/net/socket.c
C | 3444 lines | 2484 code | 499 blank | 461 comment | 387 complexity | 84930f052a3fd0f89ffb7ef85196472a MD5 | raw file
1/* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61#include <linux/mm.h> 62#include <linux/socket.h> 63#include <linux/file.h> 64#include <linux/net.h> 65#include <linux/interrupt.h> 66#include <linux/thread_info.h> 67#include <linux/rcupdate.h> 68#include <linux/netdevice.h> 69#include <linux/proc_fs.h> 70#include <linux/seq_file.h> 71#include <linux/mutex.h> 72#include <linux/if_bridge.h> 73#include <linux/if_frad.h> 74#include <linux/if_vlan.h> 75#include <linux/ptp_classify.h> 76#include <linux/init.h> 77#include <linux/poll.h> 78#include <linux/cache.h> 79#include <linux/module.h> 80#include <linux/highmem.h> 81#include <linux/mount.h> 82#include <linux/security.h> 83#include <linux/syscalls.h> 84#include <linux/compat.h> 85#include <linux/kmod.h> 86#include <linux/audit.h> 87#include <linux/wireless.h> 88#include <linux/nsproxy.h> 89#include <linux/magic.h> 90#include <linux/slab.h> 91#include <linux/xattr.h> 92 93#include <linux/uaccess.h> 94#include <asm/unistd.h> 95 96#include <net/compat.h> 97#include <net/wext.h> 98#include <net/cls_cgroup.h> 99 100#include <net/sock.h> 101#include <linux/netfilter.h> 102 103#include <linux/if_tun.h> 104#include <linux/ipv6_route.h> 105#include <linux/route.h> 106#include <linux/sockios.h> 107#include <linux/atalk.h> 108#include <net/busy_poll.h> 109#include <linux/errqueue.h> 110 111#ifdef CONFIG_NET_RX_BUSY_POLL 112unsigned int sysctl_net_busy_read __read_mostly; 113unsigned int sysctl_net_busy_poll __read_mostly; 114#endif 115 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120static int sock_close(struct inode *inode, struct file *file); 121static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124#ifdef CONFIG_COMPAT 125static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127#endif 128static int sock_fasync(int fd, struct file *filp, int on); 129static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135/* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147#ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149#endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156}; 157 158/* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162static DEFINE_SPINLOCK(net_family_lock); 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165/* 166 * Statistics counters of the socket lists 167 */ 168 169static DEFINE_PER_CPU(int, sockets_in_use); 170 171/* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177/** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189{ 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197} 198 199/** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218{ 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241} 242 243static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245static struct inode *sock_alloc_inode(struct super_block *sb) 246{ 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270} 271 272static void sock_destroy_inode(struct inode *inode) 273{ 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281} 282 283static void init_once(void *foo) 284{ 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288} 289 290static void init_inodecache(void) 291{ 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 BUG_ON(sock_inode_cachep == NULL); 300} 301 302static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306}; 307 308/* 309 * sockfs_dname() is called from d_path(). 310 */ 311static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 312{ 313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 314 d_inode(dentry)->i_ino); 315} 316 317static const struct dentry_operations sockfs_dentry_operations = { 318 .d_dname = sockfs_dname, 319}; 320 321static int sockfs_xattr_get(const struct xattr_handler *handler, 322 struct dentry *dentry, struct inode *inode, 323 const char *suffix, void *value, size_t size) 324{ 325 if (value) { 326 if (dentry->d_name.len + 1 > size) 327 return -ERANGE; 328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 329 } 330 return dentry->d_name.len + 1; 331} 332 333#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 334#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 335#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 336 337static const struct xattr_handler sockfs_xattr_handler = { 338 .name = XATTR_NAME_SOCKPROTONAME, 339 .get = sockfs_xattr_get, 340}; 341 342static int sockfs_security_xattr_set(const struct xattr_handler *handler, 343 struct dentry *dentry, struct inode *inode, 344 const char *suffix, const void *value, 345 size_t size, int flags) 346{ 347 /* Handled by LSM. */ 348 return -EAGAIN; 349} 350 351static const struct xattr_handler sockfs_security_xattr_handler = { 352 .prefix = XATTR_SECURITY_PREFIX, 353 .set = sockfs_security_xattr_set, 354}; 355 356static const struct xattr_handler *sockfs_xattr_handlers[] = { 357 &sockfs_xattr_handler, 358 &sockfs_security_xattr_handler, 359 NULL 360}; 361 362static struct dentry *sockfs_mount(struct file_system_type *fs_type, 363 int flags, const char *dev_name, void *data) 364{ 365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 366 sockfs_xattr_handlers, 367 &sockfs_dentry_operations, SOCKFS_MAGIC); 368} 369 370static struct vfsmount *sock_mnt __read_mostly; 371 372static struct file_system_type sock_fs_type = { 373 .name = "sockfs", 374 .mount = sockfs_mount, 375 .kill_sb = kill_anon_super, 376}; 377 378/* 379 * Obtains the first available file descriptor and sets it up for use. 380 * 381 * These functions create file structures and maps them to fd space 382 * of the current process. On success it returns file descriptor 383 * and file struct implicitly stored in sock->file. 384 * Note that another thread may close file descriptor before we return 385 * from this function. We use the fact that now we do not refer 386 * to socket after mapping. If one day we will need it, this 387 * function will increment ref. count on file by 1. 388 * 389 * In any case returned fd MAY BE not valid! 390 * This race condition is unavoidable 391 * with shared fd spaces, we cannot solve it inside kernel, 392 * but we take care of internal coherence yet. 393 */ 394 395struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 396{ 397 struct qstr name = { .name = "" }; 398 struct path path; 399 struct file *file; 400 401 if (dname) { 402 name.name = dname; 403 name.len = strlen(name.name); 404 } else if (sock->sk) { 405 name.name = sock->sk->sk_prot_creator->name; 406 name.len = strlen(name.name); 407 } 408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 409 if (unlikely(!path.dentry)) 410 return ERR_PTR(-ENOMEM); 411 path.mnt = mntget(sock_mnt); 412 413 d_instantiate(path.dentry, SOCK_INODE(sock)); 414 415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 416 &socket_file_ops); 417 if (IS_ERR(file)) { 418 /* drop dentry, keep inode */ 419 ihold(d_inode(path.dentry)); 420 path_put(&path); 421 return file; 422 } 423 424 sock->file = file; 425 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 426 file->private_data = sock; 427 return file; 428} 429EXPORT_SYMBOL(sock_alloc_file); 430 431static int sock_map_fd(struct socket *sock, int flags) 432{ 433 struct file *newfile; 434 int fd = get_unused_fd_flags(flags); 435 if (unlikely(fd < 0)) 436 return fd; 437 438 newfile = sock_alloc_file(sock, flags, NULL); 439 if (likely(!IS_ERR(newfile))) { 440 fd_install(fd, newfile); 441 return fd; 442 } 443 444 put_unused_fd(fd); 445 return PTR_ERR(newfile); 446} 447 448struct socket *sock_from_file(struct file *file, int *err) 449{ 450 if (file->f_op == &socket_file_ops) 451 return file->private_data; /* set in sock_map_fd */ 452 453 *err = -ENOTSOCK; 454 return NULL; 455} 456EXPORT_SYMBOL(sock_from_file); 457 458/** 459 * sockfd_lookup - Go from a file number to its socket slot 460 * @fd: file handle 461 * @err: pointer to an error code return 462 * 463 * The file handle passed in is locked and the socket it is bound 464 * to is returned. If an error occurs the err pointer is overwritten 465 * with a negative errno code and NULL is returned. The function checks 466 * for both invalid handles and passing a handle which is not a socket. 467 * 468 * On a success the socket object pointer is returned. 469 */ 470 471struct socket *sockfd_lookup(int fd, int *err) 472{ 473 struct file *file; 474 struct socket *sock; 475 476 file = fget(fd); 477 if (!file) { 478 *err = -EBADF; 479 return NULL; 480 } 481 482 sock = sock_from_file(file, err); 483 if (!sock) 484 fput(file); 485 return sock; 486} 487EXPORT_SYMBOL(sockfd_lookup); 488 489static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 490{ 491 struct fd f = fdget(fd); 492 struct socket *sock; 493 494 *err = -EBADF; 495 if (f.file) { 496 sock = sock_from_file(f.file, err); 497 if (likely(sock)) { 498 *fput_needed = f.flags; 499 return sock; 500 } 501 fdput(f); 502 } 503 return NULL; 504} 505 506static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 507 size_t size) 508{ 509 ssize_t len; 510 ssize_t used = 0; 511 512 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 513 if (len < 0) 514 return len; 515 used += len; 516 if (buffer) { 517 if (size < used) 518 return -ERANGE; 519 buffer += len; 520 } 521 522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 523 used += len; 524 if (buffer) { 525 if (size < used) 526 return -ERANGE; 527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 528 buffer += len; 529 } 530 531 return used; 532} 533 534static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 535{ 536 int err = simple_setattr(dentry, iattr); 537 538 if (!err && (iattr->ia_valid & ATTR_UID)) { 539 struct socket *sock = SOCKET_I(d_inode(dentry)); 540 541 sock->sk->sk_uid = iattr->ia_uid; 542 } 543 544 return err; 545} 546 547static const struct inode_operations sockfs_inode_ops = { 548 .listxattr = sockfs_listxattr, 549 .setattr = sockfs_setattr, 550}; 551 552/** 553 * sock_alloc - allocate a socket 554 * 555 * Allocate a new inode and socket object. The two are bound together 556 * and initialised. The socket is then returned. If we are out of inodes 557 * NULL is returned. 558 */ 559 560struct socket *sock_alloc(void) 561{ 562 struct inode *inode; 563 struct socket *sock; 564 565 inode = new_inode_pseudo(sock_mnt->mnt_sb); 566 if (!inode) 567 return NULL; 568 569 sock = SOCKET_I(inode); 570 571 kmemcheck_annotate_bitfield(sock, type); 572 inode->i_ino = get_next_ino(); 573 inode->i_mode = S_IFSOCK | S_IRWXUGO; 574 inode->i_uid = current_fsuid(); 575 inode->i_gid = current_fsgid(); 576 inode->i_op = &sockfs_inode_ops; 577 578 this_cpu_add(sockets_in_use, 1); 579 return sock; 580} 581EXPORT_SYMBOL(sock_alloc); 582 583/** 584 * sock_release - close a socket 585 * @sock: socket to close 586 * 587 * The socket is released from the protocol stack if it has a release 588 * callback, and the inode is then released if the socket is bound to 589 * an inode not a file. 590 */ 591 592void sock_release(struct socket *sock) 593{ 594 if (sock->ops) { 595 struct module *owner = sock->ops->owner; 596 597 sock->ops->release(sock); 598 sock->ops = NULL; 599 module_put(owner); 600 } 601 602 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 603 pr_err("%s: fasync list not empty!\n", __func__); 604 605 this_cpu_sub(sockets_in_use, 1); 606 if (!sock->file) { 607 iput(SOCK_INODE(sock)); 608 return; 609 } 610 sock->file = NULL; 611} 612EXPORT_SYMBOL(sock_release); 613 614void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 615{ 616 u8 flags = *tx_flags; 617 618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 619 flags |= SKBTX_HW_TSTAMP; 620 621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 622 flags |= SKBTX_SW_TSTAMP; 623 624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 625 flags |= SKBTX_SCHED_TSTAMP; 626 627 *tx_flags = flags; 628} 629EXPORT_SYMBOL(__sock_tx_timestamp); 630 631static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 632{ 633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 634 BUG_ON(ret == -EIOCBQUEUED); 635 return ret; 636} 637 638int sock_sendmsg(struct socket *sock, struct msghdr *msg) 639{ 640 int err = security_socket_sendmsg(sock, msg, 641 msg_data_left(msg)); 642 643 return err ?: sock_sendmsg_nosec(sock, msg); 644} 645EXPORT_SYMBOL(sock_sendmsg); 646 647int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 648 struct kvec *vec, size_t num, size_t size) 649{ 650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 651 return sock_sendmsg(sock, msg); 652} 653EXPORT_SYMBOL(kernel_sendmsg); 654 655static bool skb_is_err_queue(const struct sk_buff *skb) 656{ 657 /* pkt_type of skbs enqueued on the error queue are set to 658 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 659 * in recvmsg, since skbs received on a local socket will never 660 * have a pkt_type of PACKET_OUTGOING. 661 */ 662 return skb->pkt_type == PACKET_OUTGOING; 663} 664 665/* On transmit, software and hardware timestamps are returned independently. 666 * As the two skb clones share the hardware timestamp, which may be updated 667 * before the software timestamp is received, a hardware TX timestamp may be 668 * returned only if there is no software TX timestamp. Ignore false software 669 * timestamps, which may be made in the __sock_recv_timestamp() call when the 670 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 671 * hardware timestamp. 672 */ 673static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 674{ 675 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 676} 677 678static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 679{ 680 struct scm_ts_pktinfo ts_pktinfo; 681 struct net_device *orig_dev; 682 683 if (!skb_mac_header_was_set(skb)) 684 return; 685 686 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 687 688 rcu_read_lock(); 689 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 690 if (orig_dev) 691 ts_pktinfo.if_index = orig_dev->ifindex; 692 rcu_read_unlock(); 693 694 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 695 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 696 sizeof(ts_pktinfo), &ts_pktinfo); 697} 698 699/* 700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 701 */ 702void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 703 struct sk_buff *skb) 704{ 705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 706 struct scm_timestamping tss; 707 int empty = 1, false_tstamp = 0; 708 struct skb_shared_hwtstamps *shhwtstamps = 709 skb_hwtstamps(skb); 710 711 /* Race occurred between timestamp enabling and packet 712 receiving. Fill in the current time for now. */ 713 if (need_software_tstamp && skb->tstamp == 0) { 714 __net_timestamp(skb); 715 false_tstamp = 1; 716 } 717 718 if (need_software_tstamp) { 719 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 720 struct timeval tv; 721 skb_get_timestamp(skb, &tv); 722 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 723 sizeof(tv), &tv); 724 } else { 725 struct timespec ts; 726 skb_get_timestampns(skb, &ts); 727 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 728 sizeof(ts), &ts); 729 } 730 } 731 732 memset(&tss, 0, sizeof(tss)); 733 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 734 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 735 empty = 0; 736 if (shhwtstamps && 737 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 738 !skb_is_swtx_tstamp(skb, false_tstamp) && 739 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 740 empty = 0; 741 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 742 !skb_is_err_queue(skb)) 743 put_ts_pktinfo(msg, skb); 744 } 745 if (!empty) { 746 put_cmsg(msg, SOL_SOCKET, 747 SCM_TIMESTAMPING, sizeof(tss), &tss); 748 749 if (skb_is_err_queue(skb) && skb->len && 750 SKB_EXT_ERR(skb)->opt_stats) 751 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 752 skb->len, skb->data); 753 } 754} 755EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 756 757void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 758 struct sk_buff *skb) 759{ 760 int ack; 761 762 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 763 return; 764 if (!skb->wifi_acked_valid) 765 return; 766 767 ack = skb->wifi_acked; 768 769 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 770} 771EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 772 773static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 774 struct sk_buff *skb) 775{ 776 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 777 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 778 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 779} 780 781void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 782 struct sk_buff *skb) 783{ 784 sock_recv_timestamp(msg, sk, skb); 785 sock_recv_drops(msg, sk, skb); 786} 787EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 788 789static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 790 int flags) 791{ 792 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 793} 794 795int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 796{ 797 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 798 799 return err ?: sock_recvmsg_nosec(sock, msg, flags); 800} 801EXPORT_SYMBOL(sock_recvmsg); 802 803/** 804 * kernel_recvmsg - Receive a message from a socket (kernel space) 805 * @sock: The socket to receive the message from 806 * @msg: Received message 807 * @vec: Input s/g array for message data 808 * @num: Size of input s/g array 809 * @size: Number of bytes to read 810 * @flags: Message flags (MSG_DONTWAIT, etc...) 811 * 812 * On return the msg structure contains the scatter/gather array passed in the 813 * vec argument. The array is modified so that it consists of the unfilled 814 * portion of the original array. 815 * 816 * The returned value is the total number of bytes received, or an error. 817 */ 818int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 819 struct kvec *vec, size_t num, size_t size, int flags) 820{ 821 mm_segment_t oldfs = get_fs(); 822 int result; 823 824 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 825 set_fs(KERNEL_DS); 826 result = sock_recvmsg(sock, msg, flags); 827 set_fs(oldfs); 828 return result; 829} 830EXPORT_SYMBOL(kernel_recvmsg); 831 832static ssize_t sock_sendpage(struct file *file, struct page *page, 833 int offset, size_t size, loff_t *ppos, int more) 834{ 835 struct socket *sock; 836 int flags; 837 838 sock = file->private_data; 839 840 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 841 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 842 flags |= more; 843 844 return kernel_sendpage(sock, page, offset, size, flags); 845} 846 847static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 848 struct pipe_inode_info *pipe, size_t len, 849 unsigned int flags) 850{ 851 struct socket *sock = file->private_data; 852 853 if (unlikely(!sock->ops->splice_read)) 854 return -EINVAL; 855 856 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 857} 858 859static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 860{ 861 struct file *file = iocb->ki_filp; 862 struct socket *sock = file->private_data; 863 struct msghdr msg = {.msg_iter = *to, 864 .msg_iocb = iocb}; 865 ssize_t res; 866 867 if (file->f_flags & O_NONBLOCK) 868 msg.msg_flags = MSG_DONTWAIT; 869 870 if (iocb->ki_pos != 0) 871 return -ESPIPE; 872 873 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 874 return 0; 875 876 res = sock_recvmsg(sock, &msg, msg.msg_flags); 877 *to = msg.msg_iter; 878 return res; 879} 880 881static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 882{ 883 struct file *file = iocb->ki_filp; 884 struct socket *sock = file->private_data; 885 struct msghdr msg = {.msg_iter = *from, 886 .msg_iocb = iocb}; 887 ssize_t res; 888 889 if (iocb->ki_pos != 0) 890 return -ESPIPE; 891 892 if (file->f_flags & O_NONBLOCK) 893 msg.msg_flags = MSG_DONTWAIT; 894 895 if (sock->type == SOCK_SEQPACKET) 896 msg.msg_flags |= MSG_EOR; 897 898 res = sock_sendmsg(sock, &msg); 899 *from = msg.msg_iter; 900 return res; 901} 902 903/* 904 * Atomic setting of ioctl hooks to avoid race 905 * with module unload. 906 */ 907 908static DEFINE_MUTEX(br_ioctl_mutex); 909static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 910 911void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 912{ 913 mutex_lock(&br_ioctl_mutex); 914 br_ioctl_hook = hook; 915 mutex_unlock(&br_ioctl_mutex); 916} 917EXPORT_SYMBOL(brioctl_set); 918 919static DEFINE_MUTEX(vlan_ioctl_mutex); 920static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 921 922void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 923{ 924 mutex_lock(&vlan_ioctl_mutex); 925 vlan_ioctl_hook = hook; 926 mutex_unlock(&vlan_ioctl_mutex); 927} 928EXPORT_SYMBOL(vlan_ioctl_set); 929 930static DEFINE_MUTEX(dlci_ioctl_mutex); 931static int (*dlci_ioctl_hook) (unsigned int, void __user *); 932 933void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 934{ 935 mutex_lock(&dlci_ioctl_mutex); 936 dlci_ioctl_hook = hook; 937 mutex_unlock(&dlci_ioctl_mutex); 938} 939EXPORT_SYMBOL(dlci_ioctl_set); 940 941static long sock_do_ioctl(struct net *net, struct socket *sock, 942 unsigned int cmd, unsigned long arg) 943{ 944 int err; 945 void __user *argp = (void __user *)arg; 946 947 err = sock->ops->ioctl(sock, cmd, arg); 948 949 /* 950 * If this ioctl is unknown try to hand it down 951 * to the NIC driver. 952 */ 953 if (err == -ENOIOCTLCMD) 954 err = dev_ioctl(net, cmd, argp); 955 956 return err; 957} 958 959/* 960 * With an ioctl, arg may well be a user mode pointer, but we don't know 961 * what to do with it - that's up to the protocol still. 962 */ 963 964static struct ns_common *get_net_ns(struct ns_common *ns) 965{ 966 return &get_net(container_of(ns, struct net, ns))->ns; 967} 968 969static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 970{ 971 struct socket *sock; 972 struct sock *sk; 973 void __user *argp = (void __user *)arg; 974 int pid, err; 975 struct net *net; 976 977 sock = file->private_data; 978 sk = sock->sk; 979 net = sock_net(sk); 980 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 981 err = dev_ioctl(net, cmd, argp); 982 } else 983#ifdef CONFIG_WEXT_CORE 984 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 985 err = dev_ioctl(net, cmd, argp); 986 } else 987#endif 988 switch (cmd) { 989 case FIOSETOWN: 990 case SIOCSPGRP: 991 err = -EFAULT; 992 if (get_user(pid, (int __user *)argp)) 993 break; 994 err = f_setown(sock->file, pid, 1); 995 break; 996 case FIOGETOWN: 997 case SIOCGPGRP: 998 err = put_user(f_getown(sock->file), 999 (int __user *)argp); 1000 break; 1001 case SIOCGIFBR: 1002 case SIOCSIFBR: 1003 case SIOCBRADDBR: 1004 case SIOCBRDELBR: 1005 err = -ENOPKG; 1006 if (!br_ioctl_hook) 1007 request_module("bridge"); 1008 1009 mutex_lock(&br_ioctl_mutex); 1010 if (br_ioctl_hook) 1011 err = br_ioctl_hook(net, cmd, argp); 1012 mutex_unlock(&br_ioctl_mutex); 1013 break; 1014 case SIOCGIFVLAN: 1015 case SIOCSIFVLAN: 1016 err = -ENOPKG; 1017 if (!vlan_ioctl_hook) 1018 request_module("8021q"); 1019 1020 mutex_lock(&vlan_ioctl_mutex); 1021 if (vlan_ioctl_hook) 1022 err = vlan_ioctl_hook(net, argp); 1023 mutex_unlock(&vlan_ioctl_mutex); 1024 break; 1025 case SIOCADDDLCI: 1026 case SIOCDELDLCI: 1027 err = -ENOPKG; 1028 if (!dlci_ioctl_hook) 1029 request_module("dlci"); 1030 1031 mutex_lock(&dlci_ioctl_mutex); 1032 if (dlci_ioctl_hook) 1033 err = dlci_ioctl_hook(cmd, argp); 1034 mutex_unlock(&dlci_ioctl_mutex); 1035 break; 1036 case SIOCGSKNS: 1037 err = -EPERM; 1038 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1039 break; 1040 1041 err = open_related_ns(&net->ns, get_net_ns); 1042 break; 1043 default: 1044 err = sock_do_ioctl(net, sock, cmd, arg); 1045 break; 1046 } 1047 return err; 1048} 1049 1050int sock_create_lite(int family, int type, int protocol, struct socket **res) 1051{ 1052 int err; 1053 struct socket *sock = NULL; 1054 1055 err = security_socket_create(family, type, protocol, 1); 1056 if (err) 1057 goto out; 1058 1059 sock = sock_alloc(); 1060 if (!sock) { 1061 err = -ENOMEM; 1062 goto out; 1063 } 1064 1065 sock->type = type; 1066 err = security_socket_post_create(sock, family, type, protocol, 1); 1067 if (err) 1068 goto out_release; 1069 1070out: 1071 *res = sock; 1072 return err; 1073out_release: 1074 sock_release(sock); 1075 sock = NULL; 1076 goto out; 1077} 1078EXPORT_SYMBOL(sock_create_lite); 1079 1080/* No kernel lock held - perfect */ 1081static unsigned int sock_poll(struct file *file, poll_table *wait) 1082{ 1083 unsigned int busy_flag = 0; 1084 struct socket *sock; 1085 1086 /* 1087 * We can't return errors to poll, so it's either yes or no. 1088 */ 1089 sock = file->private_data; 1090 1091 if (sk_can_busy_loop(sock->sk)) { 1092 /* this socket can poll_ll so tell the system call */ 1093 busy_flag = POLL_BUSY_LOOP; 1094 1095 /* once, only if requested by syscall */ 1096 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1097 sk_busy_loop(sock->sk, 1); 1098 } 1099 1100 return busy_flag | sock->ops->poll(file, sock, wait); 1101} 1102 1103static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1104{ 1105 struct socket *sock = file->private_data; 1106 1107 return sock->ops->mmap(file, sock, vma); 1108} 1109 1110static int sock_close(struct inode *inode, struct file *filp) 1111{ 1112 sock_release(SOCKET_I(inode)); 1113 return 0; 1114} 1115 1116/* 1117 * Update the socket async list 1118 * 1119 * Fasync_list locking strategy. 1120 * 1121 * 1. fasync_list is modified only under process context socket lock 1122 * i.e. under semaphore. 1123 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1124 * or under socket lock 1125 */ 1126 1127static int sock_fasync(int fd, struct file *filp, int on) 1128{ 1129 struct socket *sock = filp->private_data; 1130 struct sock *sk = sock->sk; 1131 struct socket_wq *wq; 1132 1133 if (sk == NULL) 1134 return -EINVAL; 1135 1136 lock_sock(sk); 1137 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1138 fasync_helper(fd, filp, on, &wq->fasync_list); 1139 1140 if (!wq->fasync_list) 1141 sock_reset_flag(sk, SOCK_FASYNC); 1142 else 1143 sock_set_flag(sk, SOCK_FASYNC); 1144 1145 release_sock(sk); 1146 return 0; 1147} 1148 1149/* This function may be called only under rcu_lock */ 1150 1151int sock_wake_async(struct socket_wq *wq, int how, int band) 1152{ 1153 if (!wq || !wq->fasync_list) 1154 return -1; 1155 1156 switch (how) { 1157 case SOCK_WAKE_WAITD: 1158 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1159 break; 1160 goto call_kill; 1161 case SOCK_WAKE_SPACE: 1162 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1163 break; 1164 /* fall through */ 1165 case SOCK_WAKE_IO: 1166call_kill: 1167 kill_fasync(&wq->fasync_list, SIGIO, band); 1168 break; 1169 case SOCK_WAKE_URG: 1170 kill_fasync(&wq->fasync_list, SIGURG, band); 1171 } 1172 1173 return 0; 1174} 1175EXPORT_SYMBOL(sock_wake_async); 1176 1177int __sock_create(struct net *net, int family, int type, int protocol, 1178 struct socket **res, int kern) 1179{ 1180 int err; 1181 struct socket *sock; 1182 const struct net_proto_family *pf; 1183 1184 /* 1185 * Check protocol is in range 1186 */ 1187 if (family < 0 || family >= NPROTO) 1188 return -EAFNOSUPPORT; 1189 if (type < 0 || type >= SOCK_MAX) 1190 return -EINVAL; 1191 1192 /* Compatibility. 1193 1194 This uglymoron is moved from INET layer to here to avoid 1195 deadlock in module load. 1196 */ 1197 if (family == PF_INET && type == SOCK_PACKET) { 1198 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1199 current->comm); 1200 family = PF_PACKET; 1201 } 1202 1203 err = security_socket_create(family, type, protocol, kern); 1204 if (err) 1205 return err; 1206 1207 /* 1208 * Allocate the socket and allow the family to set things up. if 1209 * the protocol is 0, the family is instructed to select an appropriate 1210 * default. 1211 */ 1212 sock = sock_alloc(); 1213 if (!sock) { 1214 net_warn_ratelimited("socket: no more sockets\n"); 1215 return -ENFILE; /* Not exactly a match, but its the 1216 closest posix thing */ 1217 } 1218 1219 sock->type = type; 1220 1221#ifdef CONFIG_MODULES 1222 /* Attempt to load a protocol module if the find failed. 1223 * 1224 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1225 * requested real, full-featured networking support upon configuration. 1226 * Otherwise module support will break! 1227 */ 1228 if (rcu_access_pointer(net_families[family]) == NULL) 1229 request_module("net-pf-%d", family); 1230#endif 1231 1232 rcu_read_lock(); 1233 pf = rcu_dereference(net_families[family]); 1234 err = -EAFNOSUPPORT; 1235 if (!pf) 1236 goto out_release; 1237 1238 /* 1239 * We will call the ->create function, that possibly is in a loadable 1240 * module, so we have to bump that loadable module refcnt first. 1241 */ 1242 if (!try_module_get(pf->owner)) 1243 goto out_release; 1244 1245 /* Now protected by module ref count */ 1246 rcu_read_unlock(); 1247 1248 err = pf->create(net, sock, protocol, kern); 1249 if (err < 0) 1250 goto out_module_put; 1251 1252 /* 1253 * Now to bump the refcnt of the [loadable] module that owns this 1254 * socket at sock_release time we decrement its refcnt. 1255 */ 1256 if (!try_module_get(sock->ops->owner)) 1257 goto out_module_busy; 1258 1259 /* 1260 * Now that we're done with the ->create function, the [loadable] 1261 * module can have its refcnt decremented 1262 */ 1263 module_put(pf->owner); 1264 err = security_socket_post_create(sock, family, type, protocol, kern); 1265 if (err) 1266 goto out_sock_release; 1267 *res = sock; 1268 1269 return 0; 1270 1271out_module_busy: 1272 err = -EAFNOSUPPORT; 1273out_module_put: 1274 sock->ops = NULL; 1275 module_put(pf->owner); 1276out_sock_release: 1277 sock_release(sock); 1278 return err; 1279 1280out_release: 1281 rcu_read_unlock(); 1282 goto out_sock_release; 1283} 1284EXPORT_SYMBOL(__sock_create); 1285 1286int sock_create(int family, int type, int protocol, struct socket **res) 1287{ 1288 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1289} 1290EXPORT_SYMBOL(sock_create); 1291 1292int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1293{ 1294 return __sock_create(net, family, type, protocol, res, 1); 1295} 1296EXPORT_SYMBOL(sock_create_kern); 1297 1298SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1299{ 1300 int retval; 1301 struct socket *sock; 1302 int flags; 1303 1304 /* Check the SOCK_* constants for consistency. */ 1305 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1306 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1307 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1308 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1309 1310 flags = type & ~SOCK_TYPE_MASK; 1311 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1312 return -EINVAL; 1313 type &= SOCK_TYPE_MASK; 1314 1315 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1316 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1317 1318 retval = sock_create(family, type, protocol, &sock); 1319 if (retval < 0) 1320 goto out; 1321 1322 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1323 if (retval < 0) 1324 goto out_release; 1325 1326out: 1327 /* It may be already another descriptor 8) Not kernel problem. */ 1328 return retval; 1329 1330out_release: 1331 sock_release(sock); 1332 return retval; 1333} 1334 1335/* 1336 * Create a pair of connected sockets. 1337 */ 1338 1339SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1340 int __user *, usockvec) 1341{ 1342 struct socket *sock1, *sock2; 1343 int fd1, fd2, err; 1344 struct file *newfile1, *newfile2; 1345 int flags; 1346 1347 flags = type & ~SOCK_TYPE_MASK; 1348 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1349 return -EINVAL; 1350 type &= SOCK_TYPE_MASK; 1351 1352 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1353 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1354 1355 /* 1356 * Obtain the first socket and check if the underlying protocol 1357 * supports the socketpair call. 1358 */ 1359 1360 err = sock_create(family, type, protocol, &sock1); 1361 if (err < 0) 1362 goto out; 1363 1364 err = sock_create(family, type, protocol, &sock2); 1365 if (err < 0) 1366 goto out_release_1; 1367 1368 err = sock1->ops->socketpair(sock1, sock2); 1369 if (err < 0) 1370 goto out_release_both; 1371 1372 fd1 = get_unused_fd_flags(flags); 1373 if (unlikely(fd1 < 0)) { 1374 err = fd1; 1375 goto out_release_both; 1376 } 1377 1378 fd2 = get_unused_fd_flags(flags); 1379 if (unlikely(fd2 < 0)) { 1380 err = fd2; 1381 goto out_put_unused_1; 1382 } 1383 1384 newfile1 = sock_alloc_file(sock1, flags, NULL); 1385 if (IS_ERR(newfile1)) { 1386 err = PTR_ERR(newfile1); 1387 goto out_put_unused_both; 1388 } 1389 1390 newfile2 = sock_alloc_file(sock2, flags, NULL); 1391 if (IS_ERR(newfile2)) { 1392 err = PTR_ERR(newfile2); 1393 goto out_fput_1; 1394 } 1395 1396 err = put_user(fd1, &usockvec[0]); 1397 if (err) 1398 goto out_fput_both; 1399 1400 err = put_user(fd2, &usockvec[1]); 1401 if (err) 1402 goto out_fput_both; 1403 1404 audit_fd_pair(fd1, fd2); 1405 1406 fd_install(fd1, newfile1); 1407 fd_install(fd2, newfile2); 1408 /* fd1 and fd2 may be already another descriptors. 1409 * Not kernel problem. 1410 */ 1411 1412 return 0; 1413 1414out_fput_both: 1415 fput(newfile2); 1416 fput(newfile1); 1417 put_unused_fd(fd2); 1418 put_unused_fd(fd1); 1419 goto out; 1420 1421out_fput_1: 1422 fput(newfile1); 1423 put_unused_fd(fd2); 1424 put_unused_fd(fd1); 1425 sock_release(sock2); 1426 goto out; 1427 1428out_put_unused_both: 1429 put_unused_fd(fd2); 1430out_put_unused_1: 1431 put_unused_fd(fd1); 1432out_release_both: 1433 sock_release(sock2); 1434out_release_1: 1435 sock_release(sock1); 1436out: 1437 return err; 1438} 1439 1440/* 1441 * Bind a name to a socket. Nothing much to do here since it's 1442 * the protocol's responsibility to handle the local address. 1443 * 1444 * We move the socket address to kernel space before we call 1445 * the protocol layer (having also checked the address is ok). 1446 */ 1447 1448SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1449{ 1450 struct socket *sock; 1451 struct sockaddr_storage address; 1452 int err, fput_needed; 1453 1454 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1455 if (sock) { 1456 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1457 if (err >= 0) { 1458 err = security_socket_bind(sock, 1459 (struct sockaddr *)&address, 1460 addrlen); 1461 if (!err) 1462 err = sock->ops->bind(sock, 1463 (struct sockaddr *) 1464 &address, addrlen); 1465 } 1466 fput_light(sock->file, fput_needed); 1467 } 1468 return err; 1469} 1470 1471/* 1472 * Perform a listen. Basically, we allow the protocol to do anything 1473 * necessary for a listen, and if that works, we mark the socket as 1474 * ready for listening. 1475 */ 1476 1477SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1478{ 1479 struct socket *sock; 1480 int err, fput_needed; 1481 int somaxconn; 1482 1483 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1484 if (sock) { 1485 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1486 if ((unsigned int)backlog > somaxconn) 1487 backlog = somaxconn; 1488 1489 err = security_socket_listen(sock, backlog); 1490 if (!err) 1491 err = sock->ops->listen(sock, backlog); 1492 1493 fput_light(sock->file, fput_needed); 1494 } 1495 return err; 1496} 1497 1498/* 1499 * For accept, we attempt to create a new socket, set up the link 1500 * with the client, wake up the client, then return the new 1501 * connected fd. We collect the address of the connector in kernel 1502 * space and move it to user at the very end. This is unclean because 1503 * we open the socket then return an error. 1504 * 1505 * 1003.1g adds the ability to recvmsg() to query connection pending 1506 * status to recvmsg. We need to add that support in a way thats 1507 * clean when we restucture accept also. 1508 */ 1509 1510SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1511 int __user *, upeer_addrlen, int, flags) 1512{ 1513 struct socket *sock, *newsock; 1514 struct file *newfile; 1515 int err, len, newfd, fput_needed; 1516 struct sockaddr_storage address; 1517 1518 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1519 return -EINVAL; 1520 1521 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1522 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1523 1524 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1525 if (!sock) 1526 goto out; 1527 1528 err = -ENFILE; 1529 newsock = sock_alloc(); 1530 if (!newsock) 1531 goto out_put; 1532 1533 newsock->type = sock->type; 1534 newsock->ops = sock->ops; 1535 1536 /* 1537 * We don't need try_module_get here, as the listening socket (sock) 1538 * has the protocol module (sock->ops->owner) held. 1539 */ 1540 __module_get(newsock->ops->owner); 1541 1542 newfd = get_unused_fd_flags(flags); 1543 if (unlikely(newfd < 0)) { 1544 err = newfd; 1545 sock_release(newsock); 1546 goto out_put; 1547 } 1548 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1549 if (IS_ERR(newfile)) { 1550 err = PTR_ERR(newfile); 1551 put_unused_fd(newfd); 1552 sock_release(newsock); 1553 goto out_put; 1554 } 1555 1556 err = security_socket_accept(sock, newsock); 1557 if (err) 1558 goto out_fd; 1559 1560 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1561 if (err < 0) 1562 goto out_fd; 1563 1564 if (upeer_sockaddr) { 1565 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1566 &len, 2) < 0) { 1567 err = -ECONNABORTED; 1568 goto out_fd; 1569 } 1570 err = move_addr_to_user(&address, 1571 len, upeer_sockaddr, upeer_addrlen); 1572 if (err < 0) 1573 goto out_fd; 1574 } 1575 1576 /* File flags are not inherited via accept() unlike another OSes. */ 1577 1578 fd_install(newfd, newfile); 1579 err = newfd; 1580 1581out_put: 1582 fput_light(sock->file, fput_needed); 1583out: 1584 return err; 1585out_fd: 1586 fput(newfile); 1587 put_unused_fd(newfd); 1588 goto out_put; 1589} 1590 1591SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1592 int __user *, upeer_addrlen) 1593{ 1594 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1595} 1596 1597/* 1598 * Attempt to connect to a socket with the server address. The address 1599 * is in user space so we verify it is OK and move it to kernel space. 1600 * 1601 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1602 * break bindings 1603 * 1604 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1605 * other SEQPACKET protocols that take time to connect() as it doesn't 1606 * include the -EINPROGRESS status for such sockets. 1607 */ 1608 1609SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1610 int, addrlen) 1611{ 1612 struct socket *sock; 1613 struct sockaddr_storage address; 1614 int err, fput_needed; 1615 1616 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1617 if (!sock) 1618 goto out; 1619 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1620 if (err < 0) 1621 goto out_put; 1622 1623 err = 1624 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1625 if (err) 1626 goto out_put; 1627 1628 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1629 sock->file->f_flags); 1630out_put: 1631 fput_light(sock->file, fput_needed); 1632out: 1633 return err; 1634} 1635 1636/* 1637 * Get the local address ('name') of a socket object. Move the obtained 1638 * name to user space. 1639 */ 1640 1641SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1642 int __user *, usockaddr_len) 1643{ 1644 struct socket *sock; 1645 struct sockaddr_storage address; 1646 int len, err, fput_needed; 1647 1648 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1649 if (!sock) 1650 goto out; 1651 1652 err = security_socket_getsockname(sock); 1653 if (err) 1654 goto out_put; 1655 1656 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1657 if (err) 1658 goto out_put; 1659 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1660 1661out_put: 1662 fput_light(sock->file, fput_needed); 1663out: 1664 return err; 1665} 1666 1667/* 1668 * Get the remote address ('name') of a socket object. Move the obtained 1669 * name to user space. 1670 */ 1671 1672SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1673 int __user *, usockaddr_len) 1674{ 1675 struct socket *sock; 1676 struct sockaddr_storage address; 1677 int len, err, fput_needed; 1678 1679 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1680 if (sock != NULL) { 1681 err = security_socket_getpeername(sock); 1682 if (err) { 1683 fput_light(sock->file, fput_needed); 1684 return err; 1685 } 1686 1687 err = 1688 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1689 1); 1690 if (!err) 1691 err = move_addr_to_user(&address, len, usockaddr, 1692 usockaddr_len); 1693 fput_light(sock->file, fput_needed); 1694 } 1695 return err; 1696} 1697 1698/* 1699 * Send a datagram to a given address. We move the address into kernel 1700 * space and check the user space data area is readable before invoking 1701 * the protocol. 1702 */ 1703 1704SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1705 unsigned int, flags, struct sockaddr __user *, addr, 1706 int, addr_len) 1707{ 1708 struct socket *sock; 1709 struct sockaddr_storage address; 1710 int err; 1711 struct msghdr msg; 1712 struct iovec iov; 1713 int fput_needed; 1714 1715 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1716 if (unlikely(err)) 1717 return err; 1718 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1719 if (!sock) 1720 goto out; 1721 1722 msg.msg_name = NULL; 1723 msg.msg_control = NULL; 1724 msg.msg_controllen = 0; 1725 msg.msg_namelen = 0; 1726 if (addr) { 1727 err = move_addr_to_kernel(addr, addr_len, &address); 1728 if (err < 0) 1729 goto out_put; 1730 msg.msg_name = (struct sockaddr *)&address; 1731 msg.msg_namelen = addr_len; 1732 } 1733 if (sock->file->f_flags & O_NONBLOCK) 1734 flags |= MSG_DONTWAIT; 1735 msg.msg_flags = flags; 1736 err = sock_sendmsg(sock, &msg); 1737 1738out_put: 1739 fput_light(sock->file, fput_needed); 1740out: 1741 return err; 1742} 1743 1744/* 1745 * Send a datagram down a socket. 1746 */ 1747 1748SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1749 unsigned int, flags) 1750{ 1751 return sys_sendto(fd, buff, len, flags, NULL, 0); 1752} 1753 1754/* 1755 * Receive a frame from the socket and optionally record the address of the 1756 * sender. We verify the buffers are writable and if needed move the 1757 * sender address from kernel to user space. 1758 */ 1759 1760SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1761 unsigned int, flags, struct sockaddr __user *, addr, 1762 int __user *, addr_len) 1763{ 1764 struct socket *sock; 1765 struct iovec iov; 1766 struct msghdr msg; 1767 struct sockaddr_storage address; 1768 int err, err2; 1769 int fput_needed; 1770 1771 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1772 if (unlikely(err)) 1773 return err; 1774 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1775 if (!sock) 1776 goto out; 1777 1778 msg.msg_control = NULL; 1779 msg.msg_controllen = 0; 1780 /* Save some cycles and don't copy the address if not needed */ 1781 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1782 /* We assume all kernel code knows the size of sockaddr_storage */ 1783 msg.msg_namelen = 0; 1784 msg.msg_iocb = NULL; 1785 msg.msg_flags = 0; 1786 if (sock->file->f_flags & O_NONBLOCK) 1787 flags |= MSG_DONTWAIT; 1788 err = sock_recvmsg(sock, &msg, flags); 1789 1790 if (err >= 0 && addr != NULL) { 1791 err2 = move_addr_to_user(&address, 1792 msg.msg_namelen, addr, addr_len); 1793 if (err2 < 0) 1794 err = err2; 1795 } 1796 1797 fput_light(sock->file, fput_needed); 1798out: 1799 return err; 1800} 1801 1802/* 1803 * Receive a datagram from a socket. 1804 */ 1805 1806SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1807 unsigned int, flags) 1808{ 1809 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1810} 1811 1812/* 1813 * Set a socket option. Because we don't know the option lengths we have 1814 * to pass the user mode parameter for the protocols to sort out. 1815 */ 1816 1817SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1818 char __user *, optval, int, optlen) 1819{ 1820 int err, fput_needed; 1821 struct socket *sock; 1822 1823 if (optlen < 0) 1824 return -EINVAL; 1825 1826 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1827 if (sock != NULL) { 1828 err = security_socket_setsockopt(sock, level, optname); 1829 if (err) 1830 goto out_put; 1831 1832 if (level == SOL_SOCKET) 1833 err = 1834 sock_setsockopt(sock, level, optname, optval, 1835 optlen); 1836 else 1837 err = 1838 sock->ops->setsockopt(sock, level, optname, optval, 1839 optlen); 1840out_put: 1841 fput_light(sock->file, fput_needed); 1842 } 1843 return err; 1844} 1845 1846/* 1847 * Get a socket option. Because we don't know the option lengths we have 1848 * to pass a user mode parameter for the protocols to sort out. 1849 */ 1850 1851SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1852 char __user *, optval, int __user *, optlen) 1853{ 1854 int err, fput_needed; 1855 struct socket *sock; 1856 1857 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1858 if (sock != NULL) { 1859 err = security_socket_getsockopt(sock, level, optname); 1860 if (err) 1861 goto out_put; 1862 1863 if (level == SOL_SOCKET) 1864 err = 1865 sock_getsockopt(sock, level, optname, optval, 1866 optlen); 1867 else 1868 err = 1869 sock->ops->getsockopt(sock, level, optname, optval, 1870 optlen); 1871out_put: 1872 fput_light(sock->file, fput_needed); 1873 } 1874 return err; 1875} 1876 1877/* 1878 * Shutdown a socket. 1879 */ 1880 1881SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1882{ 1883 int err, fput_needed; 1884 struct socket *sock; 1885 1886 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1887 if (sock != NULL) { 1888 err = security_socket_shutdown(sock, how); 1889 if (!err) 1890 err = sock->ops->shutdown(sock, how); 1891 fput_light(sock->file, fput_needed); 1892 } 1893 return err; 1894} 1895 1896/* A couple of helpful macros for getting the address of the 32/64 bit 1897 * fields which are the same type (int / unsigned) on our platforms. 1898 */ 1899#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1900#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1901#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1902 1903struct used_address { 1904 struct sockaddr_storage name; 1905 unsigned int name_len; 1906}; 1907 1908static int copy_msghdr_from_user(struct msghdr *kmsg, 1909 struct user_msghdr __user *umsg, 1910 struct sockaddr __user **save_addr, 1911 struct iovec **iov) 1912{ 1913 struct sockaddr __user *uaddr; 1914 struct iovec __user *uiov; 1915 size_t nr_segs; 1916 ssize_t err; 1917 1918 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1919 __get_user(uaddr, &umsg->msg_name) || 1920 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1921 __get_user(uiov, &umsg->msg_iov) || 1922 __get_user(nr_segs, &umsg->msg_iovlen) || 1923 __get_user(kmsg->msg_control, &umsg->msg_control) || 1924 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1925 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1926 return -EFAULT; 1927 1928 if (!uaddr) 1929 kmsg->msg_namelen = 0; 1930 1931 if (kmsg->msg_namelen < 0) 1932 return -EINVAL; 1933 1934 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1935 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1936 1937 if (save_addr) 1938 *save_addr = uaddr; 1939 1940 if (uaddr && kmsg->msg_namelen) { 1941 if (!save_addr) { 1942 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1943 kmsg->msg_name); 1944 if (err < 0) 1945 return err; 1946 } 1947 } else { 1948 kmsg->msg_name = NULL; 1949 kmsg->msg_namelen = 0; 1950 } 1951 1952 if (nr_segs > UIO_MAXIOV) 1953 return -EMSGSIZE; 1954 1955 kmsg->msg_iocb = NULL; 1956 1957 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1958 UIO_FASTIOV, iov, &kmsg->msg_iter); 1959} 1960 1961static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1962 struct msghdr *msg_sys, unsigned int flags, 1963 struct used_address *used_address, 1964 unsigned int allowed_msghdr_flags) 1965{ 1966 struct compat_msghdr __user *msg_compat = 1967 (struct compat_msghdr __user *)msg; 1968 struct sockaddr_storage address; 1969 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1970 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1971 __aligned(sizeof(__kernel_size_t)); 1972 /* 20 is size of ipv6_pktinfo */ 1973 unsigned char *ctl_buf = ctl; 1974 int ctl_len; 1975 ssize_t err; 1976 1977 msg_sys->msg_name = &address; 1978 1979 if (MSG_CMSG_COMPAT & flags) 1980 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1981 else 1982 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1983 if (err < 0) 1984 return err; 1985 1986 err = -ENOBUFS; 1987 1988 if (msg_sys->msg_controllen > INT_MAX) 1989 goto out_freeiov; 1990 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 1991 ctl_len = msg_sys->msg_controllen; 1992 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1993 err = 1994 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1995 sizeof(ctl)); 1996 if (err) 1997 goto out_freeiov; 1998 ctl_buf = msg_sys->msg_control; 1999 ctl_len = msg_sys->msg_controllen; 2000 } else if (ctl_len) { 2001 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2002 CMSG_ALIGN(sizeof(struct cmsghdr))); 2003 if (ctl_len > sizeof(ctl)) { 2004 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2005 if (ctl_buf == NULL) 2006 goto out_freeiov; 2007 } 2008 err = -EFAULT; 2009 /* 2010 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2011 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2012 * checking falls down on this. 2013 */ 2014 if (copy_from_user(ctl_buf, 2015 (void __user __force *)msg_sys->msg_control, 2016 ctl_len)) 2017 goto out_freectl; 2018 msg_sys->msg_control = ctl_buf; 2019 } 2020 msg_sys->msg_flags = flags; 2021 2022 if (sock->file->f_flags & O_NONBLOCK) 2023 msg_sys->msg_flags |= MSG_DONTWAIT; 2024 /* 2025 * If this is sendmmsg() and current destination address is same as 2026 * previously succeeded address, omit asking LSM's decision. 2027 * used_address->name_len is initialized to UINT_MAX so that the first 2028 * destination address never matches. 2029 */ 2030 if (used_address && msg_sys->msg_name && 2031 used_address->name_len == msg_sys->msg_namelen && 2032 !memcmp(&used_address->name, msg_sys->msg_name, 2033 used_address->name_len)) { 2034 err = sock_sendmsg_nosec(sock, msg_sys); 2035 goto out_freectl; 2036 } 2037 err = sock_sendmsg(sock, msg_sys); 2038 /* 2039 * If this is sendmmsg() and sending to current destination address was 2040 * successful, remember it. 2041 */ 2042 if (used_address && err >= 0) { 2043 used_address->name_len = msg_sys->msg_namelen; 2044 if (msg_sys->msg_name) 2045 memcpy(&used_address->name, msg_sys->msg_name, 2046 used_address->name_len); 2047 } 2048 2049out_freectl: 2050 if (ctl_buf != ctl) 2051 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2052out_freeiov: 2053 kfree(iov); 2054 return err; 2055} 2056 2057/* 2058 * BSD sendmsg interface 2059 */ 2060 2061long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2062{ 2063 int fput_needed, err; 2064 struct msghdr msg_sys; 2065 struct socket *sock; 2066 2067 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2068 if (!sock) 2069 goto out; 2070 2071 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2072 2073 fput_light(sock->file, fput_needed); 2074out: 2075 return err; 2076} 2077 2078SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2079{ 2080 if (flags & MSG_CMSG_COMPAT) 2081 return -EINVAL; 2082 return __sys_sendmsg(fd, msg, flags); 2083} 2084 2085/* 2086 * Linux sendmmsg interface 2087 */ 2088 2089int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2090 unsigned int flags) 2091{ 2092 int fput_needed, err, datagrams; 2093 struct socket *sock; 2094 struct mmsghdr __user *entry; 2095 struct compat_mmsghdr __user *compat_entry; 2096 struct msghdr msg_sys; 2097 struct used_address used_address; 2098 unsigned int oflags = flags; 2099 2100 if (vlen > UIO_MAXIOV) 2101 vlen = UIO_MAXIOV; 2102 2103 datagrams = 0; 2104 2105 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2106 if (!sock) 2107 return err; 2108 2109 used_address.name_len = UINT_MAX; 2110 entry = mmsg; 2111 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2112 err = 0; 2113 flags |= MSG_BATCH; 2114 2115 while (datagrams < vlen) { 2116 if (datagrams == vlen - 1) 2117 flags = oflags; 2118 2119 if (MSG_CMSG_COMPAT & flags) { 2120 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2121 &msg_sys, flags, &used_address, MSG_EOR); 2122 if (err < 0) 2123 break; 2124 err = __put_user(err, &compat_entry->msg_len); 2125 ++compat_entry; 2126 } else { 2127 err = ___sys_sendmsg(sock, 2128 (struct user_msghdr __user *)entry, 2129 &msg_sys, flags, &used_address, MSG_EOR); 2130 if (err < 0) 2131 break; 2132 err = put_user(err, &entry->msg_len); 2133 ++entry; 2134 } 2135 2136 if (err) 2137 break; 2138 ++datagrams; 2139 if (msg_data_left(&msg_sys)) 2140 break; 2141 cond_resched(); 2142 } 2143 2144 fput_light(sock->file, fput_needed); 2145 2146 /* We only return an error if no datagrams were able to be sent */ 2147 if (datagrams != 0) 2148 return datagrams; 2149 2150 return err; 2151} 2152 2153SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2154 unsigned int, vlen, unsigned int, flags) 2155{ 2156 if (flags & MSG_CMSG_COMPAT) 2157 return -EINVAL; 2158 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2159} 2160 2161static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2162 struct msghdr *msg_sys, unsigned int flags, int nosec) 2163{ 2164 struct compat_msghdr __user *msg_compat = 2165 (struct compat_msghdr __user *)msg; 2166 struct iovec iovstack[UIO_FASTIOV]; 2167 struct iovec *iov = iovstack; 2168 unsigned long cmsg_ptr; 2169 int len; 2170 ssize_t err; 2171 2172 /* kernel mode address */ 2173 struct sockaddr_storage addr; 2174 2175 /* user mode address pointers */ 2176 struct sockaddr __user *uaddr; 2177 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2178 2179 msg_sys->msg_name = &addr; 2180 2181 if (MSG_CMSG_COMPAT & flags) 2182 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2183 else 2184 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2185 if (err < 0) 2186 return err; 2187 2188 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2189 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2190 2191 /* We assume all kernel code knows the size of sockaddr_storage */ 2192 msg_sys->msg_namelen = 0; 2193 2194 if (sock->file->f_flags & O_NONBLOCK) 2195 flags |= MSG_DONTWAIT; 2196 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2197 if (err < 0) 2198 goto out_freeiov; 2199 len = err; 2200 2201 if (uaddr != NULL) { 2202 err = move_addr_to_user(&addr, 2203 msg_sys->msg_namelen, uaddr, 2204 uaddr_len); 2205 if (err < 0) 2206 goto out_freeiov; 2207 } 2208 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2209 COMPAT_FLAGS(msg)); 2210 if (err) 2211 goto out_freeiov; 2212 if (MSG_CMSG_COMPAT & flags) 2213 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2214 &msg_compat->msg_controllen); 2215 else 2216 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2217 &msg->msg_controllen); 2218 if (err) 2219 goto out_freeiov; 2220 err = len; 2221 2222out_freeiov: 2223 kfree(iov); 2224 return err; 2225} 2226 2227/* 2228 * BSD recvmsg interface 2229 */ 2230 2231long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2232{ 2233 int fput_needed, err; 2234 struct msghdr msg_sys; 2235 struct socket *sock; 2236 2237 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2238 if (!sock) 2239 goto out; 2240 2241 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2242 2243 fput_light(sock->file, fput_needed); 2244out: 2245 return err; 2246} 2247 2248SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2249 unsigned int, flags) 2250{ 2251 if (flags & MSG_CMSG_COMPAT) 2252 return -EINVAL; 2253 return __sys_recvmsg(fd, msg, flags); 2254} 2255 2256/* 2257 * Linux recvmmsg interface 2258 */ 2259 2260int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2261 unsigned int flags, struct timespec *timeout) 2262{ 2263 int fput_needed, err, datagrams; 2264 struct socket *sock; 2265 struct mmsghdr __user *entry; 2266 struct compat_mmsghdr __user *compat_entry; 2267 struct msghdr msg_sys; 2268 struct timespec64 end_time; 2269 struct timespec64 timeout64; 2270 2271 if (timeout && 2272 poll_select_set_timeout(&end_time, timeout->tv_sec, 2273 timeout->tv_nsec)) 2274 return -EINVAL; 2275 2276 datagrams = 0; 2277 2278 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2279 if (!sock) 2280 return err; 2281 2282 err = sock_error(sock->sk); 2283 if (err) { 2284 datagrams = err; 2285 goto out_put; 2286 } 2287 2288 entry = mmsg; 2289 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2290 2291 while (datagrams < vlen) { 2292 /* 2293 * No need to ask LSM for more than the first datagram. 2294 */ 2295 if (MSG_CMSG_COMPAT & flags) { 2296 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2297 &msg_sys, flags & ~MSG_WAITFORONE, 2298 datagrams); 2299 if (err < 0) 2300 break; 2301 err = __put_user(err, &compat_entry->msg_len); 2302 ++compat_entry; 2303 } else { 2304 err = ___sys_recvmsg(sock, 2305 (struct user_msghdr __user *)entry, 2306 &msg_sys, flags & ~MSG_WAITFORONE, 2307 datagrams); 2308 if (err < 0) 2309 break; 2310 err = put_user(err, &entry->msg_len); 2311 ++entry; 2312 } 2313 2314 if (err) 2315 break; 2316 ++datagrams; 2317 2318 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2319 if (flags & MSG_WAITFORONE) 2320 flags |= MSG_DONTWAIT; 2321 2322 if (timeout) { 2323 ktime_get_ts64(&timeout64); 2324 *timeout = timespec64_to_timespec( 2325 timespec64_sub(end_time, timeout64)); 2326 if (timeout->tv_sec < 0) { 2327 timeout->tv_sec = timeout->tv_nsec = 0; 2328 break; 2329 } 2330 2331 /* Timeout, return less than vlen datagrams */ 2332 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2333 break; 2334 } 2335 2336 /* Out of band data, return right away */ 2337 if (msg_sys.msg_flags & MSG_OOB) 2338 break; 2339 cond_resched(); 2340 } 2341 2342 if (err == 0) 2343 goto out_put; 2344 2345 if (datagrams == 0) { 2346 datagrams = err; 2347 goto out_put; 2348 } 2349 2350 /* 2351 * We may return less entries than requested (vlen) if the 2352 * sock is non block and there aren't enough datagrams... 2353 */ 2354 if (err != -EAGAIN) { 2355 /* 2356 * ... or if recvmsg returns an error after we 2357 * received some datagrams, where we record the 2358 * error to return on the next call or if the 2359 * app asks about it using getsockopt(SO_ERROR). 2360 */ 2361 sock->sk->sk_err = -err; 2362 } 2363out_put: 2364 fput_light(sock->file, fput_needed); 2365 2366 return datagrams; 2367} 2368 2369SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2370 unsigned int, vlen, unsigned int, flags, 2371 struct timespec __user *, timeout) 2372{ 2373 int datagrams; 2374 struct timespec timeout_sys; 2375 2376 if (flags & MSG_CMSG_COMPAT) 2377 return -EINVAL; 2378 2379 if (!timeout) 2380 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2381 2382 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2383 return -EFAULT; 2384 2385 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2386 2387 if (datagrams > 0 && 2388 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2389 datagrams = -EFAULT; 2390 2391 return datagrams; 2392} 2393 2394#ifdef __ARCH_WANT_SYS_SOCKETCALL 2395/* Argument list sizes for sys_socketcall */ 2396#define AL(x) ((x) * sizeof(unsigned long)) 2397static const unsigned char nargs[21] = { 2398 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2399 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2400 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2401 AL(4), AL(5), AL(4) 2402}; 2403 2404#undef AL 2405 2406/* 2407 * System call vectors. 2408 * 2409 * Argument checking cleaned up. Saved 20% in size. 2410 * This function doesn't need to set the kernel lock because 2411 * it is set by the callees. 2412 */ 2413 2414SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2415{ 2416 unsigned long a[AUDITSC_ARGS]; 2417 unsigned long a0, a1; 2418 int err; 2419 unsigned int len; 2420 2421 if (call < 1 || call > SYS_SENDMMSG) 2422 return -EINVAL; 2423 2424 len = nargs[call]; 2425 if (len > sizeof(a)) 2426 return -EINVAL; 2427 2428 /* copy_from_user should be SMP safe. */ 2429 if (copy_from_user(a, args, len)) 2430 return -EFAULT; 2431 2432 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2433 if (err) 2434 return err; 2435 2436 a0 = a[0]; 2437 a1 = a[1]; 2438 2439 switch (call) { 2440 case SYS_SOCKET: 2441 err = sys_socket(a0, a1, a[2]); 2442 break; 2443 case SYS_BIND: 2444 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2445 break; 2446 case SYS_CONNECT: 2447 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2448 break; 2449 case SYS_LISTEN: 2450 err = sys_listen(a0, a1); 2451 break; 2452 case SYS_ACCEPT: 2453 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2454 (int __user *)a[2], 0); 2455 break; 2456 case SYS_GETSOCKNAME: 2457 err = 2458 sys_getsockname(a0, (struct sockaddr __user *)a1, 2459 (int __user *)a[2]); 2460 break; 2461 case SYS_GETPEERNAME: 2462 err = 2463 sys_getpeername(a0, (struct sockaddr __user *)a1, 2464 (int __user *)a[2]); 2465 break; 2466 case SYS_SOCKETPAIR: 2467 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2468 break; 2469 case SYS_SEND: 2470 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2471 break; 2472 case SYS_SENDTO: 2473 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2474 (struct sockaddr __user *)a[4], a[5]); 2475 break; 2476 case SYS_RECV: 2477 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2478 break; 2479 case SYS_RECVFROM: 2480 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2481 (struct sockaddr __user *)a[4], 2482 (int __user *)a[5]); 2483 break; 2484 case SYS_SHUTDOWN: 2485 err = sys_shutdown(a0, a1); 2486 break; 2487 case SYS_SETSOCKOPT: 2488 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2489 break; 2490 case SYS_GETSOCKOPT: 2491 err = 2492 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2493 (int __user *)a[4]); 2494 break; 2495 case SYS_SENDMSG: 2496 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2497 break; 2498 case SYS_SENDMMSG: 2499 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2500 break; 2501 case SYS_RECVMSG: 2502 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2503 break; 2504 case SYS_RECVMMSG: 2505 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2506 (struct timespec __user *)a[4]); 2507 break; 2508 case SYS_ACCEPT4: 2509 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2510 (int __user *)a[2], a[3]); 2511 break; 2512 default: 2513 err = -EINVAL; 2514 break; 2515 } 2516 return err; 2517} 2518 2519#endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2520 2521/** 2522 * sock_register - add a socket protocol handler 2523 * @ops: description of protocol 2524 * 2525 * This function is called by a protocol handler that wants to 2526 * advertise its address family, and have it linked into the 2527 * socket interface. The value ops->family corresponds to the 2528 * socket system call protocol family. 2529 */ 2530int sock_register(const struct net_proto_family *ops) 2531{ 2532 int err; 2533 2534 if (ops->family >= NPROTO) { 2535 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2536 return -ENOBUFS; 2537 } 2538 2539 spin_lock(&net_family_lock); 2540 if (rcu_dereference_protected(net_families[ops->family], 2541 lockdep_is_held(&net_family_lock))) 2542 err = -EEXIST; 2543 else { 2544 rcu_assign_pointer(net_families[ops->family], ops); 2545 err = 0; 2546 } 2547 spin_unlock(&net_family_lock); 2548 2549 pr_info("NET: Registered protocol family %d\n", ops->family); 2550 return err; 2551} 2552EXPORT_SYMBOL(sock_register); 2553 2554/** 2555 * sock_unregister - remove a protocol handler 2556 * @family: protocol family to remove 2557 * 2558 * This function is called by a protocol handler that wants to 2559 * remove its address family, and have it unlinked from the 2560 * new socket creation. 2561 * 2562 * If protocol handler is a module, then it can use module reference 2563 * counts to protect against new references. If protocol handler is not 2564 * a module then it needs to provide its own protection in 2565 * the ops->create routine. 2566 */ 2567void sock_unregister(int family) 2568{ 2569 BUG_ON(family < 0 || family >= NPROTO); 2570 2571 spin_lock(&net_family_lock); 2572 RCU_INIT_POINTER(net_families[family], NULL); 2573 spin_unlock(&net_family_lock); 2574 2575 synchronize_rcu(); 2576 2577 pr_info("NET: Unregistered protocol family %d\n", family); 2578} 2579EXPORT_SYMBOL(sock_unregister); 2580 2581static int __init sock_init(void) 2582{ 2583 int err; 2584 /* 2585 * Initialize the network sysctl infrastructure. 2586 */ 2587 err = net_sysctl_init(); 2588 if (err) 2589 goto out; 2590 2591 /* 2592 * Initialize skbuff SLAB cache 2593 */ 2594 skb_init(); 2595 2596 /* 2597 * Initialize the protocols module. 2598 */ 2599 2600 init_inodecache(); 2601 2602 err = register_filesystem(&sock_fs_type); 2603 if (err) 2604 goto out_fs; 2605 sock_mnt = kern_mount(&sock_fs_type); 2606 if (IS_ERR(sock_mnt)) { 2607 err = PTR_ERR(sock_mnt); 2608 goto out_mount; 2609 } 2610 2611 /* The real protocol initialization is performed in later initcalls. 2612 */ 2613 2614#ifdef CONFIG_NETFILTER 2615 err = netfilter_init(); 2616 if (err) 2617 goto out; 2618#endif 2619 2620 ptp_classifier_init(); 2621 2622out: 2623 return err; 2624 2625out_mount: 2626 unregister_filesystem(&sock_fs_type); 2627out_fs: 2628 goto out; 2629} 2630 2631core_initcall(sock_init); /* early initcall */ 2632 2633#ifdef CONFIG_PROC_FS 2634void socket_seq_show(struct seq_file *seq) 2635{ 2636 int cpu; 2637 int counter = 0; 2638 2639 for_each_possible_cpu(cpu) 2640 counter += per_cpu(sockets_in_use, cpu); 2641 2642 /* It can be negative, by the way. 8) */ 2643 if (counter < 0) 2644 counter = 0; 2645 2646 seq_printf(seq, "sockets: used %d\n", counter); 2647} 2648#endif /* CONFIG_PROC_FS */ 2649 2650#ifdef CONFIG_COMPAT 2651static int do_siocgstamp(struct net *net, struct socket *sock, 2652 unsigned int cmd, void __user *up) 2653{ 2654 mm_segment_t old_fs = get_fs(); 2655 struct timeval ktv; 2656 int err; 2657 2658 set_fs(KERNEL_DS); 2659 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2660 set_fs(old_fs); 2661 if (!err) 2662 err = compat_put_timeval(&ktv, up); 2663 2664 return err; 2665} 2666 2667static int do_siocgstampns(struct net *net, struct socket *sock, 2668 unsigned int cmd, void __user *up) 2669{ 2670 mm_segment_t old_fs = get_fs(); 2671 struct timespec kts; 2672 int err; 2673 2674 set_fs(KERNEL_DS); 2675 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2676 set_fs(old_fs); 2677 if (!err) 2678 err = compat_put_timespec(&kts, up); 2679 2680 return err; 2681} 2682 2683static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2684{ 2685 struct ifreq __user *uifr; 2686 int err; 2687 2688 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2689 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2690 return -EFAULT; 2691 2692 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2693 if (err) 2694 return err; 2695 2696 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2697 return -EFAULT; 2698 2699 return 0; 2700} 2701 2702static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2703{ 2704 struct compat_ifconf ifc32; 2705 struct ifconf ifc; 2706 struct ifconf __user *uifc; 2707 struct compat_ifreq __user *ifr32; 2708 struct ifreq __user *ifr; 2709 unsigned int i, j; 2710 int err; 2711 2712 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2713 return -EFAULT; 2714 2715 memset(&ifc, 0, sizeof(ifc)); 2716 if (ifc32.ifcbuf == 0) { 2717 ifc32.ifc_len = 0; 2718 ifc.ifc_len = 0; 2719 ifc.ifc_req = NULL; 2720 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2721 } else { 2722 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2723 sizeof(struct ifreq); 2724 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2725 ifc.ifc_len = len; 2726 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2727 ifr32 = compat_ptr(ifc32.ifcbuf); 2728 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2729 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2730 return -EFAULT; 2731 ifr++; 2732 ifr32++; 2733 } 2734 } 2735 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2736 return -EFAULT; 2737 2738 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2739 if (err) 2740 return err; 2741 2742 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2743 return -EFAULT; 2744 2745 ifr = ifc.ifc_req; 2746 ifr32 = compat_ptr(ifc32.ifcbuf); 2747 for (i = 0, j = 0; 2748 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2749 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2750 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2751 return -EFAULT; 2752 ifr32++; 2753 ifr++; 2754 } 2755 2756 if (ifc32.ifcbuf == 0) { 2757 /* Translate from 64-bit structure multiple to 2758 * a 32-bit one. 2759 */ 2760 i = ifc.ifc_len; 2761 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2762 ifc32.ifc_len = i; 2763 } else { 2764 ifc32.ifc_len = i; 2765 } 2766 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2767 return -EFAULT; 2768 2769 return 0; 2770} 2771 2772static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2773{ 2774 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2775 bool convert_in = false, convert_out = false; 2776 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2777 struct ethtool_rxnfc __user *rxnfc; 2778 struct ifreq __user *ifr; 2779 u32 rule_cnt = 0, actual_rule_cnt; 2780 u32 ethcmd; 2781 u32 data; 2782 int ret; 2783 2784 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2785 return -EFAULT; 2786 2787 compat_rxnfc = compat_ptr(data); 2788 2789 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2790 return -EFAULT; 2791 2792 /* Most ethtool structures are defined without padding. 2793 * Unfortunately struct ethtool_rxnfc is an exception. 2794 */ 2795 switch (ethcmd) { 2796 default: 2797 break; 2798 case ETHTOOL_GRXCLSRLALL: 2799 /* Buffer size is variable */ 2800 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2801 return -EFAULT; 2802 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2803 return -ENOMEM; 2804 buf_size += rule_cnt * sizeof(u32); 2805 /* fall through */ 2806 case ETHTOOL_GRXRINGS: 2807 case ETHTOOL_GRXCLSRLCNT: 2808 case ETHTOOL_GRXCLSRULE: 2809 case ETHTOOL_SRXCLSRLINS: 2810 convert_out = true; 2811 /* fall through */ 2812 case ETHTOOL_SRXCLSRLDEL: 2813 buf_size += sizeof(struct ethtool_rxnfc); 2814 convert_in = true; 2815 break; 2816 } 2817 2818 ifr = compat_alloc_user_space(buf_size); 2819 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2820 2821 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2822 return -EFAULT; 2823 2824 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2825 &ifr->ifr_ifru.ifru_data)) 2826 return -EFAULT; 2827 2828 if (convert_in) { 2829 /* We expect there to be holes between fs.m_ext and 2830 * fs.ring_cookie and at the end of fs, but nowhere else. 2831 */ 2832 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2833 sizeof(compat_rxnfc->fs.m_ext) != 2834 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2835 sizeof(rxnfc->fs.m_ext)); 2836 BUILD_BUG_ON( 2837 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2838 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2839 offsetof(struct ethtool_rxnfc, fs.location) - 2840 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2841 2842 if (copy_in_user(rxnfc, compat_rxnfc, 2843 (void __user *)(&rxnfc->fs.m_ext + 1) - 2844 (void __user *)rxnfc) || 2845 copy_in_user(&rxnfc->fs.ring_cookie, 2846 &compat_rxnfc->fs.ring_cookie, 2847 (void __user *)(&rxnfc->fs.location + 1) - 2848 (void __user *)&rxnfc->fs.ring_cookie) || 2849 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2850 sizeof(rxnfc->rule_cnt))) 2851 return -EFAULT; 2852 } 2853 2854 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2855 if (ret) 2856 return ret; 2857 2858 if (convert_out) { 2859 if (copy_in_user(compat_rxnfc, rxnfc, 2860 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2861 (const void __user *)rxnfc) || 2862 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2863 &rxnfc->fs.ring_cookie, 2864 (const void __user *)(&rxnfc->fs.location + 1) - 2865 (const void __user *)&rxnfc->fs.ring_cookie) || 2866 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2867 sizeof(rxnfc->rule_cnt))) 2868 return -EFAULT; 2869 2870 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2871 /* As an optimisation, we only copy the actual 2872 * number of rules that the underlying 2873 * function returned. Since Mallory might 2874 * change the rule count in user memory, we 2875 * check that it is less than the rule count 2876 * originally given (as the user buffer size), 2877 * which has been range-checked. 2878 */ 2879 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2880 return -EFAULT; 2881 if (actual_rule_cnt < rule_cnt) 2882 rule_cnt = actual_rule_cnt; 2883 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2884 &rxnfc->rule_locs[0], 2885 rule_cnt * sizeof(u32))) 2886 return -EFAULT; 2887 } 2888 } 2889 2890 return 0; 2891} 2892 2893static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2894{ 2895 void __user *uptr; 2896 compat_uptr_t uptr32; 2897 struct ifreq __user *uifr; 2898 2899 uifr = compat_alloc_user_space(sizeof(*uifr)); 2900 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2901 return -EFAULT; 2902 2903 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2904 return -EFAULT; 2905 2906 uptr = compat_ptr(uptr32); 2907 2908 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2909 return -EFAULT; 2910 2911 return dev_ioctl(net, SIOCWANDEV, uifr); 2912} 2913 2914static int bond_ioctl(struct net *net, unsigned int cmd, 2915 struct compat_ifreq __user *ifr32) 2916{ 2917 struct ifreq kifr; 2918 mm_segment_t old_fs; 2919 int err; 2920 2921 switch (cmd) { 2922 case SIOCBONDENSLAVE: 2923 case SIOCBONDRELEASE: 2924 case SIOCBONDSETHWADDR: 2925 case SIOCBONDCHANGEACTIVE: 2926 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2927 return -EFAULT; 2928 2929 old_fs = get_fs(); 2930 set_fs(KERNEL_DS); 2931 err = dev_ioctl(net, cmd, 2932 (struct ifreq __user __force *) &kifr); 2933 set_fs(old_fs); 2934 2935 return err; 2936 default: 2937 return -ENOIOCTLCMD; 2938 } 2939} 2940 2941/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2942static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2943 struct compat_ifreq __user *u_ifreq32) 2944{ 2945 struct ifreq __user *u_ifreq64; 2946 char tmp_buf[IFNAMSIZ]; 2947 void __user *data64; 2948 u32 data32; 2949 2950 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2951 IFNAMSIZ)) 2952 return -EFAULT; 2953 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2954 return -EFAULT; 2955 data64 = compat_ptr(data32); 2956 2957 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2958 2959 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2960 IFNAMSIZ)) 2961 return -EFAULT; 2962 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2963 return -EFAULT; 2964 2965 return dev_ioctl(net, cmd, u_ifreq64); 2966} 2967 2968static int dev_ifsioc(struct net *net, struct socket *sock, 2969 unsigned int cmd, struct compat_ifreq __user *uifr32) 2970{ 2971 struct ifreq __user *uifr; 2972 int err; 2973 2974 uifr = compat_alloc_user_space(sizeof(*uifr)); 2975 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2976 return -EFAULT; 2977 2978 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2979 2980 if (!err) { 2981 switch (cmd) { 2982 case SIOCGIFFLAGS: 2983 case SIOCGIFMETRIC: 2984 case SIOCGIFMTU: 2985 case SIOCGIFMEM: 2986 case SIOCGIFHWADDR: 2987 case SIOCGIFINDEX: 2988 case SIOCGIFADDR: 2989 case SIOCGIFBRDADDR: 2990 case SIOCGIFDSTADDR: 2991 case SIOCGIFNETMASK: 2992 case SIOCGIFPFLAGS: 2993 case SIOCGIFTXQLEN: 2994 case SIOCGMIIPHY: 2995 case SIOCGMIIREG: 2996 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2997 err = -EFAULT; 2998 break; 2999 } 3000 } 3001 return err; 3002} 3003 3004static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3005 struct compat_ifreq __user *uifr32) 3006{ 3007 struct ifreq ifr; 3008 struct compat_ifmap __user *uifmap32; 3009 mm_segment_t old_fs; 3010 int err; 3011 3012 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3013 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3014 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3015 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3016 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3017 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3018 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3019 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3020 if (err) 3021 return -EFAULT; 3022 3023 old_fs = get_fs(); 3024 set_fs(KERNEL_DS); 3025 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3026 set_fs(old_fs); 3027 3028 if (cmd == SIOCGIFMAP && !err) { 3029 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3030 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3031 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3032 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3033 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3034 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3035 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3036 if (err) 3037 err = -EFAULT; 3038 } 3039 return err; 3040} 3041 3042struct rtentry32 { 3043 u32 rt_pad1; 3044 struct sockaddr rt_dst; /* target address */ 3045 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3046 struct sockaddr rt_genmask; /* target network mask (IP) */ 3047 unsigned short rt_flags; 3048 short rt_pad2; 3049 u32 rt_pad3; 3050 unsigned char rt_tos; 3051 unsigned char rt_class; 3052 short rt_pad4; 3053 short rt_metric; /* +1 for binary compatibility! */ 3054 /* char * */ u32 rt_dev; /* forcing the device at add */ 3055 u32 rt_mtu; /* per route MTU/Window */ 3056 u32 rt_window; /* Window clamping */ 3057 unsigned short rt_irtt; /* Initial RTT */ 3058}; 3059 3060struct in6_rtmsg32 { 3061 struct in6_addr rtmsg_dst; 3062 struct in6_addr rtmsg_src; 3063 struct in6_addr rtmsg_gateway; 3064 u32 rtmsg_type; 3065 u16 rtmsg_dst_len; 3066 u16 rtmsg_src_len; 3067 u32 rtmsg_metric; 3068 u32 rtmsg_info; 3069 u32 rtmsg_flags; 3070 s32 rtmsg_ifindex; 3071}; 3072 3073static int routing_ioctl(struct net *net, struct socket *sock, 3074 unsigned int cmd, void __user *argp) 3075{ 3076 int ret; 3077 void *r = NULL; 3078 struct in6_rtmsg r6; 3079 struct rtentry r4; 3080 char devname[16]; 3081 u32 rtdev; 3082 mm_segment_t old_fs = get_fs(); 3083 3084 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3085 struct in6_rtmsg32 __user *ur6 = argp; 3086 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3087 3 * sizeof(struct in6_addr)); 3088 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3089 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3090 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3091 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3092 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3093 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3094 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3095 3096 r = (void *) &r6; 3097 } else { /* ipv4 */ 3098 struct rtentry32 __user *ur4 = argp; 3099 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3100 3 * sizeof(struct sockaddr)); 3101 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3102 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3103 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3104 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3105 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3106 ret |= get_user(rtdev, &(ur4->rt_dev)); 3107 if (rtdev) { 3108 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3109 r4.rt_dev = (char __user __force *)devname; 3110 devname[15] = 0; 3111 } else 3112 r4.rt_dev = NULL; 3113 3114 r = (void *) &r4; 3115 } 3116 3117 if (ret) { 3118 ret = -EFAULT; 3119 goto out; 3120 } 3121 3122 set_fs(KERNEL_DS); 3123 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3124 set_fs(old_fs); 3125 3126out: 3127 return ret; 3128} 3129 3130/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3131 * for some operations; this forces use of the newer bridge-utils that 3132 * use compatible ioctls 3133 */ 3134static int old_bridge_ioctl(compat_ulong_t __user *argp) 3135{ 3136 compat_ulong_t tmp; 3137 3138 if (get_user(tmp, argp)) 3139 return -EFAULT; 3140 if (tmp == BRCTL_GET_VERSION) 3141 return BRCTL_VERSION + 1; 3142 return -EINVAL; 3143} 3144 3145static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3146 unsigned int cmd, unsigned long arg) 3147{ 3148 void __user *argp = compat_ptr(arg); 3149 struct sock *sk = sock->sk; 3150 struct net *net = sock_net(sk); 3151 3152 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3153 return compat_ifr_data_ioctl(net, cmd, argp); 3154 3155 switch (cmd) { 3156 case SIOCSIFBR: 3157 case SIOCGIFBR: 3158 return old_bridge_ioctl(argp); 3159 case SIOCGIFNAME: 3160 return dev_ifname32(net, argp); 3161 case SIOCGIFCONF: 3162 return dev_ifconf(net, argp); 3163 case SIOCETHTOOL: 3164 return ethtool_ioctl(net, argp); 3165 case SIOCWANDEV: 3166 return compat_siocwandev(net, argp); 3167 case SIOCGIFMAP: 3168 case SIOCSIFMAP: 3169 return compat_sioc_ifmap(net, cmd, argp); 3170 case SIOCBONDENSLAVE: 3171 case SIOCBONDRELEASE: 3172 case SIOCBONDSETHWADDR: 3173 case SIOCBONDCHANGEACTIVE: 3174 return bond_ioctl(net, cmd, argp); 3175 case SIOCADDRT: 3176 case SIOCDELRT: 3177 return routing_ioctl(net, sock, cmd, argp); 3178 case SIOCGSTAMP: 3179 return do_siocgstamp(net, sock, cmd, argp); 3180 case SIOCGSTAMPNS: 3181 return do_siocgstampns(net, sock, cmd, argp); 3182 case SIOCBONDSLAVEINFOQUERY: 3183 case SIOCBONDINFOQUERY: 3184 case SIOCSHWTSTAMP: 3185 case SIOCGHWTSTAMP: 3186 return compat_ifr_data_ioctl(net, cmd, argp); 3187 3188 case FIOSETOWN: 3189 case SIOCSPGRP: 3190 case FIOGETOWN: 3191 case SIOCGPGRP: 3192 case SIOCBRADDBR: 3193 case SIOCBRDELBR: 3194 case SIOCGIFVLAN: 3195 case SIOCSIFVLAN: 3196 case SIOCADDDLCI: 3197 case SIOCDELDLCI: 3198 case SIOCGSKNS: 3199 return sock_ioctl(file, cmd, arg); 3200 3201 case SIOCGIFFLAGS: 3202 case SIOCSIFFLAGS: 3203 case SIOCGIFMETRIC: 3204 case SIOCSIFMETRIC: 3205 case SIOCGIFMTU: 3206 case SIOCSIFMTU: 3207 case SIOCGIFMEM: 3208 case SIOCSIFMEM: 3209 case SIOCGIFHWADDR: 3210 case SIOCSIFHWADDR: 3211 case SIOCADDMULTI: 3212 case SIOCDELMULTI: 3213 case SIOCGIFINDEX: 3214 case SIOCGIFADDR: 3215 case SIOCSIFADDR: 3216 case SIOCSIFHWBROADCAST: 3217 case SIOCDIFADDR: 3218 case SIOCGIFBRDADDR: 3219 case SIOCSIFBRDADDR: 3220 case SIOCGIFDSTADDR: 3221 case SIOCSIFDSTADDR: 3222 case SIOCGIFNETMASK: 3223 case SIOCSIFNETMASK: 3224 case SIOCSIFPFLAGS: 3225 case SIOCGIFPFLAGS: 3226 case SIOCGIFTXQLEN: 3227 case SIOCSIFTXQLEN: 3228 case SIOCBRADDIF: 3229 case SIOCBRDELIF: 3230 case SIOCSIFNAME: 3231 case SIOCGMIIPHY: 3232 case SIOCGMIIREG: 3233 case SIOCSMIIREG: 3234 return dev_ifsioc(net, sock, cmd, argp); 3235 3236 case SIOCSARP: 3237 case SIOCGARP: 3238 case SIOCDARP: 3239 case SIOCATMARK: 3240 return sock_do_ioctl(net, sock, cmd, arg); 3241 } 3242 3243 return -ENOIOCTLCMD; 3244} 3245 3246static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3247 unsigned long arg) 3248{ 3249 struct socket *sock = file->private_data; 3250 int ret = -ENOIOCTLCMD; 3251 struct sock *sk; 3252 struct net *net; 3253 3254 sk = sock->sk; 3255 net = sock_net(sk); 3256 3257 if (sock->ops->compat_ioctl) 3258 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3259 3260 if (ret == -ENOIOCTLCMD && 3261 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3262 ret = compat_wext_handle_ioctl(net, cmd, arg); 3263 3264 if (ret == -ENOIOCTLCMD) 3265 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3266 3267 return ret; 3268} 3269#endif 3270 3271int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3272{ 3273 return sock->ops->bind(sock, addr, addrlen); 3274} 3275EXPORT_SYMBOL(kernel_bind); 3276 3277int kernel_listen(struct socket *sock, int backlog) 3278{ 3279 return sock->ops->listen(sock, backlog); 3280} 3281EXPORT_SYMBOL(kernel_listen); 3282 3283int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3284{ 3285 struct sock *sk = sock->sk; 3286 int err; 3287 3288 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3289 newsock); 3290 if (err < 0) 3291 goto done; 3292 3293 err = sock->ops->accept(sock, *newsock, flags, true); 3294 if (err < 0) { 3295 sock_release(*newsock); 3296 *newsock = NULL; 3297 goto done; 3298 } 3299 3300 (*newsock)->ops = sock->ops; 3301 __module_get((*newsock)->ops->owner); 3302 3303done: 3304 return err; 3305} 3306EXPORT_SYMBOL(kernel_accept); 3307 3308int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3309 int flags) 3310{ 3311 return sock->ops->connect(sock, addr, addrlen, flags); 3312} 3313EXPORT_SYMBOL(kernel_connect); 3314 3315int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3316 int *addrlen) 3317{ 3318 return sock->ops->getname(sock, addr, addrlen, 0); 3319} 3320EXPORT_SYMBOL(kernel_getsockname); 3321 3322int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3323 int *addrlen) 3324{ 3325 return sock->ops->getname(sock, addr, addrlen, 1); 3326} 3327EXPORT_SYMBOL(kernel_getpeername); 3328 3329int kernel_getsockopt(struct socket *sock, int level, int optname, 3330 char *optval, int *optlen) 3331{ 3332 mm_segment_t oldfs = get_fs(); 3333 char __user *uoptval; 3334 int __user *uoptlen; 3335 int err; 3336 3337 uoptval = (char __user __force *) optval; 3338 uoptlen = (int __user __force *) optlen; 3339 3340 set_fs(KERNEL_DS); 3341 if (level == SOL_SOCKET) 3342 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3343 else 3344 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3345 uoptlen); 3346 set_fs(oldfs); 3347 return err; 3348} 3349EXPORT_SYMBOL(kernel_getsockopt); 3350 3351int kernel_setsockopt(struct socket *sock, int level, int optname, 3352 char *optval, unsigned int optlen) 3353{ 3354 mm_segment_t oldfs = get_fs(); 3355 char __user *uoptval; 3356 int err; 3357 3358 uoptval = (char __user __force *) optval; 3359 3360 set_fs(KERNEL_DS); 3361 if (level == SOL_SOCKET) 3362 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3363 else 3364 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3365 optlen); 3366 set_fs(oldfs); 3367 return err; 3368} 3369EXPORT_SYMBOL(kernel_setsockopt); 3370 3371int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3372 size_t size, int flags) 3373{ 3374 if (sock->ops->sendpage) 3375 return sock->ops->sendpage(sock, page, offset, size, flags); 3376 3377 return sock_no_sendpage(sock, page, offset, size, flags); 3378} 3379EXPORT_SYMBOL(kernel_sendpage); 3380 3381int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3382{ 3383 mm_segment_t oldfs = get_fs(); 3384 int err; 3385 3386 set_fs(KERNEL_DS); 3387 err = sock->ops->ioctl(sock, cmd, arg); 3388 set_fs(oldfs); 3389 3390 return err; 3391} 3392EXPORT_SYMBOL(kernel_sock_ioctl); 3393 3394int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3395{ 3396 return sock->ops->shutdown(sock, how); 3397} 3398EXPORT_SYMBOL(kernel_sock_shutdown); 3399 3400/* This routine returns the IP overhead imposed by a socket i.e. 3401 * the length of the underlying IP header, depending on whether 3402 * this is an IPv4 or IPv6 socket and the length from IP options turned 3403 * on at the socket. Assumes that the caller has a lock on the socket. 3404 */ 3405u32 kernel_sock_ip_overhead(struct sock *sk) 3406{ 3407 struct inet_sock *inet; 3408 struct ip_options_rcu *opt; 3409 u32 overhead = 0; 3410 bool owned_by_user; 3411#if IS_ENABLED(CONFIG_IPV6) 3412 struct ipv6_pinfo *np; 3413 struct ipv6_txoptions *optv6 = NULL; 3414#endif /* IS_ENABLED(CONFIG_IPV6) */ 3415 3416 if (!sk) 3417 return overhead; 3418 3419 owned_by_user = sock_owned_by_user(sk); 3420 switch (sk->sk_family) { 3421 case AF_INET: 3422 inet = inet_sk(sk); 3423 overhead += sizeof(struct iphdr); 3424 opt = rcu_dereference_protected(inet->inet_opt, 3425 owned_by_user); 3426 if (opt) 3427 overhead += opt->opt.optlen; 3428 return overhead; 3429#if IS_ENABLED(CONFIG_IPV6) 3430 case AF_INET6: 3431 np = inet6_sk(sk); 3432 overhead += sizeof(struct ipv6hdr); 3433 if (np) 3434 optv6 = rcu_dereference_protected(np->opt, 3435 owned_by_user); 3436 if (optv6) 3437 overhead += (optv6->opt_flen + optv6->opt_nflen); 3438 return overhead; 3439#endif /* IS_ENABLED(CONFIG_IPV6) */ 3440 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3441 return overhead; 3442 } 3443} 3444EXPORT_SYMBOL(kernel_sock_ip_overhead);