
  323. {
  324. u32 val;
  325. int i;
  326. val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
  327. MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
  328. MDIO_CLK_SEL_SHIFT;
  329. iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
  330. ioread32(hw->hw_addr + REG_MDIO_CTRL);
  331. for (i = 0; i < MDIO_WAIT_TIMES; i++) {
  332. udelay(2);
  333. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  334. if (!(val & (MDIO_START | MDIO_BUSY)))
  335. break;
  336. }
  337. if (!(val & (MDIO_START | MDIO_BUSY))) {
  338. *phy_data = (u16) val;
  339. return 0;
  340. }
  341. return ATLX_ERR_PHY;
  342. }
  343. #define CUSTOM_SPI_CS_SETUP 2
  344. #define CUSTOM_SPI_CLK_HI 2
  345. #define CUSTOM_SPI_CLK_LO 2
  346. #define CUSTOM_SPI_CS_HOLD 2
  347. #define CUSTOM_SPI_CS_HI 3
  348. static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
  349. {
  350. int i;
  351. u32 value;
  352. iowrite32(0, hw->hw_addr + REG_SPI_DATA);
  353. iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
  354. value = SPI_FLASH_CTRL_WAIT_READY |
  355. (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
  356. SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
  357. SPI_FLASH_CTRL_CLK_HI_MASK) <<
  358. SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
  359. SPI_FLASH_CTRL_CLK_LO_MASK) <<
  360. SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
  361. SPI_FLASH_CTRL_CS_HOLD_MASK) <<
  362. SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
  363. SPI_FLASH_CTRL_CS_HI_MASK) <<
  364. SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
  365. SPI_FLASH_CTRL_INS_SHIFT;
  366. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  367. value |= SPI_FLASH_CTRL_START;
  368. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  369. ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  370. for (i = 0; i < 10; i++) {
  371. msleep(1);
  372. value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  373. if (!(value & SPI_FLASH_CTRL_START))
  374. break;
  375. }
  376. if (value & SPI_FLASH_CTRL_START)
  377. return false;
  378. *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
  379. return true;
  380. }
  381. /*
  382. * get_permanent_address
  383. * return 0 if get valid mac address,
  384. */
  385. static int atl1_get_permanent_address(struct atl1_hw *hw)
  386. {
  387. u32 addr[2];
  388. u32 i, control;
  389. u16 reg;
  390. u8 eth_addr[ETH_ALEN];
  391. bool key_valid;
  392. if (is_valid_ether_addr(hw->perm_mac_addr))
  393. return 0;
  394. /* init */
  395. addr[0] = addr[1] = 0;
  396. if (!atl1_check_eeprom_exist(hw)) {
  397. reg = 0;
  398. key_valid = false;
  399. /* Read out all EEPROM content */
  400. i = 0;
  401. while (1) {
  402. if (atl1_read_eeprom(hw, i + 0x100, &control)) {
  403. if (key_valid) {
  404. if (reg == REG_MAC_STA_ADDR)
  405. addr[0] = control;
  406. else if (reg == (REG_MAC_STA_ADDR + 4))
  407. addr[1] = control;
  408. key_valid = false;
  409. } else if ((control & 0xff) == 0x5A) {
  410. key_valid = true;
  411. reg = (u16) (control >> 16);
  412. } else
  413. break;
  414. } else
  415. /* read error */
  416. break;
  417. i += 4;
  418. }
  419. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  420. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  421. if (is_valid_ether_addr(eth_addr)) {
  422. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  423. return 0;
  424. }
  425. }
  426. /* see if SPI FLAGS exist ? */
  427. addr[0] = addr[1] = 0;
  428. reg = 0;
  429. key_valid = false;
  430. i = 0;
  431. while (1) {
  432. if (atl1_spi_read(hw, i + 0x1f000, &control)) {
  433. if (key_valid) {
  434. if (reg == REG_MAC_STA_ADDR)
  435. addr[0] = control;
  436. else if (reg == (REG_MAC_STA_ADDR + 4))
  437. addr[1] = control;
  438. key_valid = false;
  439. } else if ((control & 0xff) == 0x5A) {
  440. key_valid = true;
  441. reg = (u16) (control >> 16);
  442. } else
  443. /* data end */
  444. break;
  445. } else
  446. /* read error */
  447. break;
  448. i += 4;
  449. }
  450. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  451. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  452. if (is_valid_ether_addr(eth_addr)) {
  453. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  454. return 0;
  455. }
  456. /*
  457. * On some motherboards, the MAC address is written by the
  458. * BIOS directly to the MAC register during POST, and is
  459. * not stored in eeprom. If all else thus far has failed
  460. * to fetch the permanent MAC address, try reading it directly.
  461. */
  462. addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
  463. addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
  464. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  465. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  466. if (is_valid_ether_addr(eth_addr)) {
  467. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  468. return 0;
  469. }
  470. return 1;
  471. }
  472. /*
  473. * Reads the adapter's MAC address from the EEPROM
  474. * hw - Struct containing variables accessed by shared code
  475. */
  476. static s32 atl1_read_mac_addr(struct atl1_hw *hw)
  477. {
  478. u16 i;
  479. if (atl1_get_permanent_address(hw))
  480. random_ether_addr(hw->perm_mac_addr);
  481. for (i = 0; i < ETH_ALEN; i++)
  482. hw->mac_addr[i] = hw->perm_mac_addr[i];
  483. return 0;
  484. }
  485. /*
  486. * Hashes an address to determine its location in the multicast table
  487. * hw - Struct containing variables accessed by shared code
  488. * mc_addr - the multicast address to hash
  489. *
  490. * atl1_hash_mc_addr
  491. * purpose
  492. * set hash value for a multicast address
  493. * hash calcu processing :
  494. * 1. calcu 32bit CRC for multicast address
  495. * 2. reverse crc with MSB to LSB
  496. */
  497. static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
  498. {
  499. u32 crc32, value = 0;
  500. int i;
  501. crc32 = ether_crc_le(6, mc_addr);
  502. for (i = 0; i < 32; i++)
  503. value |= (((crc32 >> i) & 1) << (31 - i));
  504. return value;
  505. }
  506. /*
  507. * Sets the bit in the multicast table corresponding to the hash value.
  508. * hw - Struct containing variables accessed by shared code
  509. * hash_value - Multicast address hash value
  510. */
  511. static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
  512. {
  513. u32 hash_bit, hash_reg;
  514. u32 mta;
  515. /*
  516. * The HASH Table is a register array of 2 32-bit registers.
  517. * It is treated like an array of 64 bits. We want to set
  518. * bit BitArray[hash_value]. So we figure out what register
  519. * the bit is in, read it, OR in the new bit, then write
  520. * back the new value. The register is determined by the
  521. * upper 7 bits of the hash value and the bit within that
  522. * register are determined by the lower 5 bits of the value.
  523. */
  524. hash_reg = (hash_value >> 31) & 0x1;
  525. hash_bit = (hash_value >> 26) & 0x1F;
  526. mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
  527. mta |= (1 << hash_bit);
  528. iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
  529. }
  530. /*
  531. * Writes a value to a PHY register
  532. * hw - Struct containing variables accessed by shared code
  533. * reg_addr - address of the PHY register to write
  534. * data - data to write to the PHY
  535. */
  536. static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
  537. {
  538. int i;
  539. u32 val;
  540. val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
  541. (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
  542. MDIO_SUP_PREAMBLE |
  543. MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
  544. iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
  545. ioread32(hw->hw_addr + REG_MDIO_CTRL);
  546. for (i = 0; i < MDIO_WAIT_TIMES; i++) {
  547. udelay(2);
  548. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  549. if (!(val & (MDIO_START | MDIO_BUSY)))
  550. break;
  551. }
  552. if (!(val & (MDIO_START | MDIO_BUSY)))
  553. return 0;
  554. return ATLX_ERR_PHY;
  555. }
  556. /*
  557. * Make L001's PHY out of Power Saving State (bug)
  558. * hw - Struct containing variables accessed by shared code
  559. * when power on, L001's PHY always on Power saving State
  560. * (Gigabit Link forbidden)
  561. */
  562. static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
  563. {
  564. s32 ret;
  565. ret = atl1_write_phy_reg(hw, 29, 0x0029);
  566. if (ret)
  567. return ret;
  568. return atl1_write_phy_reg(hw, 30, 0);
  569. }
  570. /*
  571. * Resets the PHY and make all config validate
  572. * hw - Struct containing variables accessed by shared code
  573. *
  574. * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
  575. */
  576. static s32 atl1_phy_reset(struct atl1_hw *hw)
  577. {
  578. struct pci_dev *pdev = hw->back->pdev;
  579. struct atl1_adapter *adapter = hw->back;
  580. s32 ret_val;
  581. u16 phy_data;
  582. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  583. hw->media_type == MEDIA_TYPE_1000M_FULL)
  584. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  585. else {
  586. switch (hw->media_type) {
  587. case MEDIA_TYPE_100M_FULL:
  588. phy_data =
  589. MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  590. MII_CR_RESET;
  591. break;
  592. case MEDIA_TYPE_100M_HALF:
  593. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  594. break;
  595. case MEDIA_TYPE_10M_FULL:
  596. phy_data =
  597. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  598. break;
  599. default:
  600. /* MEDIA_TYPE_10M_HALF: */
  601. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  602. break;
  603. }
  604. }
  605. ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  606. if (ret_val) {
  607. u32 val;
  608. int i;
  609. /* pcie serdes link may be down! */
  610. if (netif_msg_hw(adapter))
  611. dev_dbg(&pdev->dev, "pcie phy link down\n");
  612. for (i = 0; i < 25; i++) {
  613. msleep(1);
  614. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  615. if (!(val & (MDIO_START | MDIO_BUSY)))
  616. break;
  617. }
  618. if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
  619. if (netif_msg_hw(adapter))
  620. dev_warn(&pdev->dev,
  621. "pcie link down at least 25ms\n");
  622. return ret_val;
  623. }
  624. }
  625. return 0;
  626. }
  627. /*
  628. * Configures PHY autoneg and flow control advertisement settings
  629. * hw - Struct containing variables accessed by shared code
  630. */
  631. static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
  632. {
  633. s32 ret_val;
  634. s16 mii_autoneg_adv_reg;
  635. s16 mii_1000t_ctrl_reg;
  636. /* Read the MII Auto-Neg Advertisement Register (Address 4). */
  637. mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
  638. /* Read the MII 1000Base-T Control Register (Address 9). */
  639. mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
  640. /*
  641. * First we clear all the 10/100 mb speed bits in the Auto-Neg
  642. * Advertisement Register (Address 4) and the 1000 mb speed bits in
  643. * the 1000Base-T Control Register (Address 9).
  644. */
  645. mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
  646. mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
  647. /*
  648. * Need to parse media_type and set up
  649. * the appropriate PHY registers.
  650. */
  651. switch (hw->media_type) {
  652. case MEDIA_TYPE_AUTO_SENSOR:
  653. mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
  654. MII_AR_10T_FD_CAPS |
  655. MII_AR_100TX_HD_CAPS |
  656. MII_AR_100TX_FD_CAPS);
  657. mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
  658. break;
  659. case MEDIA_TYPE_1000M_FULL:
  660. mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
  661. break;
  662. case MEDIA_TYPE_100M_FULL:
  663. mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
  664. break;
  665. case MEDIA_TYPE_100M_HALF:
  666. mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
  667. break;
  668. case MEDIA_TYPE_10M_FULL:
  669. mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
  670. break;
  671. default:
  672. mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
  673. break;
  674. }
  675. /* flow control fixed to enable all */
  676. mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
  677. hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
  678. hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
  679. ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
  680. if (ret_val)
  681. return ret_val;
  682. ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
  683. if (ret_val)
  684. return ret_val;
  685. return 0;
  686. }
  687. /*
  688. * Configures link settings.
  689. * hw - Struct containing variables accessed by shared code
  690. * Assumes the hardware has previously been reset and the
  691. * transmitter and receiver are not enabled.
  692. */
  693. static s32 atl1_setup_link(struct atl1_hw *hw)
  694. {
  695. struct pci_dev *pdev = hw->back->pdev;
  696. struct atl1_adapter *adapter = hw->back;
  697. s32 ret_val;
  698. /*
  699. * Options:
  700. * PHY will advertise value(s) parsed from
  701. * autoneg_advertised and fc
  702. * no matter what autoneg is , We will not wait link result.
  703. */
  704. ret_val = atl1_phy_setup_autoneg_adv(hw);
  705. if (ret_val) {
  706. if (netif_msg_link(adapter))
  707. dev_dbg(&pdev->dev,
  708. "error setting up autonegotiation\n");
  709. return ret_val;
  710. }
  711. /* SW.Reset , En-Auto-Neg if needed */
  712. ret_val = atl1_phy_reset(hw);
  713. if (ret_val) {
  714. if (netif_msg_link(adapter))
  715. dev_dbg(&pdev->dev, "error resetting phy\n");
  716. return ret_val;
  717. }
  718. hw->phy_configured = true;
  719. return ret_val;
  720. }
  721. static void atl1_init_flash_opcode(struct atl1_hw *hw)
  722. {
  723. if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
  724. /* Atmel */
  725. hw->flash_vendor = 0;
  726. /* Init OP table */
  727. iowrite8(flash_table[hw->flash_vendor].cmd_program,
  728. hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
  729. iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
  730. hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
  731. iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
  732. hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
  733. iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
  734. hw->hw_addr + REG_SPI_FLASH_OP_RDID);
  735. iowrite8(flash_table[hw->flash_vendor].cmd_wren,
  736. hw->hw_addr + REG_SPI_FLASH_OP_WREN);
  737. iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
  738. hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
  739. iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
  740. hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
  741. iowrite8(flash_table[hw->flash_vendor].cmd_read,
  742. hw->hw_addr + REG_SPI_FLASH_OP_READ);
  743. }
  744. /*
  745. * Performs basic configuration of the adapter.
  746. * hw - Struct containing variables accessed by shared code
  747. * Assumes that the controller has previously been reset and is in a
  748. * post-reset uninitialized state. Initializes multicast table,
  749. * and Calls routines to setup link
  750. * Leaves the transmit and receive units disabled and uninitialized.
  751. */
  752. static s32 atl1_init_hw(struct atl1_hw *hw)
  753. {
  754. u32 ret_val = 0;
  755. /* Zero out the Multicast HASH table */
  756. iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
  757. /* clear the old settings from the multicast hash table */
  758. iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
  759. atl1_init_flash_opcode(hw);
  760. if (!hw->phy_configured) {
  761. /* enable GPHY LinkChange Interrrupt */
  762. ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
  763. if (ret_val)
  764. return ret_val;
  765. /* make PHY out of power-saving state */
  766. ret_val = atl1_phy_leave_power_saving(hw);
  767. if (ret_val)
  768. return ret_val;
  769. /* Call a subroutine to configure the link */
  770. ret_val = atl1_setup_link(hw);
  771. }
  772. return ret_val;
  773. }
  774. /*
  775. * Detects the current speed and duplex settings of the hardware.
  776. * hw - Struct containing variables accessed by shared code
  777. * speed - Speed of the connection
  778. * duplex - Duplex setting of the connection
  779. */
  780. static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
  781. {
  782. struct pci_dev *pdev = hw->back->pdev;
  783. struct atl1_adapter *adapter = hw->back;
  784. s32 ret_val;
  785. u16 phy_data;
  786. /* ; --- Read PHY Specific Status Register (17) */
  787. ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
  788. if (ret_val)
  789. return ret_val;
  790. if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
  791. return ATLX_ERR_PHY_RES;
  792. switch (phy_data & MII_ATLX_PSSR_SPEED) {
  793. case MII_ATLX_PSSR_1000MBS:
  794. *speed = SPEED_1000;
  795. break;
  796. case MII_ATLX_PSSR_100MBS:
  797. *speed = SPEED_100;
  798. break;
  799. case MII_ATLX_PSSR_10MBS:
  800. *speed = SPEED_10;
  801. break;
  802. default:
  803. if (netif_msg_hw(adapter))
  804. dev_dbg(&pdev->dev, "error getting speed\n");
  805. return ATLX_ERR_PHY_SPEED;
  806. break;
  807. }
  808. if (phy_data & MII_ATLX_PSSR_DPLX)
  809. *duplex = FULL_DUPLEX;
  810. else
  811. *duplex = HALF_DUPLEX;
  812. return 0;
  813. }
  814. static void atl1_set_mac_addr(struct atl1_hw *hw)
  815. {
  816. u32 value;
  817. /*
  818. * 00-0B-6A-F6-00-DC
  819. * 0: 6AF600DC 1: 000B
  820. * low dword
  821. */
  822. value = (((u32) hw->mac_addr[2]) << 24) |
  823. (((u32) hw->mac_addr[3]) << 16) |
  824. (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
  825. iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
  826. /* high dword */
  827. value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
  828. iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
  829. }
  830. /*
  831. * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
  832. * @adapter: board private structure to initialize
  833. *
  834. * atl1_sw_init initializes the Adapter private data structure.
  835. * Fields are initialized based on PCI device information and
  836. * OS network device settings (MTU size).
  837. */
  838. static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
  839. {
  840. struct atl1_hw *hw = &adapter->hw;
  841. struct net_device *netdev = adapter->netdev;
  842. hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  843. hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
  844. adapter->wol = 0;
  845. device_set_wakeup_enable(&adapter->pdev->dev, false);
  846. adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
  847. adapter->ict = 50000; /* 100ms */
  848. adapter->link_speed = SPEED_0; /* hardware init */
  849. adapter->link_duplex = FULL_DUPLEX;
  850. hw->phy_configured = false;
  851. hw->preamble_len = 7;
  852. hw->ipgt = 0x60;
  853. hw->min_ifg = 0x50;
  854. hw->ipgr1 = 0x40;
  855. hw->ipgr2 = 0x60;
  856. hw->max_retry = 0xf;
  857. hw->lcol = 0x37;
  858. hw->jam_ipg = 7;
  859. hw->rfd_burst = 8;
  860. hw->rrd_burst = 8;
  861. hw->rfd_fetch_gap = 1;
  862. hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
  863. hw->rx_jumbo_lkah = 1;
  864. hw->rrd_ret_timer = 16;
  865. hw->tpd_burst = 4;
  866. hw->tpd_fetch_th = 16;
  867. hw->txf_burst = 0x100;
  868. hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
  869. hw->tpd_fetch_gap = 1;
  870. hw->rcb_value = atl1_rcb_64;
  871. hw->dma_ord = atl1_dma_ord_enh;
  872. hw->dmar_block = atl1_dma_req_256;
  873. hw->dmaw_block = atl1_dma_req_256;
  874. hw->cmb_rrd = 4;
  875. hw->cmb_tpd = 4;
  876. hw->cmb_rx_timer = 1; /* about 2us */
  877. hw->cmb_tx_timer = 1; /* about 2us */
  878. hw->smb_timer = 100000; /* about 200ms */
  879. spin_lock_init(&adapter->lock);
  880. spin_lock_init(&adapter->mb_lock);
  881. return 0;
  882. }
  883. static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
  884. {
  885. struct atl1_adapter *adapter = netdev_priv(netdev);
  886. u16 result;
  887. atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
  888. return result;
  889. }
  890. static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
  891. int val)
  892. {
  893. struct atl1_adapter *adapter = netdev_priv(netdev);
  894. atl1_write_phy_reg(&adapter->hw, reg_num, val);
  895. }
  896. /*
  897. * atl1_mii_ioctl -
  898. * @netdev:
  899. * @ifreq:
  900. * @cmd:
  901. */
  902. static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  903. {
  904. struct atl1_adapter *adapter = netdev_priv(netdev);
  905. unsigned long flags;
  906. int retval;
  907. if (!netif_running(netdev))
  908. return -EINVAL;
  909. spin_lock_irqsave(&adapter->lock, flags);
  910. retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
  911. spin_unlock_irqrestore(&adapter->lock, flags);
  912. return retval;
  913. }
  914. /*
  915. * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
  916. * @adapter: board private structure
  917. *
  918. * Return 0 on success, negative on failure
  919. */
  920. static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
  921. {
  922. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  923. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  924. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  925. struct atl1_ring_header *ring_header = &adapter->ring_header;
  926. struct pci_dev *pdev = adapter->pdev;
  927. int size;
  928. u8 offset = 0;
  929. size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
  930. tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
  931. if (unlikely(!tpd_ring->buffer_info)) {
  932. if (netif_msg_drv(adapter))
  933. dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
  934. size);
  935. goto err_nomem;
  936. }
  937. rfd_ring->buffer_info =
  938. (struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
  939. /*
  940. * real ring DMA buffer
  941. * each ring/block may need up to 8 bytes for alignment, hence the
  942. * additional 40 bytes tacked onto the end.
  943. */
  944. ring_header->size = size =
  945. sizeof(struct tx_packet_desc) * tpd_ring->count
  946. + sizeof(struct rx_free_desc) * rfd_ring->count
  947. + sizeof(struct rx_return_desc) * rrd_ring->count
  948. + sizeof(struct coals_msg_block)
  949. + sizeof(struct stats_msg_block)
  950. + 40;
  951. ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
  952. &ring_header->dma);
  953. if (unlikely(!ring_header->desc)) {
  954. if (netif_msg_drv(adapter))
  955. dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
  956. goto err_nomem;
  957. }
  958. memset(ring_header->desc, 0, ring_header->size);
  959. /* init TPD ring */
  960. tpd_ring->dma = ring_header->dma;
  961. offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
  962. tpd_ring->dma += offset;
  963. tpd_ring->desc = (u8 *) ring_header->desc + offset;
  964. tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
  965. /* init RFD ring */
  966. rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
  967. offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
  968. rfd_ring->dma += offset;
  969. rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
  970. rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
  971. /* init RRD ring */
  972. rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
  973. offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
  974. rrd_ring->dma += offset;
  975. rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
  976. rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
  977. /* init CMB */
  978. adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
  979. offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
  980. adapter->cmb.dma += offset;
  981. adapter->cmb.cmb = (struct coals_msg_block *)
  982. ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
  983. /* init SMB */
  984. adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
  985. offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
  986. adapter->smb.dma += offset;
  987. adapter->smb.smb = (struct stats_msg_block *)
  988. ((u8 *) adapter->cmb.cmb +
  989. (sizeof(struct coals_msg_block) + offset));
  990. return 0;
  991. err_nomem:
  992. kfree(tpd_ring->buffer_info);
  993. return -ENOMEM;
  994. }
  995. static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
  996. {
  997. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  998. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  999. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1000. atomic_set(&tpd_ring->next_to_use, 0);
  1001. atomic_set(&tpd_ring->next_to_clean, 0);
  1002. rfd_ring->next_to_clean = 0;
  1003. atomic_set(&rfd_ring->next_to_use, 0);
  1004. rrd_ring->next_to_use = 0;
  1005. atomic_set(&rrd_ring->next_to_clean, 0);
  1006. }
  1007. /*
  1008. * atl1_clean_rx_ring - Free RFD Buffers
  1009. * @adapter: board private structure
  1010. */
  1011. static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
  1012. {
  1013. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1014. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1015. struct atl1_buffer *buffer_info;
  1016. struct pci_dev *pdev = adapter->pdev;
  1017. unsigned long size;
  1018. unsigned int i;
  1019. /* Free all the Rx ring sk_buffs */
  1020. for (i = 0; i < rfd_ring->count; i++) {
  1021. buffer_info = &rfd_ring->buffer_info[i];
  1022. if (buffer_info->dma) {
  1023. pci_unmap_page(pdev, buffer_info->dma,
  1024. buffer_info->length, PCI_DMA_FROMDEVICE);
  1025. buffer_info->dma = 0;
  1026. }
  1027. if (buffer_info->skb) {
  1028. dev_kfree_skb(buffer_info->skb);
  1029. buffer_info->skb = NULL;
  1030. }
  1031. }
  1032. size = sizeof(struct atl1_buffer) * rfd_ring->count;
  1033. memset(rfd_ring->buffer_info, 0, size);
  1034. /* Zero out the descriptor ring */
  1035. memset(rfd_ring->desc, 0, rfd_ring->size);
  1036. rfd_ring->next_to_clean = 0;
  1037. atomic_set(&rfd_ring->next_to_use, 0);
  1038. rrd_ring->next_to_use = 0;
  1039. atomic_set(&rrd_ring->next_to_clean, 0);
  1040. }
  1041. /*
  1042. * atl1_clean_tx_ring - Free Tx Buffers
  1043. * @adapter: board private structure
  1044. */
  1045. static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
  1046. {
  1047. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1048. struct atl1_buffer *buffer_info;
  1049. struct pci_dev *pdev = adapter->pdev;
  1050. unsigned long size;
  1051. unsigned int i;
  1052. /* Free all the Tx ring sk_buffs */
  1053. for (i = 0; i < tpd_ring->count; i++) {
  1054. buffer_info = &tpd_ring->buffer_info[i];
  1055. if (buffer_info->dma) {
  1056. pci_unmap_page(pdev, buffer_info->dma,
  1057. buffer_info->length, PCI_DMA_TODEVICE);
  1058. buffer_info->dma = 0;
  1059. }
  1060. }
  1061. for (i = 0; i < tpd_ring->count; i++) {
  1062. buffer_info = &tpd_ring->buffer_info[i];
  1063. if (buffer_info->skb) {
  1064. dev_kfree_skb_any(buffer_info->skb);
  1065. buffer_info->skb = NULL;
  1066. }
  1067. }
  1068. size = sizeof(struct atl1_buffer) * tpd_ring->count;
  1069. memset(tpd_ring->buffer_info, 0, size);
  1070. /* Zero out the descriptor ring */
  1071. memset(tpd_ring->desc, 0, tpd_ring->size);
  1072. atomic_set(&tpd_ring->next_to_use, 0);
  1073. atomic_set(&tpd_ring->next_to_clean, 0);
  1074. }
  1075. /*
  1076. * atl1_free_ring_resources - Free Tx / RX descriptor Resources
  1077. * @adapter: board private structure
  1078. *
  1079. * Free all transmit software resources
  1080. */
  1081. static void atl1_free_ring_resources(struct atl1_adapter *adapter)
  1082. {
  1083. struct pci_dev *pdev = adapter->pdev;
  1084. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1085. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1086. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1087. struct atl1_ring_header *ring_header = &adapter->ring_header;
  1088. atl1_clean_tx_ring(adapter);
  1089. atl1_clean_rx_ring(adapter);
  1090. kfree(tpd_ring->buffer_info);
  1091. pci_free_consistent(pdev, ring_header->size, ring_header->desc,
  1092. ring_header->dma);
  1093. tpd_ring->buffer_info = NULL;
  1094. tpd_ring->desc = NULL;
  1095. tpd_ring->dma = 0;
  1096. rfd_ring->buffer_info = NULL;
  1097. rfd_ring->desc = NULL;
  1098. rfd_ring->dma = 0;
  1099. rrd_ring->desc = NULL;
  1100. rrd_ring->dma = 0;
  1101. adapter->cmb.dma = 0;
  1102. adapter->cmb.cmb = NULL;
  1103. adapter->smb.dma = 0;
  1104. adapter->smb.smb = NULL;
  1105. }
  1106. static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
  1107. {
  1108. u32 value;
  1109. struct atl1_hw *hw = &adapter->hw;
  1110. struct net_device *netdev = adapter->netdev;
  1111. /* Config MAC CTRL Register */
  1112. value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
  1113. /* duplex */
  1114. if (FULL_DUPLEX == adapter->link_duplex)
  1115. value |= MAC_CTRL_DUPLX;
  1116. /* speed */
  1117. value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
  1118. MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
  1119. MAC_CTRL_SPEED_SHIFT);
  1120. /* flow control */
  1121. value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
  1122. /* PAD & CRC */
  1123. value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
  1124. /* preamble length */
  1125. value |= (((u32) adapter->hw.preamble_len
  1126. & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
  1127. /* vlan */
  1128. if (adapter->vlgrp)
  1129. value |= MAC_CTRL_RMV_VLAN;
  1130. /* rx checksum
  1131. if (adapter->rx_csum)
  1132. value |= MAC_CTRL_RX_CHKSUM_EN;
  1133. */
  1134. /* filter mode */
  1135. value |= MAC_CTRL_BC_EN;
  1136. if (netdev->flags & IFF_PROMISC)
  1137. value |= MAC_CTRL_PROMIS_EN;
  1138. else if (netdev->flags & IFF_ALLMULTI)
  1139. value |= MAC_CTRL_MC_ALL_EN;
  1140. /* value |= MAC_CTRL_LOOPBACK; */
  1141. iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
  1142. }
  1143. static u32 atl1_check_link(struct atl1_adapter *adapter)
  1144. {
  1145. struct atl1_hw *hw = &adapter->hw;
  1146. struct net_device *netdev = adapter->netdev;
  1147. u32 ret_val;
  1148. u16 speed, duplex, phy_data;
  1149. int reconfig = 0;
  1150. /* MII_BMSR must read twice */
  1151. atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
  1152. atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
  1153. if (!(phy_data & BMSR_LSTATUS)) {
  1154. /* link down */
  1155. if (netif_carrier_ok(netdev)) {
  1156. /* old link state: Up */
  1157. if (netif_msg_link(adapter))
  1158. dev_info(&adapter->pdev->dev, "link is down\n");
  1159. adapter->link_speed = SPEED_0;
  1160. netif_carrier_off(netdev);
  1161. }
  1162. return 0;
  1163. }
  1164. /* Link Up */
  1165. ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
  1166. if (ret_val)
  1167. return ret_val;
  1168. switch (hw->media_type) {
  1169. case MEDIA_TYPE_1000M_FULL:
  1170. if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
  1171. reconfig = 1;
  1172. break;
  1173. case MEDIA_TYPE_100M_FULL:
  1174. if (speed != SPEED_100 || duplex != FULL_DUPLEX)
  1175. reconfig = 1;
  1176. break;
  1177. case MEDIA_TYPE_100M_HALF:
  1178. if (speed != SPEED_100 || duplex != HALF_DUPLEX)
  1179. reconfig = 1;
  1180. break;
  1181. case MEDIA_TYPE_10M_FULL:
  1182. if (speed != SPEED_10 || duplex != FULL_DUPLEX)
  1183. reconfig = 1;
  1184. break;
  1185. case MEDIA_TYPE_10M_HALF:
  1186. if (speed != SPEED_10 || duplex != HALF_DUPLEX)
  1187. reconfig = 1;
  1188. break;
  1189. }
  1190. /* link result is our setting */
  1191. if (!reconfig) {
  1192. if (adapter->link_speed != speed ||
  1193. adapter->link_duplex != duplex) {
  1194. adapter->link_speed = speed;
  1195. adapter->link_duplex = duplex;
  1196. atl1_setup_mac_ctrl(adapter);
  1197. if (netif_msg_link(adapter))
  1198. dev_info(&adapter->pdev->dev,
  1199. "%s link is up %d Mbps %s\n",
  1200. netdev->name, adapter->link_speed,
  1201. adapter->link_duplex == FULL_DUPLEX ?
  1202. "full duplex" : "half duplex");
  1203. }
  1204. if (!netif_carrier_ok(netdev)) {
  1205. /* Link down -> Up */
  1206. netif_carrier_on(netdev);
  1207. }
  1208. return 0;
  1209. }
  1210. /* change original link status */
  1211. if (netif_carrier_ok(netdev)) {
  1212. adapter->link_speed = SPEED_0;
  1213. netif_carrier_off(netdev);
  1214. netif_stop_queue(netdev);
  1215. }
  1216. if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
  1217. hw->media_type != MEDIA_TYPE_1000M_FULL) {
  1218. switch (hw->media_type) {
  1219. case MEDIA_TYPE_100M_FULL:
  1220. phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  1221. MII_CR_RESET;
  1222. break;
  1223. case MEDIA_TYPE_100M_HALF:
  1224. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  1225. break;
  1226. case MEDIA_TYPE_10M_FULL:
  1227. phy_data =
  1228. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  1229. break;
  1230. default:
  1231. /* MEDIA_TYPE_10M_HALF: */
  1232. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  1233. break;
  1234. }
  1235. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  1236. return 0;
  1237. }
  1238. /* auto-neg, insert timer to re-config phy */
  1239. if (!adapter->phy_timer_pending) {
  1240. adapter->phy_timer_pending = true;
  1241. mod_timer(&adapter->phy_config_timer,
  1242. round_jiffies(jiffies + 3 * HZ));
  1243. }
  1244. return 0;
  1245. }
  1246. static void set_flow_ctrl_old(struct atl1_adapter *adapter)
  1247. {
  1248. u32 hi, lo, value;
  1249. /* RFD Flow Control */
  1250. value = adapter->rfd_ring.count;
  1251. hi = value / 16;
  1252. if (hi < 2)
  1253. hi = 2;
  1254. lo = value * 7 / 8;
  1255. value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
  1256. ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
  1257. iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
  1258. /* RRD Flow Control */
  1259. value = adapter->rrd_ring.count;
  1260. lo = value / 16;
  1261. hi = value * 7 / 8;
  1262. if (lo < 2)
  1263. lo = 2;
  1264. value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
  1265. ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
  1266. iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
  1267. }
  1268. static void set_flow_ctrl_new(struct atl1_hw *hw)
  1269. {
  1270. u32 hi, lo, value;
  1271. /* RXF Flow Control */
  1272. value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
  1273. lo = value / 16;
  1274. if (lo < 192)
  1275. lo = 192;
  1276. hi = value * 7 / 8;
  1277. if (hi < lo)
  1278. hi = lo + 16;
  1279. value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
  1280. ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
  1281. iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
  1282. /* RRD Flow Control */
  1283. value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
  1284. lo = value / 8;
  1285. hi = value * 7 / 8;
  1286. if (lo < 2)
  1287. lo = 2;
  1288. if (hi < lo)
  1289. hi = lo + 3;
  1290. value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
  1291. ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
  1292. iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
  1293. }
  1294. /*
  1295. * atl1_configure - Configure Transmit&Receive Unit after Reset
  1296. * @adapter: board private structure
  1297. *
  1298. * Configure the Tx /Rx unit of the MAC after a reset.
  1299. */
  1300. static u32 atl1_configure(struct atl1_adapter *adapter)
  1301. {
  1302. struct atl1_hw *hw = &adapter->hw;
  1303. u32 value;
  1304. /* clear interrupt status */
  1305. iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
  1306. /* set MAC Address */
  1307. value = (((u32) hw->mac_addr[2]) << 24) |
  1308. (((u32) hw->mac_addr[3]) << 16) |
  1309. (((u32) hw->mac_addr[4]) << 8) |
  1310. (((u32) hw->mac_addr[5]));
  1311. iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
  1312. value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
  1313. iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
  1314. /* tx / rx ring */
  1315. /* HI base address */
  1316. iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
  1317. hw->hw_addr + REG_DESC_BASE_ADDR_HI);
  1318. /* LO base address */
  1319. iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
  1320. hw->hw_addr + REG_DESC_RFD_ADDR_LO);
  1321. iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
  1322. hw->hw_addr + REG_DESC_RRD_ADDR_LO);
  1323. iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
  1324. hw->hw_addr + REG_DESC_TPD_ADDR_LO);
  1325. iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
  1326. hw->hw_addr + REG_DESC_CMB_ADDR_LO);
  1327. iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
  1328. hw->hw_addr + REG_DESC_SMB_ADDR_LO);
  1329. /* element count */
  1330. value = adapter->rrd_ring.count;
  1331. value <<= 16;
  1332. value += adapter->rfd_ring.count;
  1333. iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
  1334. iowrite32(adapter->tpd_ring.count, hw->hw_addr +
  1335. REG_DESC_TPD_RING_SIZE);
  1336. /* Load Ptr */
  1337. iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
  1338. /* config Mailbox */
  1339. value = ((atomic_read(&adapter->tpd_ring.next_to_use)
  1340. & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
  1341. ((atomic_read(&adapter->rrd_ring.next_to_clean)
  1342. & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
  1343. ((atomic_read(&adapter->rfd_ring.next_to_use)
  1344. & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
  1345. iowrite32(value, hw->hw_addr + REG_MAILBOX);
  1346. /* config IPG/IFG */
  1347. value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
  1348. << MAC_IPG_IFG_IPGT_SHIFT) |
  1349. (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
  1350. << MAC_IPG_IFG_MIFG_SHIFT) |
  1351. (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
  1352. << MAC_IPG_IFG_IPGR1_SHIFT) |
  1353. (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
  1354. << MAC_IPG_IFG_IPGR2_SHIFT);
  1355. iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
  1356. /* config Half-Duplex Control */
  1357. value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
  1358. (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
  1359. << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
  1360. MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
  1361. (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
  1362. (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
  1363. << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
  1364. iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
  1365. /* set Interrupt Moderator Timer */
  1366. iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
  1367. iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
  1368. /* set Interrupt Clear Timer */
  1369. iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
  1370. /* set max frame size hw will accept */
  1371. iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
  1372. /* jumbo size & rrd retirement timer */
  1373. value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
  1374. << RXQ_JMBOSZ_TH_SHIFT) |
  1375. (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
  1376. << RXQ_JMBO_LKAH_SHIFT) |
  1377. (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
  1378. << RXQ_RRD_TIMER_SHIFT);
  1379. iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
  1380. /* Flow Control */
  1381. switch (hw->dev_rev) {
  1382. case 0x8001:
  1383. case 0x9001:
  1384. case 0x9002:
  1385. case 0x9003:
  1386. set_flow_ctrl_old(adapter);
  1387. break;
  1388. default:
  1389. set_flow_ctrl_new(hw);
  1390. break;
  1391. }
  1392. /* config TXQ */
  1393. value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
  1394. << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
  1395. (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
  1396. << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
  1397. (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
  1398. << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
  1399. TXQ_CTRL_EN;
  1400. iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
  1401. /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
  1402. value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
  1403. << TX_JUMBO_TASK_TH_SHIFT) |
  1404. (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
  1405. << TX_TPD_MIN_IPG_SHIFT);
  1406. iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
  1407. /* config RXQ */
  1408. value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
  1409. << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
  1410. (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
  1411. << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
  1412. (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
  1413. << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
  1414. RXQ_CTRL_EN;
  1415. iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
  1416. /* config DMA Engine */
  1417. value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
  1418. << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
  1419. ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
  1420. << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
  1421. DMA_CTRL_DMAW_EN;
  1422. value |= (u32) hw->dma_ord;
  1423. if (atl1_rcb_128 == hw->rcb_value)
  1424. value |= DMA_CTRL_RCB_VALUE;
  1425. iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
  1426. /* config CMB / SMB */
  1427. value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
  1428. hw->cmb_tpd : adapter->tpd_ring.count;
  1429. value <<= 16;
  1430. value |= hw->cmb_rrd;
  1431. iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
  1432. value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
  1433. iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
  1434. iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
  1435. /* --- enable CMB / SMB */
  1436. value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
  1437. iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
  1438. value = ioread32(adapter->hw.hw_addr + REG_ISR);
  1439. if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
  1440. value = 1; /* config failed */
  1441. else
  1442. value = 0;
  1443. /* clear all interrupt status */
  1444. iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
  1445. iowrite32(0, adapter->hw.hw_addr + REG_ISR);
  1446. return value;
  1447. }
  1448. /*
  1449. * atl1_pcie_patch - Patch for PCIE module
  1450. */
  1451. static void atl1_pcie_patch(struct atl1_adapter *adapter)
  1452. {
  1453. u32 value;
  1454. /* much vendor magic here */
  1455. value = 0x6500;
  1456. iowrite32(value, adapter->hw.hw_addr + 0x12FC);
  1457. /* pcie flow control mode change */
  1458. value = ioread32(adapter->hw.hw_addr + 0x1008);
  1459. value |= 0x8000;
  1460. iowrite32(value, adapter->hw.hw_addr + 0x1008);
  1461. }
  1462. /*
  1463. * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
  1464. * on PCI Command register is disable.
  1465. * The function enable this bit.
  1466. * Brackett, 2006/03/15
  1467. */
  1468. static void atl1_via_workaround(struct atl1_adapter *adapter)
  1469. {
  1470. unsigned long value;
  1471. value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
  1472. if (value & PCI_COMMAND_INTX_DISABLE)
  1473. value &= ~PCI_COMMAND_INTX_DISABLE;
  1474. iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
  1475. }
  1476. static void atl1_inc_smb(struct atl1_adapter *adapter)
  1477. {
  1478. struct net_device *netdev = adapter->netdev;
  1479. struct stats_msg_block *smb = adapter->smb.smb;
  1480. /* Fill out the OS statistics structure */
  1481. adapter->soft_stats.rx_packets += smb->rx_ok;
  1482. adapter->soft_stats.tx_packets += smb->tx_ok;
  1483. adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
  1484. adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
  1485. adapter->soft_stats.multicast += smb->rx_mcast;
  1486. adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
  1487. smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
  1488. /* Rx Errors */
  1489. adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
  1490. smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
  1491. smb->rx_rrd_ov + smb->rx_align_err);
  1492. adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
  1493. adapter->soft_stats.rx_length_errors += smb->rx_len_err;
  1494. adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
  1495. adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
  1496. adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
  1497. smb->rx_rxf_ov);
  1498. adapter->soft_stats.rx_pause += smb->rx_pause;
  1499. adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
  1500. adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
  1501. /* Tx Errors */
  1502. adapter->soft_stats.tx_errors += (smb->tx_late_col +
  1503. smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
  1504. adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
  1505. adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
  1506. adapter->soft_stats.tx_window_errors += smb->tx_late_col;
  1507. adapter->soft_stats.excecol += smb->tx_abort_col;
  1508. adapter->soft_stats.deffer += smb->tx_defer;
  1509. adapter->soft_stats.scc += smb->tx_1_col;
  1510. adapter->soft_stats.mcc += smb->tx_2_col;
  1511. adapter->soft_stats.latecol += smb->tx_late_col;
  1512. adapter->soft_stats.tx_underun += smb->tx_underrun;
  1513. adapter->soft_stats.tx_trunc += smb->tx_trunc;
  1514. adapter->soft_stats.tx_pause += smb->tx_pause;
  1515. netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
  1516. netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
  1517. netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
  1518. netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
  1519. netdev->stats.multicast = adapter->soft_stats.multicast;
  1520. netdev->stats.collisions = adapter->soft_stats.collisions;
  1521. netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
  1522. netdev->stats.rx_over_errors =
  1523. adapter->soft_stats.rx_missed_errors;
  1524. netdev->stats.rx_length_errors =
  1525. adapter->soft_stats.rx_length_errors;
  1526. netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
  1527. netdev->stats.rx_frame_errors =
  1528. adapter->soft_stats.rx_frame_errors;
  1529. netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
  1530. netdev->stats.rx_missed_errors =
  1531. adapter->soft_stats.rx_missed_errors;
  1532. netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
  1533. netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
  1534. netdev->stats.tx_aborted_errors =
  1535. adapter->soft_stats.tx_aborted_errors;
  1536. netdev->stats.tx_window_errors =
  1537. adapter->soft_stats.tx_window_errors;
  1538. netdev->stats.tx_carrier_errors =
  1539. adapter->soft_stats.tx_carrier_errors;
  1540. }
  1541. static void atl1_update_mailbox(struct atl1_adapter *adapter)
  1542. {
  1543. unsigned long flags;
  1544. u32 tpd_next_to_use;
  1545. u32 rfd_next_to_use;
  1546. u32 rrd_next_to_clean;
  1547. u32 value;
  1548. spin_lock_irqsave(&adapter->mb_lock, flags);
  1549. tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
  1550. rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
  1551. rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
  1552. value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
  1553. MB_RFD_PROD_INDX_SHIFT) |
  1554. ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
  1555. MB_RRD_CONS_INDX_SHIFT) |
  1556. ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
  1557. MB_TPD_PROD_INDX_SHIFT);
  1558. iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
  1559. spin_unlock_irqrestore(&adapter->mb_lock, flags);
  1560. }
  1561. static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
  1562. struct rx_return_desc *rrd, u16 offset)
  1563. {
  1564. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1565. while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
  1566. rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
  1567. if (++rfd_ring->next_to_clean == rfd_ring->count) {
  1568. rfd_ring->next_to_clean = 0;
  1569. }
  1570. }
  1571. }
  1572. static void atl1_update_rfd_index(struct atl1_adapter *adapter,
  1573. struct rx_return_desc *rrd)
  1574. {
  1575. u16 num_buf;
  1576. num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
  1577. adapter->rx_buffer_len;
  1578. if (rrd->num_buf == num_buf)
  1579. /* clean alloc flag for bad rrd */
  1580. atl1_clean_alloc_flag(adapter, rrd, num_buf);
  1581. }
  1582. static void atl1_rx_checksum(struct atl1_adapter *adapter,
  1583. struct rx_return_desc *rrd, struct sk_buff *skb)
  1584. {
  1585. struct pci_dev *pdev = adapter->pdev;
  1586. /*
  1587. * The L1 hardware contains a bug that erroneously sets the
  1588. * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
  1589. * fragmented IP packet is received, even though the packet
  1590. * is perfectly valid and its checksum is correct. There's
  1591. * no way to distinguish between one of these good packets
  1592. * and a packet that actually contains a TCP/UDP checksum
  1593. * error, so all we can do is allow it to be handed up to
  1594. * the higher layers and let it be sorted out there.
  1595. */
  1596. skb_checksum_none_assert(skb);
  1597. if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
  1598. if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
  1599. ERR_FLAG_CODE | ERR_FLAG_OV)) {
  1600. adapter->hw_csum_err++;
  1601. if (netif_msg_rx_err(adapter))
  1602. dev_printk(KERN_DEBUG, &pdev->dev,
  1603. "rx checksum error\n");
  1604. return;
  1605. }
  1606. }
  1607. /* not IPv4 */
  1608. if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
  1609. /* checksum is invalid, but it's not an IPv4 pkt, so ok */
  1610. return;
  1611. /* IPv4 packet */
  1612. if (likely(!(rrd->err_flg &
  1613. (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
  1614. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1615. adapter->hw_csum_good++;
  1616. return;
  1617. }
  1618. }
  1619. /*
  1620. * atl1_alloc_rx_buffers - Replace used receive buffers
  1621. * @adapter: address of board private structure
  1622. */
  1623. static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
  1624. {
  1625. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1626. struct pci_dev *pdev = adapter->pdev;
  1627. struct page *page;
  1628. unsigned long offset;
  1629. struct atl1_buffer *buffer_info, *next_info;
  1630. struct sk_buff *skb;
  1631. u16 num_alloc = 0;
  1632. u16 rfd_next_to_use, next_next;
  1633. struct rx_free_desc *rfd_desc;
  1634. next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
  1635. if (++next_next == rfd_ring->count)
  1636. next_next = 0;
  1637. buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
  1638. next_info = &rfd_ring->buffer_info[next_next];
  1639. while (!buffer_info->alloced && !next_info->alloced) {
  1640. if (buffer_info->skb) {
  1641. buffer_info->alloced = 1;
  1642. goto next;
  1643. }
  1644. rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
  1645. skb = netdev_alloc_skb_ip_align(adapter->netdev,
  1646. adapter->rx_buffer_len);
  1647. if (unlikely(!skb)) {
  1648. /* Better luck next round */
  1649. adapter->netdev->stats.rx_dropped++;
  1650. break;
  1651. }
  1652. buffer_info->alloced = 1;
  1653. buffer_info->skb = skb;
  1654. buffer_info->length = (u16) adapter->rx_buffer_len;
  1655. page = virt_to_page(skb->data);
  1656. offset = (unsigned long)skb->data & ~PAGE_MASK;
  1657. buffer_info->dma = pci_map_page(pdev, page, offset,
  1658. adapter->rx_buffer_len,
  1659. PCI_DMA_FROMDEVICE);
  1660. rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  1661. rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
  1662. rfd_desc->coalese = 0;
  1663. next:
  1664. rfd_next_to_use = next_next;
  1665. if (unlikely(++next_next == rfd_ring->count))
  1666. next_next = 0;
  1667. buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
  1668. next_info = &rfd_ring->buffer_info[next_next];
  1669. num_alloc++;
  1670. }
  1671. if (num_alloc) {
  1672. /*
  1673. * Force memory writes to complete before letting h/w
  1674. * know there are new descriptors to fetch. (Only
  1675. * applicable for weak-ordered memory model archs,
  1676. * such as IA-64).
  1677. */
  1678. wmb();
  1679. atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
  1680. }
  1681. return num_alloc;
  1682. }
  1683. static void atl1_intr_rx(struct atl1_adapter *adapter)
  1684. {
  1685. int i, count;
  1686. u16 length;
  1687. u16 rrd_next_to_clean;
  1688. u32 value;
  1689. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1690. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1691. struct atl1_buffer *buffer_info;
  1692. struct rx_return_desc *rrd;
  1693. struct sk_buff *skb;
  1694. count = 0;
  1695. rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
  1696. while (1) {
  1697. rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
  1698. i = 1;
  1699. if (likely(rrd->xsz.valid)) { /* packet valid */
  1700. chk_rrd:
  1701. /* check rrd status */
  1702. if (likely(rrd->num_buf == 1))
  1703. goto rrd_ok;
  1704. else if (netif_msg_rx_err(adapter)) {
  1705. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1706. "unexpected RRD buffer count\n");
  1707. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1708. "rx_buf_len = %d\n",
  1709. adapter->rx_buffer_len);
  1710. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1711. "RRD num_buf = %d\n",
  1712. rrd->num_buf);
  1713. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1714. "RRD pkt_len = %d\n",
  1715. rrd->xsz.xsum_sz.pkt_size);
  1716. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1717. "RRD pkt_flg = 0x%08X\n",
  1718. rrd->pkt_flg);
  1719. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1720. "RRD err_flg = 0x%08X\n",
  1721. rrd->err_flg);
  1722. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1723. "RRD vlan_tag = 0x%08X\n",
  1724. rrd->vlan_tag);
  1725. }
  1726. /* rrd seems to be bad */
  1727. if (unlikely(i-- > 0)) {
  1728. /* rrd may not be DMAed completely */
  1729. udelay(1);
  1730. goto chk_rrd;
  1731. }
  1732. /* bad rrd */
  1733. if (netif_msg_rx_err(adapter))
  1734. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1735. "bad RRD\n");
  1736. /* see if update RFD index */
  1737. if (rrd->num_buf > 1)
  1738. atl1_update_rfd_index(adapter, rrd);
  1739. /* update rrd */
  1740. rrd->xsz.valid = 0;
  1741. if (++rrd_next_to_clean == rrd_ring->count)
  1742. rrd_next_to_clean = 0;
  1743. count++;
  1744. continue;
  1745. } else { /* current rrd still not be updated */
  1746. break;
  1747. }
  1748. rrd_ok:
  1749. /* clean alloc flag for bad rrd */
  1750. atl1_clean_alloc_flag(adapter, rrd, 0);
  1751. buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
  1752. if (++rfd_ring->next_to_clean == rfd_ring->count)
  1753. rfd_ring->next_to_clean = 0;
  1754. /* update rrd next to clean */
  1755. if (++rrd_next_to_clean == rrd_ring->count)
  1756. rrd_next_to_clean = 0;
  1757. count++;
  1758. if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
  1759. if (!(rrd->err_flg &
  1760. (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
  1761. | ERR_FLAG_LEN))) {
  1762. /* packet error, don't need upstream */
  1763. buffer_info->alloced = 0;
  1764. rrd->xsz.valid = 0;
  1765. continue;
  1766. }
  1767. }
  1768. /* Good Receive */
  1769. pci_unmap_page(adapter->pdev, buffer_info->dma,
  1770. buffer_info->length, PCI_DMA_FROMDEVICE);
  1771. buffer_info->dma = 0;
  1772. skb = buffer_info->skb;
  1773. length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
  1774. skb_put(skb, length - ETH_FCS_LEN);
  1775. /* Receive Checksum Offload */
  1776. atl1_rx_checksum(adapter, rrd, skb);
  1777. skb->protocol = eth_type_trans(skb, adapter->netdev);
  1778. if (adapter->vlgrp && (rrd->pkt_flg & PACKET_FLAG_VLAN_INS)) {
  1779. u16 vlan_tag = (rrd->vlan_tag >> 4) |
  1780. ((rrd->vlan_tag & 7) << 13) |
  1781. ((rrd->vlan_tag & 8) << 9);
  1782. vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
  1783. } else
  1784. netif_rx(skb);
  1785. /* let protocol layer free skb */
  1786. buffer_info->skb = NULL;
  1787. buffer_info->alloced = 0;
  1788. rrd->xsz.valid = 0;
  1789. }
  1790. atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
  1791. atl1_alloc_rx_buffers(adapter);
  1792. /* update mailbox ? */
  1793. if (count) {
  1794. u32 tpd_next_to_use;
  1795. u32 rfd_next_to_use;
  1796. spin_lock(&adapter->mb_lock);
  1797. tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
  1798. rfd_next_to_use =
  1799. atomic_read(&adapter->rfd_ring.next_to_use);
  1800. rrd_next_to_clean =
  1801. atomic_read(&adapter->rrd_ring.next_to_clean);
  1802. value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
  1803. MB_RFD_PROD_INDX_SHIFT) |
  1804. ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
  1805. MB_RRD_CONS_INDX_SHIFT) |
  1806. ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
  1807. MB_TPD_PROD_INDX_SHIFT);
  1808. iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
  1809. spin_unlock(&adapter->mb_lock);
  1810. }
  1811. }
  1812. static void atl1_intr_tx(struct atl1_adapter *adapter)
  1813. {
  1814. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1815. struct atl1_buffer *buffer_info;
  1816. u16 sw_tpd_next_to_clean;
  1817. u16 cmb_tpd_next_to_clean;
  1818. sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
  1819. cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
  1820. while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
  1821. buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
  1822. if (buffer_info->dma) {
  1823. pci_unmap_page(adapter->pdev, buffer_info->dma,
  1824. buffer_info->length, PCI_DMA_TODEVICE);
  1825. buffer_info->dma = 0;
  1826. }
  1827. if (buffer_info->skb) {
  1828. dev_kfree_skb_irq(buffer_info->skb);
  1829. buffer_info->skb = NULL;
  1830. }
  1831. if (++sw_tpd_next_to_clean == tpd_ring->count)
  1832. sw_tpd_next_to_clean = 0;
  1833. }
  1834. atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
  1835. if (netif_queue_stopped(adapter->netdev) &&
  1836. netif_carrier_ok(adapter->netdev))
  1837. netif_wake_queue(adapter->netdev);
  1838. }
  1839. static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
  1840. {
  1841. u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
  1842. u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
  1843. return (next_to_clean > next_to_use) ?
  1844. next_to_clean - next_to_use - 1 :
  1845. tpd_ring->count + next_to_clean - next_to_use - 1;
  1846. }
  1847. static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
  1848. struct tx_packet_desc *ptpd)
  1849. {
  1850. u8 hdr_len, ip_off;
  1851. u32 real_len;
  1852. int err;
  1853. if (skb_shinfo(skb)->gso_size) {
  1854. if (skb_header_cloned(skb)) {
  1855. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1856. if (unlikely(err))
  1857. return -1;
  1858. }
  1859. if (skb->protocol == htons(ETH_P_IP)) {
  1860. struct iphdr *iph = ip_hdr(skb);
  1861. real_len = (((unsigned char *)iph - skb->data) +
  1862. ntohs(iph->tot_len));
  1863. if (real_len < skb->len)
  1864. pskb_trim(skb, real_len);
  1865. hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
  1866. if (skb->len == hdr_len) {
  1867. iph->check = 0;
  1868. tcp_hdr(skb)->check =
  1869. ~csum_tcpudp_magic(iph->saddr,
  1870. iph->daddr, tcp_hdrlen(skb),
  1871. IPPROTO_TCP, 0);
  1872. ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
  1873. TPD_IPHL_SHIFT;
  1874. ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
  1875. TPD_TCPHDRLEN_MASK) <<
  1876. TPD_TCPHDRLEN_SHIFT;
  1877. ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
  1878. ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
  1879. return 1;
  1880. }
  1881. iph->check = 0;
  1882. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1883. iph->daddr, 0, IPPROTO_TCP, 0);
  1884. ip_off = (unsigned char *)iph -
  1885. (unsigned char *) skb_network_header(skb);
  1886. if (ip_off == 8) /* 802.3-SNAP frame */
  1887. ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
  1888. else if (ip_off != 0)
  1889. return -2;
  1890. ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
  1891. TPD_IPHL_SHIFT;
  1892. ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
  1893. TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
  1894. ptpd->word3 |= (skb_shinfo(skb)->gso_size &
  1895. TPD_MSS_MASK) << TPD_MSS_SHIFT;
  1896. ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
  1897. return 3;
  1898. }
  1899. }
  1900. return false;
  1901. }
  1902. static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
  1903. struct tx_packet_desc *ptpd)
  1904. {
  1905. u8 css, cso;
  1906. if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
  1907. css = skb_checksum_start_offset(skb);
  1908. cso = css + (u8) skb->csum_offset;
  1909. if (unlikely(css & 0x1)) {
  1910. /* L1 hardware requires an even number here */
  1911. if (netif_msg_tx_err(adapter))
  1912. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1913. "payload offset not an even number\n");
  1914. return -1;
  1915. }
  1916. ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
  1917. TPD_PLOADOFFSET_SHIFT;
  1918. ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
  1919. TPD_CCSUMOFFSET_SHIFT;
  1920. ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
  1921. return true;
  1922. }
  1923. return 0;
  1924. }
  1925. static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
  1926. struct tx_packet_desc *ptpd)
  1927. {
  1928. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1929. struct atl1_buffer *buffer_info;
  1930. u16 buf_len = skb->len;
  1931. struct page *page;
  1932. unsigned long offset;
  1933. unsigned int nr_frags;
  1934. unsigned int f;
  1935. int retval;
  1936. u16 next_to_use;
  1937. u16 data_len;
  1938. u8 hdr_len;
  1939. buf_len -= skb->data_len;
  1940. nr_frags = skb_shinfo(skb)->nr_frags;
  1941. next_to_use = atomic_read(&tpd_ring->next_to_use);
  1942. buffer_info = &tpd_ring->buffer_info[next_to_use];
  1943. BUG_ON(buffer_info->skb);
  1944. /* put skb in last TPD */
  1945. buffer_info->skb = NULL;
  1946. retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
  1947. if (retval) {
  1948. /* TSO */
  1949. hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  1950. buffer_info->length = hdr_len;
  1951. page = virt_to_page(skb->data);
  1952. offset = (unsigned long)skb->data & ~PAGE_MASK;
  1953. buffer_info->dma = pci_map_page(adapter->pdev, page,
  1954. offset, hdr_len,
  1955. PCI_DMA_TODEVICE);
  1956. if (++next_to_use == tpd_ring->count)
  1957. next_to_use = 0;
  1958. if (buf_len > hdr_len) {
  1959. int i, nseg;
  1960. data_len = buf_len - hdr_len;
  1961. nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
  1962. ATL1_MAX_TX_BUF_LEN;
  1963. for (i = 0; i < nseg; i++) {
  1964. buffer_info =
  1965. &tpd_ring->buffer_info[next_to_use];
  1966. buffer_info->skb = NULL;
  1967. buffer_info->length =
  1968. (ATL1_MAX_TX_BUF_LEN >=
  1969. data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
  1970. data_len -= buffer_info->length;
  1971. page = virt_to_page(skb->data +
  1972. (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
  1973. offset = (unsigned long)(skb->data +
  1974. (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
  1975. ~PAGE_MASK;
  1976. buffer_info->dma = pci_map_page(adapter->pdev,
  1977. page, offset, buffer_info->length,
  1978. PCI_DMA_TODEVICE);
  1979. if (++next_to_use == tpd_ring->count)
  1980. next_to_use = 0;
  1981. }
  1982. }
  1983. } else {
  1984. /* not TSO */
  1985. buffer_info->length = buf_len;
  1986. page = virt_to_page(skb->data);
  1987. offset = (unsigned long)skb->data & ~PAGE_MASK;
  1988. buffer_info->dma = pci_map_page(adapter->pdev, page,
  1989. offset, buf_len, PCI_DMA_TODEVICE);
  1990. if (++next_to_use == tpd_ring->count)
  1991. next_to_use = 0;
  1992. }
  1993. for (f = 0; f < nr_frags; f++) {
  1994. struct skb_frag_struct *frag;
  1995. u16 i, nseg;
  1996. frag = &skb_shinfo(skb)->frags[f];
  1997. buf_len = frag->size;
  1998. nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
  1999. ATL1_MAX_TX_BUF_LEN;
  2000. for (i = 0; i < nseg; i++) {
  2001. buffer_info = &tpd_ring->buffer_info[next_to_use];
  2002. BUG_ON(buffer_info->skb);
  2003. buffer_info->skb = NULL;
  2004. buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
  2005. ATL1_MAX_TX_BUF_LEN : buf_len;
  2006. buf_len -= buffer_info->length;
  2007. buffer_info->dma = pci_map_page(adapter->pdev,
  2008. frag->page,
  2009. frag->page_offset + (i * ATL1_MAX_TX_BUF_LEN),
  2010. buffer_info->length, PCI_DMA_TODEVICE);
  2011. if (++next_to_use == tpd_ring->count)
  2012. next_to_use = 0;
  2013. }
  2014. }
  2015. /* last tpd's buffer-info */
  2016. buffer_info->skb = skb;
  2017. }
  2018. static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
  2019. struct tx_packet_desc *ptpd)
  2020. {
  2021. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  2022. struct atl1_buffer *buffer_info;
  2023. struct tx_packet_desc *tpd;
  2024. u16 j;
  2025. u32 val;
  2026. u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
  2027. for (j = 0; j < count; j++) {
  2028. buffer_info = &tpd_ring->buffer_info[next_to_use];
  2029. tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
  2030. if (tpd != ptpd)
  2031. memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
  2032. tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
  2033. tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
  2034. tpd->word2 |= (cpu_to_le16(buffer_info->length) &
  2035. TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
  2036. /*
  2037. * if this is the first packet in a TSO chain, set
  2038. * TPD_HDRFLAG, otherwise, clear it.
  2039. */
  2040. val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
  2041. TPD_SEGMENT_EN_MASK;
  2042. if (val) {
  2043. if (!j)
  2044. tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
  2045. else
  2046. tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
  2047. }
  2048. if (j == (count - 1))
  2049. tpd->word3 |= 1 << TPD_EOP_SHIFT;
  2050. if (++next_to_use == tpd_ring->count)
  2051. next_to_use = 0;
  2052. }
  2053. /*
  2054. * Force memory writes to complete before letting h/w
  2055. * know there are new descriptors to fetch. (Only
  2056. * applicable for weak-ordered memory model archs,
  2057. * such as IA-64).
  2058. */
  2059. wmb();
  2060. atomic_set(&tpd_ring->next_to_use, next_to_use);
  2061. }
  2062. static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
  2063. struct net_device *netdev)
  2064. {
  2065. struct atl1_adapter *adapter = netdev_priv(netdev);
  2066. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  2067. int len;
  2068. int tso;
  2069. int count = 1;
  2070. int ret_val;
  2071. struct tx_packet_desc *ptpd;
  2072. u16 frag_size;
  2073. u16 vlan_tag;
  2074. unsigned int nr_frags = 0;
  2075. unsigned int mss = 0;
  2076. unsigned int f;
  2077. unsigned int proto_hdr_len;
  2078. len = skb_headlen(skb);
  2079. if (unlikely(skb->len <= 0)) {
  2080. dev_kfree_skb_any(skb);
  2081. return NETDEV_TX_OK;
  2082. }
  2083. nr_frags = skb_shinfo(skb)->nr_frags;
  2084. for (f = 0; f < nr_frags; f++) {
  2085. frag_size = skb_shinfo(skb)->frags[f].size;
  2086. if (frag_size)
  2087. count += (frag_size + ATL1_MAX_TX_BUF_LEN - 1) /
  2088. ATL1_MAX_TX_BUF_LEN;
  2089. }
  2090. mss = skb_shinfo(skb)->gso_size;
  2091. if (mss) {
  2092. if (skb->protocol == htons(ETH_P_IP)) {
  2093. proto_hdr_len = (skb_transport_offset(skb) +
  2094. tcp_hdrlen(skb));
  2095. if (unlikely(proto_hdr_len > len)) {
  2096. dev_kfree_skb_any(skb);
  2097. return NETDEV_TX_OK;
  2098. }
  2099. /* need additional TPD ? */
  2100. if (proto_hdr_len != len)
  2101. count += (len - proto_hdr_len +
  2102. ATL1_MAX_TX_BUF_LEN - 1) /
  2103. ATL1_MAX_TX_BUF_LEN;
  2104. }
  2105. }
  2106. if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
  2107. /* not enough descriptors */
  2108. netif_stop_queue(netdev);
  2109. if (netif_msg_tx_queued(adapter))
  2110. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2111. "tx busy\n");
  2112. return NETDEV_TX_BUSY;
  2113. }
  2114. ptpd = ATL1_TPD_DESC(tpd_ring,
  2115. (u16) atomic_read(&tpd_ring->next_to_use));
  2116. memset(ptpd, 0, sizeof(struct tx_packet_desc));
  2117. if (vlan_tx_tag_present(skb)) {
  2118. vlan_tag = vlan_tx_tag_get(skb);
  2119. vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
  2120. ((vlan_tag >> 9) & 0x8);
  2121. ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
  2122. ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
  2123. TPD_VLANTAG_SHIFT;
  2124. }
  2125. tso = atl1_tso(adapter, skb, ptpd);
  2126. if (tso < 0) {
  2127. dev_kfree_skb_any(skb);
  2128. return NETDEV_TX_OK;
  2129. }
  2130. if (!tso) {
  2131. ret_val = atl1_tx_csum(adapter, skb, ptpd);
  2132. if (ret_val < 0) {
  2133. dev_kfree_skb_any(skb);
  2134. return NETDEV_TX_OK;
  2135. }
  2136. }
  2137. atl1_tx_map(adapter, skb, ptpd);
  2138. atl1_tx_queue(adapter, count, ptpd);
  2139. atl1_update_mailbox(adapter);
  2140. mmiowb();
  2141. return NETDEV_TX_OK;
  2142. }
  2143. /*
  2144. * atl1_intr - Interrupt Handler
  2145. * @irq: interrupt number
  2146. * @data: pointer to a network interface device structure
  2147. * @pt_regs: CPU registers structure
  2148. */
  2149. static irqreturn_t atl1_intr(int irq, void *data)
  2150. {
  2151. struct atl1_adapter *adapter = netdev_priv(data);
  2152. u32 status;
  2153. int max_ints = 10;
  2154. status = adapter->cmb.cmb->int_stats;
  2155. if (!status)
  2156. return IRQ_NONE;
  2157. do {
  2158. /* clear CMB interrupt status at once */
  2159. adapter->cmb.cmb->int_stats = 0;
  2160. if (status & ISR_GPHY) /* clear phy status */
  2161. atlx_clear_phy_int(adapter);
  2162. /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
  2163. iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
  2164. /* check if SMB intr */
  2165. if (status & ISR_SMB)
  2166. atl1_inc_smb(adapter);
  2167. /* check if PCIE PHY Link down */
  2168. if (status & ISR_PHY_LINKDOWN) {
  2169. if (netif_msg_intr(adapter))
  2170. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2171. "pcie phy link down %x\n", status);
  2172. if (netif_running(adapter->netdev)) { /* reset MAC */
  2173. iowrite32(0, adapter->hw.hw_addr + REG_IMR);
  2174. schedule_work(&adapter->reset_dev_task);
  2175. return IRQ_HANDLED;
  2176. }
  2177. }
  2178. /* check if DMA read/write error ? */
  2179. if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
  2180. if (netif_msg_intr(adapter))
  2181. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2182. "pcie DMA r/w error (status = 0x%x)\n",
  2183. status);
  2184. iowrite32(0, adapter->hw.hw_addr + REG_IMR);
  2185. schedule_work(&adapter->reset_dev_task);
  2186. return IRQ_HANDLED;
  2187. }
  2188. /* link event */
  2189. if (status & ISR_GPHY) {
  2190. adapter->soft_stats.tx_carrier_errors++;
  2191. atl1_check_for_link(adapter);
  2192. }
  2193. /* transmit event */
  2194. if (status & ISR_CMB_TX)
  2195. atl1_intr_tx(adapter);
  2196. /* rx exception */
  2197. if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
  2198. ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
  2199. ISR_HOST_RRD_OV | ISR_CMB_RX))) {
  2200. if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
  2201. ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
  2202. ISR_HOST_RRD_OV))
  2203. if (netif_msg_intr(adapter))
  2204. dev_printk(KERN_DEBUG,
  2205. &adapter->pdev->dev,
  2206. "rx exception, ISR = 0x%x\n",
  2207. status);
  2208. atl1_intr_rx(adapter);
  2209. }
  2210. if (--max_ints < 0)
  2211. break;
  2212. } while ((status = adapter->cmb.cmb->int_stats));
  2213. /* re-enable Interrupt */
  2214. iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
  2215. return IRQ_HANDLED;
  2216. }
  2217. /*
  2218. * atl1_phy_config - Timer Call-back
  2219. * @data: pointer to netdev cast into an unsigned long
  2220. */
  2221. static void atl1_phy_config(unsigned long data)
  2222. {
  2223. struct atl1_adapter *adapter = (struct atl1_adapter *)data;
  2224. struct atl1_hw *hw = &adapter->hw;
  2225. unsigned long flags;
  2226. spin_lock_irqsave(&adapter->lock, flags);
  2227. adapter->phy_timer_pending = false;
  2228. atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
  2229. atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
  2230. atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
  2231. spin_unlock_irqrestore(&adapter->lock, flags);
  2232. }
  2233. /*
  2234. * Orphaned vendor comment left intact here:
  2235. * <vendor comment>
  2236. * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
  2237. * will assert. We do soft reset <0x1400=1> according
  2238. * with the SPEC. BUT, it seemes that PCIE or DMA
  2239. * state-machine will not be reset. DMAR_TO_INT will
  2240. * assert again and again.
  2241. * </vendor comment>
  2242. */
  2243. static int atl1_reset(struct atl1_adapter *adapter)
  2244. {
  2245. int ret;
  2246. ret = atl1_reset_hw(&adapter->hw);
  2247. if (ret)
  2248. return ret;
  2249. return atl1_init_hw(&adapter->hw);
  2250. }
  2251. static s32 atl1_up(struct atl1_adapter *adapter)
  2252. {
  2253. struct net_device *netdev = adapter->netdev;
  2254. int err;
  2255. int irq_flags = 0;
  2256. /* hardware has been reset, we need to reload some things */
  2257. atlx_set_multi(netdev);
  2258. atl1_init_ring_ptrs(adapter);
  2259. atlx_restore_vlan(adapter);
  2260. err = atl1_alloc_rx_buffers(adapter);
  2261. if (unlikely(!err))
  2262. /* no RX BUFFER allocated */
  2263. return -ENOMEM;
  2264. if (unlikely(atl1_configure(adapter))) {
  2265. err = -EIO;
  2266. goto err_up;
  2267. }
  2268. err = pci_enable_msi(adapter->pdev);
  2269. if (err) {
  2270. if (netif_msg_ifup(adapter))
  2271. dev_info(&adapter->pdev->dev,
  2272. "Unable to enable MSI: %d\n", err);
  2273. irq_flags |= IRQF_SHARED;
  2274. }
  2275. err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
  2276. netdev->name, netdev);
  2277. if (unlikely(err))
  2278. goto err_up;
  2279. atlx_irq_enable(adapter);
  2280. atl1_check_link(adapter);
  2281. netif_start_queue(netdev);
  2282. return 0;
  2283. err_up:
  2284. pci_disable_msi(adapter->pdev);
  2285. /* free rx_buffers */
  2286. atl1_clean_rx_ring(adapter);
  2287. return err;
  2288. }
  2289. static void atl1_down(struct atl1_adapter *adapter)
  2290. {
  2291. struct net_device *netdev = adapter->netdev;
  2292. netif_stop_queue(netdev);
  2293. del_timer_sync(&adapter->phy_config_timer);
  2294. adapter->phy_timer_pending = false;
  2295. atlx_irq_disable(adapter);
  2296. free_irq(adapter->pdev->irq, netdev);
  2297. pci_disable_msi(adapter->pdev);
  2298. atl1_reset_hw(&adapter->hw);
  2299. adapter->cmb.cmb->int_stats = 0;
  2300. adapter->link_speed = SPEED_0;
  2301. adapter->link_duplex = -1;
  2302. netif_carrier_off(netdev);
  2303. atl1_clean_tx_ring(adapter);
  2304. atl1_clean_rx_ring(adapter);
  2305. }
  2306. static void atl1_reset_dev_task(struct work_struct *work)
  2307. {
  2308. struct atl1_adapter *adapter =
  2309. container_of(work, struct atl1_adapter, reset_dev_task);
  2310. struct net_device *netdev = adapter->netdev;
  2311. netif_device_detach(netdev);
  2312. atl1_down(adapter);
  2313. atl1_up(adapter);
  2314. netif_device_attach(netdev);
  2315. }
  2316. /*
  2317. * atl1_change_mtu - Change the Maximum Transfer Unit
  2318. * @netdev: network interface device structure
  2319. * @new_mtu: new value for maximum frame size
  2320. *
  2321. * Returns 0 on success, negative on failure
  2322. */
  2323. static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
  2324. {
  2325. struct atl1_adapter *adapter = netdev_priv(netdev);
  2326. int old_mtu = netdev->mtu;
  2327. int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  2328. if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
  2329. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  2330. if (netif_msg_link(adapter))
  2331. dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
  2332. return -EINVAL;
  2333. }
  2334. adapter->hw.max_frame_size = max_frame;
  2335. adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
  2336. adapter->rx_buffer_len = (max_frame + 7) & ~7;
  2337. adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
  2338. netdev->mtu = new_mtu;
  2339. if ((old_mtu != new_mtu) && netif_running(netdev)) {
  2340. atl1_down(adapter);
  2341. atl1_up(adapter);
  2342. }
  2343. return 0;
  2344. }
  2345. /*
  2346. * atl1_open - Called when a network interface is made active
  2347. * @netdev: network interface device structure
  2348. *
  2349. * Returns 0 on success, negative value on failure
  2350. *
  2351. * The open entry point is called when a network interface is made
  2352. * active by the system (IFF_UP). At this point all resources needed
  2353. * for transmit and receive operations are allocated, the interrupt
  2354. * handler is registered with the OS, the watchdog timer is started,
  2355. * and the stack is notified that the interface is ready.
  2356. */
  2357. static int atl1_open(struct net_device *netdev)
  2358. {
  2359. struct atl1_adapter *adapter = netdev_priv(netdev);
  2360. int err;
  2361. netif_carrier_off(netdev);
  2362. /* allocate transmit descriptors */
  2363. err = atl1_setup_ring_resources(adapter);
  2364. if (err)
  2365. return err;
  2366. err = atl1_up(adapter);
  2367. if (err)
  2368. goto err_up;
  2369. return 0;
  2370. err_up:
  2371. atl1_reset(adapter);
  2372. return err;
  2373. }
  2374. /*
  2375. * atl1_close - Disables a network interface
  2376. * @netdev: network interface device structure
  2377. *
  2378. * Returns 0, this is not allowed to fail
  2379. *
  2380. * The close entry point is called when an interface is de-activated
  2381. * by the OS. The hardware is still under the drivers control, but
  2382. * needs to be disabled. A global MAC reset is issued to stop the
  2383. * hardware, and all transmit and receive resources are freed.
  2384. */
  2385. static int atl1_close(struct net_device *netdev)
  2386. {
  2387. struct atl1_adapter *adapter = netdev_priv(netdev);
  2388. atl1_down(adapter);
  2389. atl1_free_ring_resources(adapter);
  2390. return 0;
  2391. }
  2392. #ifdef CONFIG_PM
  2393. static int atl1_suspend(struct device *dev)
  2394. {
  2395. struct pci_dev *pdev = to_pci_dev(dev);
  2396. struct net_device *netdev = pci_get_drvdata(pdev);
  2397. struct atl1_adapter *adapter = netdev_priv(netdev);
  2398. struct atl1_hw *hw = &adapter->hw;
  2399. u32 ctrl = 0;
  2400. u32 wufc = adapter->wol;
  2401. u32 val;
  2402. u16 speed;
  2403. u16 duplex;
  2404. netif_device_detach(netdev);
  2405. if (netif_running(netdev))
  2406. atl1_down(adapter);
  2407. atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
  2408. atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
  2409. val = ctrl & BMSR_LSTATUS;
  2410. if (val)
  2411. wufc &= ~ATLX_WUFC_LNKC;
  2412. if (!wufc)
  2413. goto disable_wol;
  2414. if (val) {
  2415. val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
  2416. if (val) {
  2417. if (netif_msg_ifdown(adapter))
  2418. dev_printk(KERN_DEBUG, &pdev->dev,
  2419. "error getting speed/duplex\n");
  2420. goto disable_wol;
  2421. }
  2422. ctrl = 0;
  2423. /* enable magic packet WOL */
  2424. if (wufc & ATLX_WUFC_MAG)
  2425. ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
  2426. iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
  2427. ioread32(hw->hw_addr + REG_WOL_CTRL);
  2428. /* configure the mac */
  2429. ctrl = MAC_CTRL_RX_EN;
  2430. ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
  2431. MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
  2432. if (duplex == FULL_DUPLEX)
  2433. ctrl |= MAC_CTRL_DUPLX;
  2434. ctrl |= (((u32)adapter->hw.preamble_len &
  2435. MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
  2436. if (adapter->vlgrp)
  2437. ctrl |= MAC_CTRL_RMV_VLAN;
  2438. if (wufc & ATLX_WUFC_MAG)
  2439. ctrl |= MAC_CTRL_BC_EN;
  2440. iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
  2441. ioread32(hw->hw_addr + REG_MAC_CTRL);
  2442. /* poke the PHY */
  2443. ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2444. ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
  2445. iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
  2446. ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2447. } else {
  2448. ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
  2449. iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
  2450. ioread32(hw->hw_addr + REG_WOL_CTRL);
  2451. iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
  2452. ioread32(hw->hw_addr + REG_MAC_CTRL);
  2453. hw->phy_configured = false;
  2454. }
  2455. return 0;
  2456. disable_wol:
  2457. iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
  2458. ioread32(hw->hw_addr + REG_WOL_CTRL);
  2459. ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2460. ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
  2461. iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
  2462. ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2463. hw->phy_configured = false;
  2464. return 0;
  2465. }
  2466. static int atl1_resume(struct device *dev)
  2467. {
  2468. struct pci_dev *pdev = to_pci_dev(dev);
  2469. struct net_device *netdev = pci_get_drvdata(pdev);
  2470. struct atl1_adapter *adapter = netdev_priv(netdev);
  2471. iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
  2472. atl1_reset_hw(&adapter->hw);
  2473. if (netif_running(netdev)) {
  2474. adapter->cmb.cmb->int_stats = 0;
  2475. atl1_up(adapter);
  2476. }
  2477. netif_device_attach(netdev);
  2478. return 0;
  2479. }
  2480. static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
  2481. #define ATL1_PM_OPS (&atl1_pm_ops)
  2482. #else
  2483. static int atl1_suspend(struct device *dev) { return 0; }
  2484. #define ATL1_PM_OPS NULL
  2485. #endif
  2486. static void atl1_shutdown(struct pci_dev *pdev)
  2487. {
  2488. struct net_device *netdev = pci_get_drvdata(pdev);
  2489. struct atl1_adapter *adapter = netdev_priv(netdev);
  2490. atl1_suspend(&pdev->dev);
  2491. pci_wake_from_d3(pdev, adapter->wol);
  2492. pci_set_power_state(pdev, PCI_D3hot);
  2493. }
  2494. #ifdef CONFIG_NET_POLL_CONTROLLER
  2495. static void atl1_poll_controller(struct net_device *netdev)
  2496. {
  2497. disable_irq(netdev->irq);
  2498. atl1_intr(netdev->irq, netdev);
  2499. enable_irq(netdev->irq);
  2500. }
  2501. #endif
  2502. static const struct net_device_ops atl1_netdev_ops = {
  2503. .ndo_open = atl1_open,
  2504. .ndo_stop = atl1_close,
  2505. .ndo_start_xmit = atl1_xmit_frame,
  2506. .ndo_set_multicast_list = atlx_set_multi,
  2507. .ndo_validate_addr = eth_validate_addr,
  2508. .ndo_set_mac_address = atl1_set_mac,
  2509. .ndo_change_mtu = atl1_change_mtu,
  2510. .ndo_do_ioctl = atlx_ioctl,
  2511. .ndo_tx_timeout = atlx_tx_timeout,
  2512. .ndo_vlan_rx_register = atlx_vlan_rx_register,
  2513. #ifdef CONFIG_NET_POLL_CONTROLLER
  2514. .ndo_poll_controller = atl1_poll_controller,
  2515. #endif
  2516. };
  2517. /*
  2518. * atl1_probe - Device Initialization Routine
  2519. * @pdev: PCI device information struct
  2520. * @ent: entry in atl1_pci_tbl
  2521. *
  2522. * Returns 0 on success, negative on failure
  2523. *
  2524. * atl1_probe initializes an adapter identified by a pci_dev structure.
  2525. * The OS initialization, configuring of the adapter private structure,
  2526. * and a hardware reset occur.
  2527. */
  2528. static int __devinit atl1_probe(struct pci_dev *pdev,
  2529. const struct pci_device_id *ent)
  2530. {
  2531. struct net_device *netdev;
  2532. struct atl1_adapter *adapter;
  2533. static int cards_found = 0;
  2534. int err;
  2535. err = pci_enable_device(pdev);
  2536. if (err)
  2537. return err;
  2538. /*
  2539. * The atl1 chip can DMA to 64-bit addresses, but it uses a single
  2540. * shared register for the high 32 bits, so only a single, aligned,
  2541. * 4 GB physical address range can be used at a time.
  2542. *
  2543. * Supporting 64-bit DMA on this hardware is more trouble than it's
  2544. * worth. It is far easier to limit to 32-bit DMA than update
  2545. * various kernel subsystems to support the mechanics required by a
  2546. * fixed-high-32-bit system.
  2547. */
  2548. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  2549. if (err) {
  2550. dev_err(&pdev->dev, "no usable DMA configuration\n");
  2551. goto err_dma;
  2552. }
  2553. /*
  2554. * Mark all PCI regions associated with PCI device
  2555. * pdev as being reserved by owner atl1_driver_name
  2556. */
  2557. err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
  2558. if (err)
  2559. goto err_request_regions;
  2560. /*
  2561. * Enables bus-mastering on the device and calls
  2562. * pcibios_set_master to do the needed arch specific settings
  2563. */
  2564. pci_set_master(pdev);
  2565. netdev = alloc_etherdev(sizeof(struct atl1_adapter));
  2566. if (!netdev) {
  2567. err = -ENOMEM;
  2568. goto err_alloc_etherdev;
  2569. }
  2570. SET_NETDEV_DEV(netdev, &pdev->dev);
  2571. pci_set_drvdata(pdev, netdev);
  2572. adapter = netdev_priv(netdev);
  2573. adapter->netdev = netdev;
  2574. adapter->pdev = pdev;
  2575. adapter->hw.back = adapter;
  2576. adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
  2577. adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
  2578. if (!adapter->hw.hw_addr) {
  2579. err = -EIO;
  2580. goto err_pci_iomap;
  2581. }
  2582. /* get device revision number */
  2583. adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
  2584. (REG_MASTER_CTRL + 2));
  2585. if (netif_msg_probe(adapter))
  2586. dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
  2587. /* set default ring resource counts */
  2588. adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
  2589. adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
  2590. adapter->mii.dev = netdev;
  2591. adapter->mii.mdio_read = mdio_read;
  2592. adapter->mii.mdio_write = mdio_write;
  2593. adapter->mii.phy_id_mask = 0x1f;
  2594. adapter->mii.reg_num_mask = 0x1f;
  2595. netdev->netdev_ops = &atl1_netdev_ops;
  2596. netdev->watchdog_timeo = 5 * HZ;
  2597. netdev->ethtool_ops = &atl1_ethtool_ops;
  2598. adapter->bd_number = cards_found;
  2599. /* setup the private structure */
  2600. err = atl1_sw_init(adapter);
  2601. if (err)
  2602. goto err_common;
  2603. netdev->features = NETIF_F_HW_CSUM;
  2604. netdev->features |= NETIF_F_SG;
  2605. netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
  2606. netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO;
  2607. /* is this valid? see atl1_setup_mac_ctrl() */
  2608. netdev->features |= NETIF_F_RXCSUM;
  2609. /*
  2610. * patch for some L1 of old version,
  2611. * the final version of L1 may not need these
  2612. * patches
  2613. */
  2614. /* atl1_pcie_patch(adapter); */
  2615. /* really reset GPHY core */
  2616. iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
  2617. /*
  2618. * reset the controller to
  2619. * put the device in a known good starting state
  2620. */
  2621. if (atl1_reset_hw(&adapter->hw)) {
  2622. err = -EIO;
  2623. goto err_common;
  2624. }
  2625. /* copy the MAC address out of the EEPROM */
  2626. atl1_read_mac_addr(&adapter->hw);
  2627. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  2628. if (!is_valid_ether_addr(netdev->dev_addr)) {
  2629. err = -EIO;
  2630. goto err_common;
  2631. }
  2632. atl1_check_options(adapter);
  2633. /* pre-init the MAC, and setup link */
  2634. err = atl1_init_hw(&adapter->hw);
  2635. if (err) {
  2636. err = -EIO;
  2637. goto err_common;
  2638. }
  2639. atl1_pcie_patch(adapter);
  2640. /* assume we have no link for now */
  2641. netif_carrier_off(netdev);
  2642. setup_timer(&adapter->phy_config_timer, atl1_phy_config,
  2643. (unsigned long)adapter);
  2644. adapter->phy_timer_pending = false;
  2645. INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
  2646. INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
  2647. err = register_netdev(netdev);
  2648. if (err)
  2649. goto err_common;
  2650. cards_found++;
  2651. atl1_via_workaround(adapter);
  2652. return 0;
  2653. err_common:
  2654. pci_iounmap(pdev, adapter->hw.hw_addr);
  2655. err_pci_iomap:
  2656. free_netdev(netdev);
  2657. err_alloc_etherdev:
  2658. pci_release_regions(pdev);
  2659. err_dma:
  2660. err_request_regions:
  2661. pci_disable_device(pdev);
  2662. return err;
  2663. }
  2664. /*
  2665. * atl1_remove - Device Removal Routine
  2666. * @pdev: PCI device information struct
  2667. *
  2668. * atl1_remove is called by the PCI subsystem to alert the driver
  2669. * that it should release a PCI device. The could be caused by a
  2670. * Hot-Plug event, or because the driver is going to be removed from
  2671. * memory.
  2672. */
  2673. static void __devexit atl1_remove(struct pci_dev *pdev)
  2674. {
  2675. struct net_device *netdev = pci_get_drvdata(pdev);
  2676. struct atl1_adapter *adapter;
  2677. /* Device not available. Return. */
  2678. if (!netdev)
  2679. return;
  2680. adapter = netdev_priv(netdev);
  2681. /*
  2682. * Some atl1 boards lack persistent storage for their MAC, and get it
  2683. * from the BIOS during POST. If we've been messing with the MAC
  2684. * address, we need to save the permanent one.
  2685. */
  2686. if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
  2687. memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
  2688. ETH_ALEN);
  2689. atl1_set_mac_addr(&adapter->hw);
  2690. }
  2691. iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
  2692. unregister_netdev(netdev);
  2693. pci_iounmap(pdev, adapter->hw.hw_addr);
  2694. pci_release_regions(pdev);
  2695. free_netdev(netdev);
  2696. pci_disable_device(pdev);
  2697. }
  2698. static struct pci_driver atl1_driver = {
  2699. .name = ATLX_DRIVER_NAME,
  2700. .id_table = atl1_pci_tbl,
  2701. .probe = atl1_probe,
  2702. .remove = __devexit_p(atl1_remove),
  2703. .shutdown = atl1_shutdown,
  2704. .driver.pm = ATL1_PM_OPS,
  2705. };
  2706. /*
  2707. * atl1_exit_module - Driver Exit Cleanup Routine
  2708. *
  2709. * atl1_exit_module is called just before the driver is removed
  2710. * from memory.
  2711. */
  2712. static void __exit atl1_exit_module(void)
  2713. {
  2714. pci_unregister_driver(&atl1_driver);
  2715. }
  2716. /*
  2717. * atl1_init_module - Driver Registration Routine
  2718. *
  2719. * atl1_init_module is the first routine called when the driver is
  2720. * loaded. All it does is register with the PCI subsystem.
  2721. */
  2722. static int __init atl1_init_module(void)
  2723. {
  2724. return pci_register_driver(&atl1_driver);
  2725. }
  2726. module_init(atl1_init_module);
  2727. module_exit(atl1_exit_module);
  2728. struct atl1_stats {
  2729. char stat_string[ETH_GSTRING_LEN];
  2730. int sizeof_stat;
  2731. int stat_offset;
  2732. };
  2733. #define ATL1_STAT(m) \
  2734. sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
  2735. static struct atl1_stats atl1_gstrings_stats[] = {
  2736. {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
  2737. {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
  2738. {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
  2739. {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
  2740. {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
  2741. {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
  2742. {"multicast", ATL1_STAT(soft_stats.multicast)},
  2743. {"collisions", ATL1_STAT(soft_stats.collisions)},
  2744. {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
  2745. {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
  2746. {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
  2747. {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
  2748. {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
  2749. {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
  2750. {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
  2751. {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
  2752. {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
  2753. {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
  2754. {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
  2755. {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
  2756. {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
  2757. {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
  2758. {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
  2759. {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
  2760. {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
  2761. {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
  2762. {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
  2763. {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
  2764. {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
  2765. };
  2766. static void atl1_get_ethtool_stats(struct net_device *netdev,
  2767. struct ethtool_stats *stats, u64 *data)
  2768. {
  2769. struct atl1_adapter *adapter = netdev_priv(netdev);
  2770. int i;
  2771. char *p;
  2772. for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
  2773. p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
  2774. data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
  2775. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  2776. }
  2777. }
  2778. static int atl1_get_sset_count(struct net_device *netdev, int sset)
  2779. {
  2780. switch (sset) {
  2781. case ETH_SS_STATS:
  2782. return ARRAY_SIZE(atl1_gstrings_stats);
  2783. default:
  2784. return -EOPNOTSUPP;
  2785. }
  2786. }
  2787. static int atl1_get_settings(struct net_device *netdev,
  2788. struct ethtool_cmd *ecmd)
  2789. {
  2790. struct atl1_adapter *adapter = netdev_priv(netdev);
  2791. struct atl1_hw *hw = &adapter->hw;
  2792. ecmd->supported = (SUPPORTED_10baseT_Half |
  2793. SUPPORTED_10baseT_Full |
  2794. SUPPORTED_100baseT_Half |
  2795. SUPPORTED_100baseT_Full |
  2796. SUPPORTED_1000baseT_Full |
  2797. SUPPORTED_Autoneg | SUPPORTED_TP);
  2798. ecmd->advertising = ADVERTISED_TP;
  2799. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2800. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  2801. ecmd->advertising |= ADVERTISED_Autoneg;
  2802. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
  2803. ecmd->advertising |= ADVERTISED_Autoneg;
  2804. ecmd->advertising |=
  2805. (ADVERTISED_10baseT_Half |
  2806. ADVERTISED_10baseT_Full |
  2807. ADVERTISED_100baseT_Half |
  2808. ADVERTISED_100baseT_Full |
  2809. ADVERTISED_1000baseT_Full);
  2810. } else
  2811. ecmd->advertising |= (ADVERTISED_1000baseT_Full);
  2812. }
  2813. ecmd->port = PORT_TP;
  2814. ecmd->phy_address = 0;
  2815. ecmd->transceiver = XCVR_INTERNAL;
  2816. if (netif_carrier_ok(adapter->netdev)) {
  2817. u16 link_speed, link_duplex;
  2818. atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
  2819. ethtool_cmd_speed_set(ecmd, link_speed);
  2820. if (link_duplex == FULL_DUPLEX)
  2821. ecmd->duplex = DUPLEX_FULL;
  2822. else
  2823. ecmd->duplex = DUPLEX_HALF;
  2824. } else {
  2825. ethtool_cmd_speed_set(ecmd, -1);
  2826. ecmd->duplex = -1;
  2827. }
  2828. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2829. hw->media_type == MEDIA_TYPE_1000M_FULL)
  2830. ecmd->autoneg = AUTONEG_ENABLE;
  2831. else
  2832. ecmd->autoneg = AUTONEG_DISABLE;
  2833. return 0;
  2834. }
  2835. static int atl1_set_settings(struct net_device *netdev,
  2836. struct ethtool_cmd *ecmd)
  2837. {
  2838. struct atl1_adapter *adapter = netdev_priv(netdev);
  2839. struct atl1_hw *hw = &adapter->hw;
  2840. u16 phy_data;
  2841. int ret_val = 0;
  2842. u16 old_media_type = hw->media_type;
  2843. if (netif_running(adapter->netdev)) {
  2844. if (netif_msg_link(adapter))
  2845. dev_dbg(&adapter->pdev->dev,
  2846. "ethtool shutting down adapter\n");
  2847. atl1_down(adapter);
  2848. }
  2849. if (ecmd->autoneg == AUTONEG_ENABLE)
  2850. hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
  2851. else {
  2852. u32 speed = ethtool_cmd_speed(ecmd);
  2853. if (speed == SPEED_1000) {
  2854. if (ecmd->duplex != DUPLEX_FULL) {
  2855. if (netif_msg_link(adapter))
  2856. dev_warn(&adapter->pdev->dev,
  2857. "1000M half is invalid\n");
  2858. ret_val = -EINVAL;
  2859. goto exit_sset;
  2860. }
  2861. hw->media_type = MEDIA_TYPE_1000M_FULL;
  2862. } else if (speed == SPEED_100) {
  2863. if (ecmd->duplex == DUPLEX_FULL)
  2864. hw->media_type = MEDIA_TYPE_100M_FULL;
  2865. else
  2866. hw->media_type = MEDIA_TYPE_100M_HALF;
  2867. } else {
  2868. if (ecmd->duplex == DUPLEX_FULL)
  2869. hw->media_type = MEDIA_TYPE_10M_FULL;
  2870. else
  2871. hw->media_type = MEDIA_TYPE_10M_HALF;
  2872. }
  2873. }
  2874. switch (hw->media_type) {
  2875. case MEDIA_TYPE_AUTO_SENSOR:
  2876. ecmd->advertising =
  2877. ADVERTISED_10baseT_Half |
  2878. ADVERTISED_10baseT_Full |
  2879. ADVERTISED_100baseT_Half |
  2880. ADVERTISED_100baseT_Full |
  2881. ADVERTISED_1000baseT_Full |
  2882. ADVERTISED_Autoneg | ADVERTISED_TP;
  2883. break;
  2884. case MEDIA_TYPE_1000M_FULL:
  2885. ecmd->advertising =
  2886. ADVERTISED_1000baseT_Full |
  2887. ADVERTISED_Autoneg | ADVERTISED_TP;
  2888. break;
  2889. default:
  2890. ecmd->advertising = 0;
  2891. break;
  2892. }
  2893. if (atl1_phy_setup_autoneg_adv(hw)) {
  2894. ret_val = -EINVAL;
  2895. if (netif_msg_link(adapter))
  2896. dev_warn(&adapter->pdev->dev,
  2897. "invalid ethtool speed/duplex setting\n");
  2898. goto exit_sset;
  2899. }
  2900. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2901. hw->media_type == MEDIA_TYPE_1000M_FULL)
  2902. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  2903. else {
  2904. switch (hw->media_type) {
  2905. case MEDIA_TYPE_100M_FULL:
  2906. phy_data =
  2907. MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  2908. MII_CR_RESET;
  2909. break;
  2910. case MEDIA_TYPE_100M_HALF:
  2911. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  2912. break;
  2913. case MEDIA_TYPE_10M_FULL:
  2914. phy_data =
  2915. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  2916. break;
  2917. default:
  2918. /* MEDIA_TYPE_10M_HALF: */
  2919. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  2920. break;
  2921. }
  2922. }
  2923. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  2924. exit_sset:
  2925. if (ret_val)
  2926. hw->media_type = old_media_type;
  2927. if (netif_running(adapter->netdev)) {
  2928. if (netif_msg_link(adapter))
  2929. dev_dbg(&adapter->pdev->dev,
  2930. "ethtool starting adapter\n");
  2931. atl1_up(adapter);
  2932. } else if (!ret_val) {
  2933. if (netif_msg_link(adapter))
  2934. dev_dbg(&adapter->pdev->dev,
  2935. "ethtool resetting adapter\n");
  2936. atl1_reset(adapter);
  2937. }
  2938. return ret_val;
  2939. }
  2940. static void atl1_get_drvinfo(struct net_device *netdev,
  2941. struct ethtool_drvinfo *drvinfo)
  2942. {
  2943. struct atl1_adapter *adapter = netdev_priv(netdev);
  2944. strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
  2945. strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
  2946. sizeof(drvinfo->version));
  2947. strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
  2948. strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
  2949. sizeof(drvinfo->bus_info));
  2950. drvinfo->eedump_len = ATL1_EEDUMP_LEN;
  2951. }
  2952. static void atl1_get_wol(struct net_device *netdev,
  2953. struct ethtool_wolinfo *wol)
  2954. {
  2955. struct atl1_adapter *adapter = netdev_priv(netdev);
  2956. wol->supported = WAKE_MAGIC;
  2957. wol->wolopts = 0;
  2958. if (adapter->wol & ATLX_WUFC_MAG)
  2959. wol->wolopts |= WAKE_MAGIC;
  2960. }
  2961. static int atl1_set_wol(struct net_device *netdev,
  2962. struct ethtool_wolinfo *wol)
  2963. {
  2964. struct atl1_adapter *adapter = netdev_priv(netdev);
  2965. if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
  2966. WAKE_ARP | WAKE_MAGICSECURE))
  2967. return -EOPNOTSUPP;
  2968. adapter->wol = 0;
  2969. if (wol->wolopts & WAKE_MAGIC)
  2970. adapter->wol |= ATLX_WUFC_MAG;
  2971. device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
  2972. return 0;
  2973. }
  2974. static u32 atl1_get_msglevel(struct net_device *netdev)
  2975. {
  2976. struct atl1_adapter *adapter = netdev_priv(netdev);
  2977. return adapter->msg_enable;
  2978. }
  2979. static void atl1_set_msglevel(struct net_device *netdev, u32 value)
  2980. {
  2981. struct atl1_adapter *adapter = netdev_priv(netdev);
  2982. adapter->msg_enable = value;
  2983. }
  2984. static int atl1_get_regs_len(struct net_device *netdev)
  2985. {
  2986. return ATL1_REG_COUNT * sizeof(u32);
  2987. }
  2988. static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
  2989. void *p)
  2990. {
  2991. struct atl1_adapter *adapter = netdev_priv(netdev);
  2992. struct atl1_hw *hw = &adapter->hw;
  2993. unsigned int i;
  2994. u32 *regbuf = p;
  2995. for (i = 0; i < ATL1_REG_COUNT; i++) {
  2996. /*
  2997. * This switch statement avoids reserved regions
  2998. * of register space.
  2999. */
  3000. switch (i) {
  3001. case 6 ... 9:
  3002. case 14:
  3003. case 29 ... 31:
  3004. case 34 ... 63:
  3005. case 75 ... 127:
  3006. case 136 ... 1023:
  3007. case 1027 ... 1087:
  3008. case 1091 ... 1151:
  3009. case 1194 ... 1195:
  3010. case 1200 ... 1201:
  3011. case 1206 ... 1213:
  3012. case 1216 ... 1279:
  3013. case 1290 ... 1311:
  3014. case 1323 ... 1343:
  3015. case 1358 ... 1359:
  3016. case 1368 ... 1375:
  3017. case 1378 ... 1383:
  3018. case 1388 ... 1391:
  3019. case 1393 ... 1395:
  3020. case 1402 ... 1403:
  3021. case 1410 ... 1471:
  3022. case 1522 ... 1535:
  3023. /* reserved region; don't read it */
  3024. regbuf[i] = 0;
  3025. break;
  3026. default:
  3027. /* unreserved region */
  3028. regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
  3029. }
  3030. }
  3031. }
  3032. static void atl1_get_ringparam(struct net_device *netdev,
  3033. struct ethtool_ringparam *ring)
  3034. {
  3035. struct atl1_adapter *adapter = netdev_priv(netdev);
  3036. struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
  3037. struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
  3038. ring->rx_max_pending = ATL1_MAX_RFD;
  3039. ring->tx_max_pending = ATL1_MAX_TPD;
  3040. ring->rx_mini_max_pending = 0;
  3041. ring->rx_jumbo_max_pending = 0;
  3042. ring->rx_pending = rxdr->count;
  3043. ring->tx_pending = txdr->count;
  3044. ring->rx_mini_pending = 0;
  3045. ring->rx_jumbo_pending = 0;
  3046. }
  3047. static int atl1_set_ringparam(struct net_device *netdev,
  3048. struct ethtool_ringparam *ring)
  3049. {
  3050. struct atl1_adapter *adapter = netdev_priv(netdev);
  3051. struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
  3052. struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
  3053. struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
  3054. struct atl1_tpd_ring tpd_old, tpd_new;
  3055. struct atl1_rfd_ring rfd_old, rfd_new;
  3056. struct atl1_rrd_ring rrd_old, rrd_new;
  3057. struct atl1_ring_header rhdr_old, rhdr_new;
  3058. struct atl1_smb smb;
  3059. struct atl1_cmb cmb;
  3060. int err;
  3061. tpd_old = adapter->tpd_ring;
  3062. rfd_old = adapter->rfd_ring;
  3063. rrd_old = adapter->rrd_ring;
  3064. rhdr_old = adapter->ring_header;
  3065. if (netif_running(adapter->netdev))
  3066. atl1_down(adapter);
  3067. rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
  3068. rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
  3069. rfdr->count;
  3070. rfdr->count = (rfdr->count + 3) & ~3;
  3071. rrdr->count = rfdr->count;
  3072. tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
  3073. tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
  3074. tpdr->count;
  3075. tpdr->count = (tpdr->count + 3) & ~3;
  3076. if (netif_running(adapter->netdev)) {
  3077. /* try to get new resources before deleting old */
  3078. err = atl1_setup_ring_resources(adapter);
  3079. if (err)
  3080. goto err_setup_ring;
  3081. /*
  3082. * save the new, restore the old in order to free it,
  3083. * then restore the new back again
  3084. */
  3085. rfd_new = adapter->rfd_ring;
  3086. rrd_new = adapter->rrd_ring;
  3087. tpd_new = adapter->tpd_ring;
  3088. rhdr_new = adapter->ring_header;
  3089. adapter->rfd_ring = rfd_old;
  3090. adapter->rrd_ring = rrd_old;
  3091. adapter->tpd_ring = tpd_old;
  3092. adapter->ring_header = rhdr_old;
  3093. /*
  3094. * Save SMB and CMB, since atl1_free_ring_resources
  3095. * will clear them.
  3096. */
  3097. smb = adapter->smb;
  3098. cmb = adapter->cmb;
  3099. atl1_free_ring_resources(adapter);
  3100. adapter->rfd_ring = rfd_new;
  3101. adapter->rrd_ring = rrd_new;
  3102. adapter->tpd_ring = tpd_new;
  3103. adapter->ring_header = rhdr_new;
  3104. adapter->smb = smb;
  3105. adapter->cmb = cmb;
  3106. err = atl1_up(adapter);
  3107. if (err)
  3108. return err;
  3109. }
  3110. return 0;
  3111. err_setup_ring:
  3112. adapter->rfd_ring = rfd_old;
  3113. adapter->rrd_ring = rrd_old;
  3114. adapter->tpd_ring = tpd_old;
  3115. adapter->ring_header = rhdr_old;
  3116. atl1_up(adapter);
  3117. return err;
  3118. }
  3119. static void atl1_get_pauseparam(struct net_device *netdev,
  3120. struct ethtool_pauseparam *epause)
  3121. {
  3122. struct atl1_adapter *adapter = netdev_priv(netdev);
  3123. struct atl1_hw *hw = &adapter->hw;
  3124. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3125. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3126. epause->autoneg = AUTONEG_ENABLE;
  3127. } else {
  3128. epause->autoneg = AUTONEG_DISABLE;
  3129. }
  3130. epause->rx_pause = 1;
  3131. epause->tx_pause = 1;
  3132. }
  3133. static int atl1_set_pauseparam(struct net_device *netdev,
  3134. struct ethtool_pauseparam *epause)
  3135. {
  3136. struct atl1_adapter *adapter = netdev_priv(netdev);
  3137. struct atl1_hw *hw = &adapter->hw;
  3138. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3139. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3140. epause->autoneg = AUTONEG_ENABLE;
  3141. } else {
  3142. epause->autoneg = AUTONEG_DISABLE;
  3143. }
  3144. epause->rx_pause = 1;
  3145. epause->tx_pause = 1;
  3146. return 0;
  3147. }
  3148. static void atl1_get_strings(struct net_device *netdev, u32 stringset,
  3149. u8 *data)
  3150. {
  3151. u8 *p = data;
  3152. int i;
  3153. switch (stringset) {
  3154. case ETH_SS_STATS:
  3155. for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
  3156. memcpy(p, atl1_gstrings_stats[i].stat_string,
  3157. ETH_GSTRING_LEN);
  3158. p += ETH_GSTRING_LEN;
  3159. }
  3160. break;
  3161. }
  3162. }
  3163. static int atl1_nway_reset(struct net_device *netdev)
  3164. {
  3165. struct atl1_adapter *adapter = netdev_priv(netdev);
  3166. struct atl1_hw *hw = &adapter->hw;
  3167. if (netif_running(netdev)) {
  3168. u16 phy_data;
  3169. atl1_down(adapter);
  3170. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3171. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3172. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  3173. } else {
  3174. switch (hw->media_type) {
  3175. case MEDIA_TYPE_100M_FULL:
  3176. phy_data = MII_CR_FULL_DUPLEX |
  3177. MII_CR_SPEED_100 | MII_CR_RESET;
  3178. break;
  3179. case MEDIA_TYPE_100M_HALF:
  3180. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  3181. break;
  3182. case MEDIA_TYPE_10M_FULL:
  3183. phy_data = MII_CR_FULL_DUPLEX |
  3184. MII_CR_SPEED_10 | MII_CR_RESET;
  3185. break;
  3186. default:
  3187. /* MEDIA_TYPE_10M_HALF */
  3188. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  3189. }
  3190. }
  3191. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  3192. atl1_up(adapter);
  3193. }
  3194. return 0;
  3195. }
  3196. static const struct ethtool_ops atl1_ethtool_ops = {
  3197. .get_settings = atl1_get_settings,
  3198. .set_settings = atl1_set_settings,
  3199. .get_drvinfo = atl1_get_drvinfo,
  3200. .get_wol = atl1_get_wol,
  3201. .set_wol = atl1_set_wol,
  3202. .get_msglevel = atl1_get_msglevel,
  3203. .set_msglevel = atl1_set_msglevel,
  3204. .get_regs_len = atl1_get_regs_len,
  3205. .get_regs = atl1_get_regs,
  3206. .get_ringparam = atl1_get_ringparam,
  3207. .set_ringparam = atl1_set_ringparam,
  3208. .get_pauseparam = atl1_get_pauseparam,
  3209. .set_pauseparam = atl1_set_pauseparam,
  3210. .get_link = ethtool_op_get_link,
  3211. .get_strings = atl1_get_strings,
  3212. .nway_reset = atl1_nway_reset,
  3213. .get_ethtool_stats = atl1_get_ethtool_stats,
  3214. .get_sset_count = atl1_get_sset_count,
  3215. };