PageRenderTime 30ms CodeModel.GetById 28ms RepoModel.GetById 1ms app.codeStats 0ms

/net/socket.c

https://bitbucket.org/digetx/picasso-kernel
C | 3505 lines | 2541 code | 501 blank | 463 comment | 401 complexity | 8d5656caf9ddf051858bf9f47c7d6911 MD5 | raw file
Possible License(s): AGPL-1.0, GPL-2.0, LGPL-2.0
  1. /*
  2. * NET An implementation of the SOCKET network access protocol.
  3. *
  4. * Version: @(#)socket.c 1.1.93 18/02/95
  5. *
  6. * Authors: Orest Zborowski, <obz@Kodak.COM>
  7. * Ross Biro
  8. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  9. *
  10. * Fixes:
  11. * Anonymous : NOTSOCK/BADF cleanup. Error fix in
  12. * shutdown()
  13. * Alan Cox : verify_area() fixes
  14. * Alan Cox : Removed DDI
  15. * Jonathan Kamens : SOCK_DGRAM reconnect bug
  16. * Alan Cox : Moved a load of checks to the very
  17. * top level.
  18. * Alan Cox : Move address structures to/from user
  19. * mode above the protocol layers.
  20. * Rob Janssen : Allow 0 length sends.
  21. * Alan Cox : Asynchronous I/O support (cribbed from the
  22. * tty drivers).
  23. * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
  24. * Jeff Uphoff : Made max number of sockets command-line
  25. * configurable.
  26. * Matti Aarnio : Made the number of sockets dynamic,
  27. * to be allocated when needed, and mr.
  28. * Uphoff's max is used as max to be
  29. * allowed to allocate.
  30. * Linus : Argh. removed all the socket allocation
  31. * altogether: it's in the inode now.
  32. * Alan Cox : Made sock_alloc()/sock_release() public
  33. * for NetROM and future kernel nfsd type
  34. * stuff.
  35. * Alan Cox : sendmsg/recvmsg basics.
  36. * Tom Dyas : Export net symbols.
  37. * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
  38. * Alan Cox : Added thread locking to sys_* calls
  39. * for sockets. May have errors at the
  40. * moment.
  41. * Kevin Buhr : Fixed the dumb errors in the above.
  42. * Andi Kleen : Some small cleanups, optimizations,
  43. * and fixed a copy_from_user() bug.
  44. * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
  45. * Tigran Aivazian : Made listen(2) backlog sanity checks
  46. * protocol-independent
  47. *
  48. *
  49. * This program is free software; you can redistribute it and/or
  50. * modify it under the terms of the GNU General Public License
  51. * as published by the Free Software Foundation; either version
  52. * 2 of the License, or (at your option) any later version.
  53. *
  54. *
  55. * This module is effectively the top level interface to the BSD socket
  56. * paradigm.
  57. *
  58. * Based upon Swansea University Computer Society NET3.039
  59. */
  60. #include <linux/mm.h>
  61. #include <linux/socket.h>
  62. #include <linux/file.h>
  63. #include <linux/net.h>
  64. #include <linux/interrupt.h>
  65. #include <linux/thread_info.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/netdevice.h>
  68. #include <linux/proc_fs.h>
  69. #include <linux/seq_file.h>
  70. #include <linux/mutex.h>
  71. #include <linux/wanrouter.h>
  72. #include <linux/if_bridge.h>
  73. #include <linux/if_frad.h>
  74. #include <linux/if_vlan.h>
  75. #include <linux/init.h>
  76. #include <linux/poll.h>
  77. #include <linux/cache.h>
  78. #include <linux/module.h>
  79. #include <linux/highmem.h>
  80. #include <linux/mount.h>
  81. #include <linux/security.h>
  82. #include <linux/syscalls.h>
  83. #include <linux/compat.h>
  84. #include <linux/kmod.h>
  85. #include <linux/audit.h>
  86. #include <linux/wireless.h>
  87. #include <linux/nsproxy.h>
  88. #include <linux/magic.h>
  89. #include <linux/slab.h>
  90. #include <linux/xattr.h>
  91. #include <asm/uaccess.h>
  92. #include <asm/unistd.h>
  93. #include <net/compat.h>
  94. #include <net/wext.h>
  95. #include <net/cls_cgroup.h>
  96. #include <net/sock.h>
  97. #include <linux/netfilter.h>
  98. #include <linux/if_tun.h>
  99. #include <linux/ipv6_route.h>
  100. #include <linux/route.h>
  101. #include <linux/sockios.h>
  102. #include <linux/atalk.h>
  103. static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
  104. static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
  105. unsigned long nr_segs, loff_t pos);
  106. static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
  107. unsigned long nr_segs, loff_t pos);
  108. static int sock_mmap(struct file *file, struct vm_area_struct *vma);
  109. static int sock_close(struct inode *inode, struct file *file);
  110. static unsigned int sock_poll(struct file *file,
  111. struct poll_table_struct *wait);
  112. static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
  113. #ifdef CONFIG_COMPAT
  114. static long compat_sock_ioctl(struct file *file,
  115. unsigned int cmd, unsigned long arg);
  116. #endif
  117. static int sock_fasync(int fd, struct file *filp, int on);
  118. static ssize_t sock_sendpage(struct file *file, struct page *page,
  119. int offset, size_t size, loff_t *ppos, int more);
  120. static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
  121. struct pipe_inode_info *pipe, size_t len,
  122. unsigned int flags);
  123. /*
  124. * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
  125. * in the operation structures but are done directly via the socketcall() multiplexor.
  126. */
  127. static const struct file_operations socket_file_ops = {
  128. .owner = THIS_MODULE,
  129. .llseek = no_llseek,
  130. .aio_read = sock_aio_read,
  131. .aio_write = sock_aio_write,
  132. .poll = sock_poll,
  133. .unlocked_ioctl = sock_ioctl,
  134. #ifdef CONFIG_COMPAT
  135. .compat_ioctl = compat_sock_ioctl,
  136. #endif
  137. .mmap = sock_mmap,
  138. .open = sock_no_open, /* special open code to disallow open via /proc */
  139. .release = sock_close,
  140. .fasync = sock_fasync,
  141. .sendpage = sock_sendpage,
  142. .splice_write = generic_splice_sendpage,
  143. .splice_read = sock_splice_read,
  144. };
  145. /*
  146. * The protocol list. Each protocol is registered in here.
  147. */
  148. static DEFINE_SPINLOCK(net_family_lock);
  149. static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
  150. /*
  151. * Statistics counters of the socket lists
  152. */
  153. static DEFINE_PER_CPU(int, sockets_in_use);
  154. /*
  155. * Support routines.
  156. * Move socket addresses back and forth across the kernel/user
  157. * divide and look after the messy bits.
  158. */
  159. /**
  160. * move_addr_to_kernel - copy a socket address into kernel space
  161. * @uaddr: Address in user space
  162. * @kaddr: Address in kernel space
  163. * @ulen: Length in user space
  164. *
  165. * The address is copied into kernel space. If the provided address is
  166. * too long an error code of -EINVAL is returned. If the copy gives
  167. * invalid addresses -EFAULT is returned. On a success 0 is returned.
  168. */
  169. int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
  170. {
  171. if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
  172. return -EINVAL;
  173. if (ulen == 0)
  174. return 0;
  175. if (copy_from_user(kaddr, uaddr, ulen))
  176. return -EFAULT;
  177. return audit_sockaddr(ulen, kaddr);
  178. }
  179. /**
  180. * move_addr_to_user - copy an address to user space
  181. * @kaddr: kernel space address
  182. * @klen: length of address in kernel
  183. * @uaddr: user space address
  184. * @ulen: pointer to user length field
  185. *
  186. * The value pointed to by ulen on entry is the buffer length available.
  187. * This is overwritten with the buffer space used. -EINVAL is returned
  188. * if an overlong buffer is specified or a negative buffer size. -EFAULT
  189. * is returned if either the buffer or the length field are not
  190. * accessible.
  191. * After copying the data up to the limit the user specifies, the true
  192. * length of the data is written over the length limit the user
  193. * specified. Zero is returned for a success.
  194. */
  195. static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
  196. void __user *uaddr, int __user *ulen)
  197. {
  198. int err;
  199. int len;
  200. BUG_ON(klen > sizeof(struct sockaddr_storage));
  201. err = get_user(len, ulen);
  202. if (err)
  203. return err;
  204. if (len > klen)
  205. len = klen;
  206. if (len < 0)
  207. return -EINVAL;
  208. if (len) {
  209. if (audit_sockaddr(klen, kaddr))
  210. return -ENOMEM;
  211. if (copy_to_user(uaddr, kaddr, len))
  212. return -EFAULT;
  213. }
  214. /*
  215. * "fromlen shall refer to the value before truncation.."
  216. * 1003.1g
  217. */
  218. return __put_user(klen, ulen);
  219. }
  220. static struct kmem_cache *sock_inode_cachep __read_mostly;
  221. static struct inode *sock_alloc_inode(struct super_block *sb)
  222. {
  223. struct socket_alloc *ei;
  224. struct socket_wq *wq;
  225. ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
  226. if (!ei)
  227. return NULL;
  228. wq = kmalloc(sizeof(*wq), GFP_KERNEL);
  229. if (!wq) {
  230. kmem_cache_free(sock_inode_cachep, ei);
  231. return NULL;
  232. }
  233. init_waitqueue_head(&wq->wait);
  234. wq->fasync_list = NULL;
  235. RCU_INIT_POINTER(ei->socket.wq, wq);
  236. ei->socket.state = SS_UNCONNECTED;
  237. ei->socket.flags = 0;
  238. ei->socket.ops = NULL;
  239. ei->socket.sk = NULL;
  240. ei->socket.file = NULL;
  241. return &ei->vfs_inode;
  242. }
  243. static void sock_destroy_inode(struct inode *inode)
  244. {
  245. struct socket_alloc *ei;
  246. struct socket_wq *wq;
  247. ei = container_of(inode, struct socket_alloc, vfs_inode);
  248. wq = rcu_dereference_protected(ei->socket.wq, 1);
  249. kfree_rcu(wq, rcu);
  250. kmem_cache_free(sock_inode_cachep, ei);
  251. }
  252. static void init_once(void *foo)
  253. {
  254. struct socket_alloc *ei = (struct socket_alloc *)foo;
  255. inode_init_once(&ei->vfs_inode);
  256. }
  257. static int init_inodecache(void)
  258. {
  259. sock_inode_cachep = kmem_cache_create("sock_inode_cache",
  260. sizeof(struct socket_alloc),
  261. 0,
  262. (SLAB_HWCACHE_ALIGN |
  263. SLAB_RECLAIM_ACCOUNT |
  264. SLAB_MEM_SPREAD),
  265. init_once);
  266. if (sock_inode_cachep == NULL)
  267. return -ENOMEM;
  268. return 0;
  269. }
  270. static const struct super_operations sockfs_ops = {
  271. .alloc_inode = sock_alloc_inode,
  272. .destroy_inode = sock_destroy_inode,
  273. .statfs = simple_statfs,
  274. };
  275. /*
  276. * sockfs_dname() is called from d_path().
  277. */
  278. static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
  279. {
  280. return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
  281. dentry->d_inode->i_ino);
  282. }
  283. static const struct dentry_operations sockfs_dentry_operations = {
  284. .d_dname = sockfs_dname,
  285. };
  286. static struct dentry *sockfs_mount(struct file_system_type *fs_type,
  287. int flags, const char *dev_name, void *data)
  288. {
  289. return mount_pseudo(fs_type, "socket:", &sockfs_ops,
  290. &sockfs_dentry_operations, SOCKFS_MAGIC);
  291. }
  292. static struct vfsmount *sock_mnt __read_mostly;
  293. static struct file_system_type sock_fs_type = {
  294. .name = "sockfs",
  295. .mount = sockfs_mount,
  296. .kill_sb = kill_anon_super,
  297. };
  298. /*
  299. * Obtains the first available file descriptor and sets it up for use.
  300. *
  301. * These functions create file structures and maps them to fd space
  302. * of the current process. On success it returns file descriptor
  303. * and file struct implicitly stored in sock->file.
  304. * Note that another thread may close file descriptor before we return
  305. * from this function. We use the fact that now we do not refer
  306. * to socket after mapping. If one day we will need it, this
  307. * function will increment ref. count on file by 1.
  308. *
  309. * In any case returned fd MAY BE not valid!
  310. * This race condition is unavoidable
  311. * with shared fd spaces, we cannot solve it inside kernel,
  312. * but we take care of internal coherence yet.
  313. */
  314. struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
  315. {
  316. struct qstr name = { .name = "" };
  317. struct path path;
  318. struct file *file;
  319. if (dname) {
  320. name.name = dname;
  321. name.len = strlen(name.name);
  322. } else if (sock->sk) {
  323. name.name = sock->sk->sk_prot_creator->name;
  324. name.len = strlen(name.name);
  325. }
  326. path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
  327. if (unlikely(!path.dentry))
  328. return ERR_PTR(-ENOMEM);
  329. path.mnt = mntget(sock_mnt);
  330. d_instantiate(path.dentry, SOCK_INODE(sock));
  331. SOCK_INODE(sock)->i_fop = &socket_file_ops;
  332. file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
  333. &socket_file_ops);
  334. if (unlikely(!file)) {
  335. /* drop dentry, keep inode */
  336. ihold(path.dentry->d_inode);
  337. path_put(&path);
  338. return ERR_PTR(-ENFILE);
  339. }
  340. sock->file = file;
  341. file->f_flags = O_RDWR | (flags & O_NONBLOCK);
  342. file->f_pos = 0;
  343. file->private_data = sock;
  344. return file;
  345. }
  346. EXPORT_SYMBOL(sock_alloc_file);
  347. static int sock_map_fd(struct socket *sock, int flags)
  348. {
  349. struct file *newfile;
  350. int fd = get_unused_fd_flags(flags);
  351. if (unlikely(fd < 0))
  352. return fd;
  353. newfile = sock_alloc_file(sock, flags, NULL);
  354. if (likely(!IS_ERR(newfile))) {
  355. fd_install(fd, newfile);
  356. return fd;
  357. }
  358. put_unused_fd(fd);
  359. return PTR_ERR(newfile);
  360. }
  361. struct socket *sock_from_file(struct file *file, int *err)
  362. {
  363. if (file->f_op == &socket_file_ops)
  364. return file->private_data; /* set in sock_map_fd */
  365. *err = -ENOTSOCK;
  366. return NULL;
  367. }
  368. EXPORT_SYMBOL(sock_from_file);
  369. /**
  370. * sockfd_lookup - Go from a file number to its socket slot
  371. * @fd: file handle
  372. * @err: pointer to an error code return
  373. *
  374. * The file handle passed in is locked and the socket it is bound
  375. * too is returned. If an error occurs the err pointer is overwritten
  376. * with a negative errno code and NULL is returned. The function checks
  377. * for both invalid handles and passing a handle which is not a socket.
  378. *
  379. * On a success the socket object pointer is returned.
  380. */
  381. struct socket *sockfd_lookup(int fd, int *err)
  382. {
  383. struct file *file;
  384. struct socket *sock;
  385. file = fget(fd);
  386. if (!file) {
  387. *err = -EBADF;
  388. return NULL;
  389. }
  390. sock = sock_from_file(file, err);
  391. if (!sock)
  392. fput(file);
  393. return sock;
  394. }
  395. EXPORT_SYMBOL(sockfd_lookup);
  396. static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
  397. {
  398. struct file *file;
  399. struct socket *sock;
  400. *err = -EBADF;
  401. file = fget_light(fd, fput_needed);
  402. if (file) {
  403. sock = sock_from_file(file, err);
  404. if (sock)
  405. return sock;
  406. fput_light(file, *fput_needed);
  407. }
  408. return NULL;
  409. }
  410. #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
  411. #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
  412. #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
  413. static ssize_t sockfs_getxattr(struct dentry *dentry,
  414. const char *name, void *value, size_t size)
  415. {
  416. const char *proto_name;
  417. size_t proto_size;
  418. int error;
  419. error = -ENODATA;
  420. if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
  421. proto_name = dentry->d_name.name;
  422. proto_size = strlen(proto_name);
  423. if (value) {
  424. error = -ERANGE;
  425. if (proto_size + 1 > size)
  426. goto out;
  427. strncpy(value, proto_name, proto_size + 1);
  428. }
  429. error = proto_size + 1;
  430. }
  431. out:
  432. return error;
  433. }
  434. static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
  435. size_t size)
  436. {
  437. ssize_t len;
  438. ssize_t used = 0;
  439. len = security_inode_listsecurity(dentry->d_inode, buffer, size);
  440. if (len < 0)
  441. return len;
  442. used += len;
  443. if (buffer) {
  444. if (size < used)
  445. return -ERANGE;
  446. buffer += len;
  447. }
  448. len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
  449. used += len;
  450. if (buffer) {
  451. if (size < used)
  452. return -ERANGE;
  453. memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
  454. buffer += len;
  455. }
  456. return used;
  457. }
  458. static const struct inode_operations sockfs_inode_ops = {
  459. .getxattr = sockfs_getxattr,
  460. .listxattr = sockfs_listxattr,
  461. };
  462. /**
  463. * sock_alloc - allocate a socket
  464. *
  465. * Allocate a new inode and socket object. The two are bound together
  466. * and initialised. The socket is then returned. If we are out of inodes
  467. * NULL is returned.
  468. */
  469. static struct socket *sock_alloc(void)
  470. {
  471. struct inode *inode;
  472. struct socket *sock;
  473. inode = new_inode_pseudo(sock_mnt->mnt_sb);
  474. if (!inode)
  475. return NULL;
  476. sock = SOCKET_I(inode);
  477. kmemcheck_annotate_bitfield(sock, type);
  478. inode->i_ino = get_next_ino();
  479. inode->i_mode = S_IFSOCK | S_IRWXUGO;
  480. inode->i_uid = current_fsuid();
  481. inode->i_gid = current_fsgid();
  482. inode->i_op = &sockfs_inode_ops;
  483. this_cpu_add(sockets_in_use, 1);
  484. return sock;
  485. }
  486. /*
  487. * In theory you can't get an open on this inode, but /proc provides
  488. * a back door. Remember to keep it shut otherwise you'll let the
  489. * creepy crawlies in.
  490. */
  491. static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
  492. {
  493. return -ENXIO;
  494. }
  495. const struct file_operations bad_sock_fops = {
  496. .owner = THIS_MODULE,
  497. .open = sock_no_open,
  498. .llseek = noop_llseek,
  499. };
  500. /**
  501. * sock_release - close a socket
  502. * @sock: socket to close
  503. *
  504. * The socket is released from the protocol stack if it has a release
  505. * callback, and the inode is then released if the socket is bound to
  506. * an inode not a file.
  507. */
  508. void sock_release(struct socket *sock)
  509. {
  510. if (sock->ops) {
  511. struct module *owner = sock->ops->owner;
  512. sock->ops->release(sock);
  513. sock->ops = NULL;
  514. module_put(owner);
  515. }
  516. if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
  517. printk(KERN_ERR "sock_release: fasync list not empty!\n");
  518. if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
  519. return;
  520. this_cpu_sub(sockets_in_use, 1);
  521. if (!sock->file) {
  522. iput(SOCK_INODE(sock));
  523. return;
  524. }
  525. sock->file = NULL;
  526. }
  527. EXPORT_SYMBOL(sock_release);
  528. int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
  529. {
  530. *tx_flags = 0;
  531. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  532. *tx_flags |= SKBTX_HW_TSTAMP;
  533. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  534. *tx_flags |= SKBTX_SW_TSTAMP;
  535. if (sock_flag(sk, SOCK_WIFI_STATUS))
  536. *tx_flags |= SKBTX_WIFI_STATUS;
  537. return 0;
  538. }
  539. EXPORT_SYMBOL(sock_tx_timestamp);
  540. static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
  541. struct msghdr *msg, size_t size)
  542. {
  543. struct sock_iocb *si = kiocb_to_siocb(iocb);
  544. si->sock = sock;
  545. si->scm = NULL;
  546. si->msg = msg;
  547. si->size = size;
  548. return sock->ops->sendmsg(iocb, sock, msg, size);
  549. }
  550. static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  551. struct msghdr *msg, size_t size)
  552. {
  553. int err = security_socket_sendmsg(sock, msg, size);
  554. return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
  555. }
  556. int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
  557. {
  558. struct kiocb iocb;
  559. struct sock_iocb siocb;
  560. int ret;
  561. init_sync_kiocb(&iocb, NULL);
  562. iocb.private = &siocb;
  563. ret = __sock_sendmsg(&iocb, sock, msg, size);
  564. if (-EIOCBQUEUED == ret)
  565. ret = wait_on_sync_kiocb(&iocb);
  566. return ret;
  567. }
  568. EXPORT_SYMBOL(sock_sendmsg);
  569. static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
  570. {
  571. struct kiocb iocb;
  572. struct sock_iocb siocb;
  573. int ret;
  574. init_sync_kiocb(&iocb, NULL);
  575. iocb.private = &siocb;
  576. ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
  577. if (-EIOCBQUEUED == ret)
  578. ret = wait_on_sync_kiocb(&iocb);
  579. return ret;
  580. }
  581. int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
  582. struct kvec *vec, size_t num, size_t size)
  583. {
  584. mm_segment_t oldfs = get_fs();
  585. int result;
  586. set_fs(KERNEL_DS);
  587. /*
  588. * the following is safe, since for compiler definitions of kvec and
  589. * iovec are identical, yielding the same in-core layout and alignment
  590. */
  591. msg->msg_iov = (struct iovec *)vec;
  592. msg->msg_iovlen = num;
  593. result = sock_sendmsg(sock, msg, size);
  594. set_fs(oldfs);
  595. return result;
  596. }
  597. EXPORT_SYMBOL(kernel_sendmsg);
  598. static int ktime2ts(ktime_t kt, struct timespec *ts)
  599. {
  600. if (kt.tv64) {
  601. *ts = ktime_to_timespec(kt);
  602. return 1;
  603. } else {
  604. return 0;
  605. }
  606. }
  607. /*
  608. * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
  609. */
  610. void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
  611. struct sk_buff *skb)
  612. {
  613. int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
  614. struct timespec ts[3];
  615. int empty = 1;
  616. struct skb_shared_hwtstamps *shhwtstamps =
  617. skb_hwtstamps(skb);
  618. /* Race occurred between timestamp enabling and packet
  619. receiving. Fill in the current time for now. */
  620. if (need_software_tstamp && skb->tstamp.tv64 == 0)
  621. __net_timestamp(skb);
  622. if (need_software_tstamp) {
  623. if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
  624. struct timeval tv;
  625. skb_get_timestamp(skb, &tv);
  626. put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
  627. sizeof(tv), &tv);
  628. } else {
  629. skb_get_timestampns(skb, &ts[0]);
  630. put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
  631. sizeof(ts[0]), &ts[0]);
  632. }
  633. }
  634. memset(ts, 0, sizeof(ts));
  635. if (skb->tstamp.tv64 &&
  636. sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
  637. skb_get_timestampns(skb, ts + 0);
  638. empty = 0;
  639. }
  640. if (shhwtstamps) {
  641. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
  642. ktime2ts(shhwtstamps->syststamp, ts + 1))
  643. empty = 0;
  644. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
  645. ktime2ts(shhwtstamps->hwtstamp, ts + 2))
  646. empty = 0;
  647. }
  648. if (!empty)
  649. put_cmsg(msg, SOL_SOCKET,
  650. SCM_TIMESTAMPING, sizeof(ts), &ts);
  651. }
  652. EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
  653. void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
  654. struct sk_buff *skb)
  655. {
  656. int ack;
  657. if (!sock_flag(sk, SOCK_WIFI_STATUS))
  658. return;
  659. if (!skb->wifi_acked_valid)
  660. return;
  661. ack = skb->wifi_acked;
  662. put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
  663. }
  664. EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
  665. static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
  666. struct sk_buff *skb)
  667. {
  668. if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
  669. put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
  670. sizeof(__u32), &skb->dropcount);
  671. }
  672. void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
  673. struct sk_buff *skb)
  674. {
  675. sock_recv_timestamp(msg, sk, skb);
  676. sock_recv_drops(msg, sk, skb);
  677. }
  678. EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
  679. static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
  680. struct msghdr *msg, size_t size, int flags)
  681. {
  682. struct sock_iocb *si = kiocb_to_siocb(iocb);
  683. si->sock = sock;
  684. si->scm = NULL;
  685. si->msg = msg;
  686. si->size = size;
  687. si->flags = flags;
  688. return sock->ops->recvmsg(iocb, sock, msg, size, flags);
  689. }
  690. static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  691. struct msghdr *msg, size_t size, int flags)
  692. {
  693. int err = security_socket_recvmsg(sock, msg, size, flags);
  694. return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
  695. }
  696. int sock_recvmsg(struct socket *sock, struct msghdr *msg,
  697. size_t size, int flags)
  698. {
  699. struct kiocb iocb;
  700. struct sock_iocb siocb;
  701. int ret;
  702. init_sync_kiocb(&iocb, NULL);
  703. iocb.private = &siocb;
  704. ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
  705. if (-EIOCBQUEUED == ret)
  706. ret = wait_on_sync_kiocb(&iocb);
  707. return ret;
  708. }
  709. EXPORT_SYMBOL(sock_recvmsg);
  710. static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
  711. size_t size, int flags)
  712. {
  713. struct kiocb iocb;
  714. struct sock_iocb siocb;
  715. int ret;
  716. init_sync_kiocb(&iocb, NULL);
  717. iocb.private = &siocb;
  718. ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
  719. if (-EIOCBQUEUED == ret)
  720. ret = wait_on_sync_kiocb(&iocb);
  721. return ret;
  722. }
  723. /**
  724. * kernel_recvmsg - Receive a message from a socket (kernel space)
  725. * @sock: The socket to receive the message from
  726. * @msg: Received message
  727. * @vec: Input s/g array for message data
  728. * @num: Size of input s/g array
  729. * @size: Number of bytes to read
  730. * @flags: Message flags (MSG_DONTWAIT, etc...)
  731. *
  732. * On return the msg structure contains the scatter/gather array passed in the
  733. * vec argument. The array is modified so that it consists of the unfilled
  734. * portion of the original array.
  735. *
  736. * The returned value is the total number of bytes received, or an error.
  737. */
  738. int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
  739. struct kvec *vec, size_t num, size_t size, int flags)
  740. {
  741. mm_segment_t oldfs = get_fs();
  742. int result;
  743. set_fs(KERNEL_DS);
  744. /*
  745. * the following is safe, since for compiler definitions of kvec and
  746. * iovec are identical, yielding the same in-core layout and alignment
  747. */
  748. msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
  749. result = sock_recvmsg(sock, msg, size, flags);
  750. set_fs(oldfs);
  751. return result;
  752. }
  753. EXPORT_SYMBOL(kernel_recvmsg);
  754. static void sock_aio_dtor(struct kiocb *iocb)
  755. {
  756. kfree(iocb->private);
  757. }
  758. static ssize_t sock_sendpage(struct file *file, struct page *page,
  759. int offset, size_t size, loff_t *ppos, int more)
  760. {
  761. struct socket *sock;
  762. int flags;
  763. sock = file->private_data;
  764. flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
  765. /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
  766. flags |= more;
  767. return kernel_sendpage(sock, page, offset, size, flags);
  768. }
  769. static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
  770. struct pipe_inode_info *pipe, size_t len,
  771. unsigned int flags)
  772. {
  773. struct socket *sock = file->private_data;
  774. if (unlikely(!sock->ops->splice_read))
  775. return -EINVAL;
  776. return sock->ops->splice_read(sock, ppos, pipe, len, flags);
  777. }
  778. static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
  779. struct sock_iocb *siocb)
  780. {
  781. if (!is_sync_kiocb(iocb)) {
  782. siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
  783. if (!siocb)
  784. return NULL;
  785. iocb->ki_dtor = sock_aio_dtor;
  786. }
  787. siocb->kiocb = iocb;
  788. iocb->private = siocb;
  789. return siocb;
  790. }
  791. static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
  792. struct file *file, const struct iovec *iov,
  793. unsigned long nr_segs)
  794. {
  795. struct socket *sock = file->private_data;
  796. size_t size = 0;
  797. int i;
  798. for (i = 0; i < nr_segs; i++)
  799. size += iov[i].iov_len;
  800. msg->msg_name = NULL;
  801. msg->msg_namelen = 0;
  802. msg->msg_control = NULL;
  803. msg->msg_controllen = 0;
  804. msg->msg_iov = (struct iovec *)iov;
  805. msg->msg_iovlen = nr_segs;
  806. msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
  807. return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
  808. }
  809. static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
  810. unsigned long nr_segs, loff_t pos)
  811. {
  812. struct sock_iocb siocb, *x;
  813. if (pos != 0)
  814. return -ESPIPE;
  815. if (iocb->ki_left == 0) /* Match SYS5 behaviour */
  816. return 0;
  817. x = alloc_sock_iocb(iocb, &siocb);
  818. if (!x)
  819. return -ENOMEM;
  820. return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
  821. }
  822. static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
  823. struct file *file, const struct iovec *iov,
  824. unsigned long nr_segs)
  825. {
  826. struct socket *sock = file->private_data;
  827. size_t size = 0;
  828. int i;
  829. for (i = 0; i < nr_segs; i++)
  830. size += iov[i].iov_len;
  831. msg->msg_name = NULL;
  832. msg->msg_namelen = 0;
  833. msg->msg_control = NULL;
  834. msg->msg_controllen = 0;
  835. msg->msg_iov = (struct iovec *)iov;
  836. msg->msg_iovlen = nr_segs;
  837. msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
  838. if (sock->type == SOCK_SEQPACKET)
  839. msg->msg_flags |= MSG_EOR;
  840. return __sock_sendmsg(iocb, sock, msg, size);
  841. }
  842. static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
  843. unsigned long nr_segs, loff_t pos)
  844. {
  845. struct sock_iocb siocb, *x;
  846. if (pos != 0)
  847. return -ESPIPE;
  848. x = alloc_sock_iocb(iocb, &siocb);
  849. if (!x)
  850. return -ENOMEM;
  851. return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
  852. }
  853. /*
  854. * Atomic setting of ioctl hooks to avoid race
  855. * with module unload.
  856. */
  857. static DEFINE_MUTEX(br_ioctl_mutex);
  858. static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
  859. void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
  860. {
  861. mutex_lock(&br_ioctl_mutex);
  862. br_ioctl_hook = hook;
  863. mutex_unlock(&br_ioctl_mutex);
  864. }
  865. EXPORT_SYMBOL(brioctl_set);
  866. static DEFINE_MUTEX(vlan_ioctl_mutex);
  867. static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
  868. void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
  869. {
  870. mutex_lock(&vlan_ioctl_mutex);
  871. vlan_ioctl_hook = hook;
  872. mutex_unlock(&vlan_ioctl_mutex);
  873. }
  874. EXPORT_SYMBOL(vlan_ioctl_set);
  875. static DEFINE_MUTEX(dlci_ioctl_mutex);
  876. static int (*dlci_ioctl_hook) (unsigned int, void __user *);
  877. void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
  878. {
  879. mutex_lock(&dlci_ioctl_mutex);
  880. dlci_ioctl_hook = hook;
  881. mutex_unlock(&dlci_ioctl_mutex);
  882. }
  883. EXPORT_SYMBOL(dlci_ioctl_set);
  884. static long sock_do_ioctl(struct net *net, struct socket *sock,
  885. unsigned int cmd, unsigned long arg)
  886. {
  887. int err;
  888. void __user *argp = (void __user *)arg;
  889. err = sock->ops->ioctl(sock, cmd, arg);
  890. /*
  891. * If this ioctl is unknown try to hand it down
  892. * to the NIC driver.
  893. */
  894. if (err == -ENOIOCTLCMD)
  895. err = dev_ioctl(net, cmd, argp);
  896. return err;
  897. }
  898. /*
  899. * With an ioctl, arg may well be a user mode pointer, but we don't know
  900. * what to do with it - that's up to the protocol still.
  901. */
  902. static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
  903. {
  904. struct socket *sock;
  905. struct sock *sk;
  906. void __user *argp = (void __user *)arg;
  907. int pid, err;
  908. struct net *net;
  909. sock = file->private_data;
  910. sk = sock->sk;
  911. net = sock_net(sk);
  912. if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
  913. err = dev_ioctl(net, cmd, argp);
  914. } else
  915. #ifdef CONFIG_WEXT_CORE
  916. if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
  917. err = dev_ioctl(net, cmd, argp);
  918. } else
  919. #endif
  920. switch (cmd) {
  921. case FIOSETOWN:
  922. case SIOCSPGRP:
  923. err = -EFAULT;
  924. if (get_user(pid, (int __user *)argp))
  925. break;
  926. err = f_setown(sock->file, pid, 1);
  927. break;
  928. case FIOGETOWN:
  929. case SIOCGPGRP:
  930. err = put_user(f_getown(sock->file),
  931. (int __user *)argp);
  932. break;
  933. case SIOCGIFBR:
  934. case SIOCSIFBR:
  935. case SIOCBRADDBR:
  936. case SIOCBRDELBR:
  937. err = -ENOPKG;
  938. if (!br_ioctl_hook)
  939. request_module("bridge");
  940. mutex_lock(&br_ioctl_mutex);
  941. if (br_ioctl_hook)
  942. err = br_ioctl_hook(net, cmd, argp);
  943. mutex_unlock(&br_ioctl_mutex);
  944. break;
  945. case SIOCGIFVLAN:
  946. case SIOCSIFVLAN:
  947. err = -ENOPKG;
  948. if (!vlan_ioctl_hook)
  949. request_module("8021q");
  950. mutex_lock(&vlan_ioctl_mutex);
  951. if (vlan_ioctl_hook)
  952. err = vlan_ioctl_hook(net, argp);
  953. mutex_unlock(&vlan_ioctl_mutex);
  954. break;
  955. case SIOCADDDLCI:
  956. case SIOCDELDLCI:
  957. err = -ENOPKG;
  958. if (!dlci_ioctl_hook)
  959. request_module("dlci");
  960. mutex_lock(&dlci_ioctl_mutex);
  961. if (dlci_ioctl_hook)
  962. err = dlci_ioctl_hook(cmd, argp);
  963. mutex_unlock(&dlci_ioctl_mutex);
  964. break;
  965. default:
  966. err = sock_do_ioctl(net, sock, cmd, arg);
  967. break;
  968. }
  969. return err;
  970. }
  971. int sock_create_lite(int family, int type, int protocol, struct socket **res)
  972. {
  973. int err;
  974. struct socket *sock = NULL;
  975. err = security_socket_create(family, type, protocol, 1);
  976. if (err)
  977. goto out;
  978. sock = sock_alloc();
  979. if (!sock) {
  980. err = -ENOMEM;
  981. goto out;
  982. }
  983. sock->type = type;
  984. err = security_socket_post_create(sock, family, type, protocol, 1);
  985. if (err)
  986. goto out_release;
  987. out:
  988. *res = sock;
  989. return err;
  990. out_release:
  991. sock_release(sock);
  992. sock = NULL;
  993. goto out;
  994. }
  995. EXPORT_SYMBOL(sock_create_lite);
  996. /* No kernel lock held - perfect */
  997. static unsigned int sock_poll(struct file *file, poll_table *wait)
  998. {
  999. struct socket *sock;
  1000. /*
  1001. * We can't return errors to poll, so it's either yes or no.
  1002. */
  1003. sock = file->private_data;
  1004. return sock->ops->poll(file, sock, wait);
  1005. }
  1006. static int sock_mmap(struct file *file, struct vm_area_struct *vma)
  1007. {
  1008. struct socket *sock = file->private_data;
  1009. return sock->ops->mmap(file, sock, vma);
  1010. }
  1011. static int sock_close(struct inode *inode, struct file *filp)
  1012. {
  1013. /*
  1014. * It was possible the inode is NULL we were
  1015. * closing an unfinished socket.
  1016. */
  1017. if (!inode) {
  1018. printk(KERN_DEBUG "sock_close: NULL inode\n");
  1019. return 0;
  1020. }
  1021. sock_release(SOCKET_I(inode));
  1022. return 0;
  1023. }
  1024. /*
  1025. * Update the socket async list
  1026. *
  1027. * Fasync_list locking strategy.
  1028. *
  1029. * 1. fasync_list is modified only under process context socket lock
  1030. * i.e. under semaphore.
  1031. * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
  1032. * or under socket lock
  1033. */
  1034. static int sock_fasync(int fd, struct file *filp, int on)
  1035. {
  1036. struct socket *sock = filp->private_data;
  1037. struct sock *sk = sock->sk;
  1038. struct socket_wq *wq;
  1039. if (sk == NULL)
  1040. return -EINVAL;
  1041. lock_sock(sk);
  1042. wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
  1043. fasync_helper(fd, filp, on, &wq->fasync_list);
  1044. if (!wq->fasync_list)
  1045. sock_reset_flag(sk, SOCK_FASYNC);
  1046. else
  1047. sock_set_flag(sk, SOCK_FASYNC);
  1048. release_sock(sk);
  1049. return 0;
  1050. }
  1051. /* This function may be called only under socket lock or callback_lock or rcu_lock */
  1052. int sock_wake_async(struct socket *sock, int how, int band)
  1053. {
  1054. struct socket_wq *wq;
  1055. if (!sock)
  1056. return -1;
  1057. rcu_read_lock();
  1058. wq = rcu_dereference(sock->wq);
  1059. if (!wq || !wq->fasync_list) {
  1060. rcu_read_unlock();
  1061. return -1;
  1062. }
  1063. switch (how) {
  1064. case SOCK_WAKE_WAITD:
  1065. if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
  1066. break;
  1067. goto call_kill;
  1068. case SOCK_WAKE_SPACE:
  1069. if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
  1070. break;
  1071. /* fall through */
  1072. case SOCK_WAKE_IO:
  1073. call_kill:
  1074. kill_fasync(&wq->fasync_list, SIGIO, band);
  1075. break;
  1076. case SOCK_WAKE_URG:
  1077. kill_fasync(&wq->fasync_list, SIGURG, band);
  1078. }
  1079. rcu_read_unlock();
  1080. return 0;
  1081. }
  1082. EXPORT_SYMBOL(sock_wake_async);
  1083. int __sock_create(struct net *net, int family, int type, int protocol,
  1084. struct socket **res, int kern)
  1085. {
  1086. int err;
  1087. struct socket *sock;
  1088. const struct net_proto_family *pf;
  1089. /*
  1090. * Check protocol is in range
  1091. */
  1092. if (family < 0 || family >= NPROTO)
  1093. return -EAFNOSUPPORT;
  1094. if (type < 0 || type >= SOCK_MAX)
  1095. return -EINVAL;
  1096. /* Compatibility.
  1097. This uglymoron is moved from INET layer to here to avoid
  1098. deadlock in module load.
  1099. */
  1100. if (family == PF_INET && type == SOCK_PACKET) {
  1101. static int warned;
  1102. if (!warned) {
  1103. warned = 1;
  1104. printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
  1105. current->comm);
  1106. }
  1107. family = PF_PACKET;
  1108. }
  1109. err = security_socket_create(family, type, protocol, kern);
  1110. if (err)
  1111. return err;
  1112. /*
  1113. * Allocate the socket and allow the family to set things up. if
  1114. * the protocol is 0, the family is instructed to select an appropriate
  1115. * default.
  1116. */
  1117. sock = sock_alloc();
  1118. if (!sock) {
  1119. net_warn_ratelimited("socket: no more sockets\n");
  1120. return -ENFILE; /* Not exactly a match, but its the
  1121. closest posix thing */
  1122. }
  1123. sock->type = type;
  1124. #ifdef CONFIG_MODULES
  1125. /* Attempt to load a protocol module if the find failed.
  1126. *
  1127. * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
  1128. * requested real, full-featured networking support upon configuration.
  1129. * Otherwise module support will break!
  1130. */
  1131. if (rcu_access_pointer(net_families[family]) == NULL)
  1132. request_module("net-pf-%d", family);
  1133. #endif
  1134. rcu_read_lock();
  1135. pf = rcu_dereference(net_families[family]);
  1136. err = -EAFNOSUPPORT;
  1137. if (!pf)
  1138. goto out_release;
  1139. /*
  1140. * We will call the ->create function, that possibly is in a loadable
  1141. * module, so we have to bump that loadable module refcnt first.
  1142. */
  1143. if (!try_module_get(pf->owner))
  1144. goto out_release;
  1145. /* Now protected by module ref count */
  1146. rcu_read_unlock();
  1147. err = pf->create(net, sock, protocol, kern);
  1148. if (err < 0)
  1149. goto out_module_put;
  1150. /*
  1151. * Now to bump the refcnt of the [loadable] module that owns this
  1152. * socket at sock_release time we decrement its refcnt.
  1153. */
  1154. if (!try_module_get(sock->ops->owner))
  1155. goto out_module_busy;
  1156. /*
  1157. * Now that we're done with the ->create function, the [loadable]
  1158. * module can have its refcnt decremented
  1159. */
  1160. module_put(pf->owner);
  1161. err = security_socket_post_create(sock, family, type, protocol, kern);
  1162. if (err)
  1163. goto out_sock_release;
  1164. *res = sock;
  1165. return 0;
  1166. out_module_busy:
  1167. err = -EAFNOSUPPORT;
  1168. out_module_put:
  1169. sock->ops = NULL;
  1170. module_put(pf->owner);
  1171. out_sock_release:
  1172. sock_release(sock);
  1173. return err;
  1174. out_release:
  1175. rcu_read_unlock();
  1176. goto out_sock_release;
  1177. }
  1178. EXPORT_SYMBOL(__sock_create);
  1179. int sock_create(int family, int type, int protocol, struct socket **res)
  1180. {
  1181. return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
  1182. }
  1183. EXPORT_SYMBOL(sock_create);
  1184. int sock_create_kern(int family, int type, int protocol, struct socket **res)
  1185. {
  1186. return __sock_create(&init_net, family, type, protocol, res, 1);
  1187. }
  1188. EXPORT_SYMBOL(sock_create_kern);
  1189. SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
  1190. {
  1191. int retval;
  1192. struct socket *sock;
  1193. int flags;
  1194. /* Check the SOCK_* constants for consistency. */
  1195. BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
  1196. BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
  1197. BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
  1198. BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
  1199. flags = type & ~SOCK_TYPE_MASK;
  1200. if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
  1201. return -EINVAL;
  1202. type &= SOCK_TYPE_MASK;
  1203. if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
  1204. flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
  1205. retval = sock_create(family, type, protocol, &sock);
  1206. if (retval < 0)
  1207. goto out;
  1208. retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
  1209. if (retval < 0)
  1210. goto out_release;
  1211. out:
  1212. /* It may be already another descriptor 8) Not kernel problem. */
  1213. return retval;
  1214. out_release:
  1215. sock_release(sock);
  1216. return retval;
  1217. }
  1218. /*
  1219. * Create a pair of connected sockets.
  1220. */
  1221. SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
  1222. int __user *, usockvec)
  1223. {
  1224. struct socket *sock1, *sock2;
  1225. int fd1, fd2, err;
  1226. struct file *newfile1, *newfile2;
  1227. int flags;
  1228. flags = type & ~SOCK_TYPE_MASK;
  1229. if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
  1230. return -EINVAL;
  1231. type &= SOCK_TYPE_MASK;
  1232. if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
  1233. flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
  1234. /*
  1235. * Obtain the first socket and check if the underlying protocol
  1236. * supports the socketpair call.
  1237. */
  1238. err = sock_create(family, type, protocol, &sock1);
  1239. if (err < 0)
  1240. goto out;
  1241. err = sock_create(family, type, protocol, &sock2);
  1242. if (err < 0)
  1243. goto out_release_1;
  1244. err = sock1->ops->socketpair(sock1, sock2);
  1245. if (err < 0)
  1246. goto out_release_both;
  1247. fd1 = get_unused_fd_flags(flags);
  1248. if (unlikely(fd1 < 0)) {
  1249. err = fd1;
  1250. goto out_release_both;
  1251. }
  1252. fd2 = get_unused_fd_flags(flags);
  1253. if (unlikely(fd2 < 0)) {
  1254. err = fd2;
  1255. put_unused_fd(fd1);
  1256. goto out_release_both;
  1257. }
  1258. newfile1 = sock_alloc_file(sock1, flags, NULL);
  1259. if (unlikely(IS_ERR(newfile1))) {
  1260. err = PTR_ERR(newfile1);
  1261. put_unused_fd(fd1);
  1262. put_unused_fd(fd2);
  1263. goto out_release_both;
  1264. }
  1265. newfile2 = sock_alloc_file(sock2, flags, NULL);
  1266. if (IS_ERR(newfile2)) {
  1267. err = PTR_ERR(newfile2);
  1268. fput(newfile1);
  1269. put_unused_fd(fd1);
  1270. put_unused_fd(fd2);
  1271. sock_release(sock2);
  1272. goto out;
  1273. }
  1274. audit_fd_pair(fd1, fd2);
  1275. fd_install(fd1, newfile1);
  1276. fd_install(fd2, newfile2);
  1277. /* fd1 and fd2 may be already another descriptors.
  1278. * Not kernel problem.
  1279. */
  1280. err = put_user(fd1, &usockvec[0]);
  1281. if (!err)
  1282. err = put_user(fd2, &usockvec[1]);
  1283. if (!err)
  1284. return 0;
  1285. sys_close(fd2);
  1286. sys_close(fd1);
  1287. return err;
  1288. out_release_both:
  1289. sock_release(sock2);
  1290. out_release_1:
  1291. sock_release(sock1);
  1292. out:
  1293. return err;
  1294. }
  1295. /*
  1296. * Bind a name to a socket. Nothing much to do here since it's
  1297. * the protocol's responsibility to handle the local address.
  1298. *
  1299. * We move the socket address to kernel space before we call
  1300. * the protocol layer (having also checked the address is ok).
  1301. */
  1302. SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
  1303. {
  1304. struct socket *sock;
  1305. struct sockaddr_storage address;
  1306. int err, fput_needed;
  1307. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1308. if (sock) {
  1309. err = move_addr_to_kernel(umyaddr, addrlen, &address);
  1310. if (err >= 0) {
  1311. err = security_socket_bind(sock,
  1312. (struct sockaddr *)&address,
  1313. addrlen);
  1314. if (!err)
  1315. err = sock->ops->bind(sock,
  1316. (struct sockaddr *)
  1317. &address, addrlen);
  1318. }
  1319. fput_light(sock->file, fput_needed);
  1320. }
  1321. return err;
  1322. }
  1323. /*
  1324. * Perform a listen. Basically, we allow the protocol to do anything
  1325. * necessary for a listen, and if that works, we mark the socket as
  1326. * ready for listening.
  1327. */
  1328. SYSCALL_DEFINE2(listen, int, fd, int, backlog)
  1329. {
  1330. struct socket *sock;
  1331. int err, fput_needed;
  1332. int somaxconn;
  1333. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1334. if (sock) {
  1335. somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
  1336. if ((unsigned int)backlog > somaxconn)
  1337. backlog = somaxconn;
  1338. err = security_socket_listen(sock, backlog);
  1339. if (!err)
  1340. err = sock->ops->listen(sock, backlog);
  1341. fput_light(sock->file, fput_needed);
  1342. }
  1343. return err;
  1344. }
  1345. /*
  1346. * For accept, we attempt to create a new socket, set up the link
  1347. * with the client, wake up the client, then return the new
  1348. * connected fd. We collect the address of the connector in kernel
  1349. * space and move it to user at the very end. This is unclean because
  1350. * we open the socket then return an error.
  1351. *
  1352. * 1003.1g adds the ability to recvmsg() to query connection pending
  1353. * status to recvmsg. We need to add that support in a way thats
  1354. * clean when we restucture accept also.
  1355. */
  1356. SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
  1357. int __user *, upeer_addrlen, int, flags)
  1358. {
  1359. struct socket *sock, *newsock;
  1360. struct file *newfile;
  1361. int err, len, newfd, fput_needed;
  1362. struct sockaddr_storage address;
  1363. if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
  1364. return -EINVAL;
  1365. if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
  1366. flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
  1367. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1368. if (!sock)
  1369. goto out;
  1370. err = -ENFILE;
  1371. newsock = sock_alloc();
  1372. if (!newsock)
  1373. goto out_put;
  1374. newsock->type = sock->type;
  1375. newsock->ops = sock->ops;
  1376. /*
  1377. * We don't need try_module_get here, as the listening socket (sock)
  1378. * has the protocol module (sock->ops->owner) held.
  1379. */
  1380. __module_get(newsock->ops->owner);
  1381. newfd = get_unused_fd_flags(flags);
  1382. if (unlikely(newfd < 0)) {
  1383. err = newfd;
  1384. sock_release(newsock);
  1385. goto out_put;
  1386. }
  1387. newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
  1388. if (unlikely(IS_ERR(newfile))) {
  1389. err = PTR_ERR(newfile);
  1390. put_unused_fd(newfd);
  1391. sock_release(newsock);
  1392. goto out_put;
  1393. }
  1394. err = security_socket_accept(sock, newsock);
  1395. if (err)
  1396. goto out_fd;
  1397. err = sock->ops->accept(sock, newsock, sock->file->f_flags);
  1398. if (err < 0)
  1399. goto out_fd;
  1400. if (upeer_sockaddr) {
  1401. if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
  1402. &len, 2) < 0) {
  1403. err = -ECONNABORTED;
  1404. goto out_fd;
  1405. }
  1406. err = move_addr_to_user(&address,
  1407. len, upeer_sockaddr, upeer_addrlen);
  1408. if (err < 0)
  1409. goto out_fd;
  1410. }
  1411. /* File flags are not inherited via accept() unlike another OSes. */
  1412. fd_install(newfd, newfile);
  1413. err = newfd;
  1414. out_put:
  1415. fput_light(sock->file, fput_needed);
  1416. out:
  1417. return err;
  1418. out_fd:
  1419. fput(newfile);
  1420. put_unused_fd(newfd);
  1421. goto out_put;
  1422. }
  1423. SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
  1424. int __user *, upeer_addrlen)
  1425. {
  1426. return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
  1427. }
  1428. /*
  1429. * Attempt to connect to a socket with the server address. The address
  1430. * is in user space so we verify it is OK and move it to kernel space.
  1431. *
  1432. * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
  1433. * break bindings
  1434. *
  1435. * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
  1436. * other SEQPACKET protocols that take time to connect() as it doesn't
  1437. * include the -EINPROGRESS status for such sockets.
  1438. */
  1439. SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
  1440. int, addrlen)
  1441. {
  1442. struct socket *sock;
  1443. struct sockaddr_storage address;
  1444. int err, fput_needed;
  1445. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1446. if (!sock)
  1447. goto out;
  1448. err = move_addr_to_kernel(uservaddr, addrlen, &address);
  1449. if (err < 0)
  1450. goto out_put;
  1451. err =
  1452. security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
  1453. if (err)
  1454. goto out_put;
  1455. err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
  1456. sock->file->f_flags);
  1457. out_put:
  1458. fput_light(sock->file, fput_needed);
  1459. out:
  1460. return err;
  1461. }
  1462. /*
  1463. * Get the local address ('name') of a socket object. Move the obtained
  1464. * name to user space.
  1465. */
  1466. SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
  1467. int __user *, usockaddr_len)
  1468. {
  1469. struct socket *sock;
  1470. struct sockaddr_storage address;
  1471. int len, err, fput_needed;
  1472. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1473. if (!sock)
  1474. goto out;
  1475. err = security_socket_getsockname(sock);
  1476. if (err)
  1477. goto out_put;
  1478. err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
  1479. if (err)
  1480. goto out_put;
  1481. err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
  1482. out_put:
  1483. fput_light(sock->file, fput_needed);
  1484. out:
  1485. return err;
  1486. }
  1487. /*
  1488. * Get the remote address ('name') of a socket object. Move the obtained
  1489. * name to user space.
  1490. */
  1491. SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
  1492. int __user *, usockaddr_len)
  1493. {
  1494. struct socket *sock;
  1495. struct sockaddr_storage address;
  1496. int len, err, fput_needed;
  1497. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1498. if (sock != NULL) {
  1499. err = security_socket_getpeername(sock);
  1500. if (err) {
  1501. fput_light(sock->file, fput_needed);
  1502. return err;
  1503. }
  1504. err =
  1505. sock->ops->getname(sock, (struct sockaddr *)&address, &len,
  1506. 1);
  1507. if (!err)
  1508. err = move_addr_to_user(&address, len, usockaddr,
  1509. usockaddr_len);
  1510. fput_light(sock->file, fput_needed);
  1511. }
  1512. return err;
  1513. }
  1514. /*
  1515. * Send a datagram to a given address. We move the address into kernel
  1516. * space and check the user space data area is readable before invoking
  1517. * the protocol.
  1518. */
  1519. SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
  1520. unsigned int, flags, struct sockaddr __user *, addr,
  1521. int, addr_len)
  1522. {
  1523. struct socket *sock;
  1524. struct sockaddr_storage address;
  1525. int err;
  1526. struct msghdr msg;
  1527. struct iovec iov;
  1528. int fput_needed;
  1529. if (len > INT_MAX)
  1530. len = INT_MAX;
  1531. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1532. if (!sock)
  1533. goto out;
  1534. iov.iov_base = buff;
  1535. iov.iov_len = len;
  1536. msg.msg_name = NULL;
  1537. msg.msg_iov = &iov;
  1538. msg.msg_iovlen = 1;
  1539. msg.msg_control = NULL;
  1540. msg.msg_controllen = 0;
  1541. msg.msg_namelen = 0;
  1542. if (addr) {
  1543. err = move_addr_to_kernel(addr, addr_len, &address);
  1544. if (err < 0)
  1545. goto out_put;
  1546. msg.msg_name = (struct sockaddr *)&address;
  1547. msg.msg_namelen = addr_len;
  1548. }
  1549. if (sock->file->f_flags & O_NONBLOCK)
  1550. flags |= MSG_DONTWAIT;
  1551. msg.msg_flags = flags;
  1552. err = sock_sendmsg(sock, &msg, len);
  1553. out_put:
  1554. fput_light(sock->file, fput_needed);
  1555. out:
  1556. return err;
  1557. }
  1558. /*
  1559. * Send a datagram down a socket.
  1560. */
  1561. SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
  1562. unsigned int, flags)
  1563. {
  1564. return sys_sendto(fd, buff, len, flags, NULL, 0);
  1565. }
  1566. /*
  1567. * Receive a frame from the socket and optionally record the address of the
  1568. * sender. We verify the buffers are writable and if needed move the
  1569. * sender address from kernel to user space.
  1570. */
  1571. SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
  1572. unsigned int, flags, struct sockaddr __user *, addr,
  1573. int __user *, addr_len)
  1574. {
  1575. struct socket *sock;
  1576. struct iovec iov;
  1577. struct msghdr msg;
  1578. struct sockaddr_storage address;
  1579. int err, err2;
  1580. int fput_needed;
  1581. if (size > INT_MAX)
  1582. size = INT_MAX;
  1583. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1584. if (!sock)
  1585. goto out;
  1586. msg.msg_control = NULL;
  1587. msg.msg_controllen = 0;
  1588. msg.msg_iovlen = 1;
  1589. msg.msg_iov = &iov;
  1590. iov.iov_len = size;
  1591. iov.iov_base = ubuf;
  1592. /* Save some cycles and don't copy the address if not needed */
  1593. msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
  1594. /* We assume all kernel code knows the size of sockaddr_storage */
  1595. msg.msg_namelen = 0;
  1596. if (sock->file->f_flags & O_NONBLOCK)
  1597. flags |= MSG_DONTWAIT;
  1598. err = sock_recvmsg(sock, &msg, size, flags);
  1599. if (err >= 0 && addr != NULL) {
  1600. err2 = move_addr_to_user(&address,
  1601. msg.msg_namelen, addr, addr_len);
  1602. if (err2 < 0)
  1603. err = err2;
  1604. }
  1605. fput_light(sock->file, fput_needed);
  1606. out:
  1607. return err;
  1608. }
  1609. /*
  1610. * Receive a datagram from a socket.
  1611. */
  1612. asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
  1613. unsigned int flags)
  1614. {
  1615. return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
  1616. }
  1617. /*
  1618. * Set a socket option. Because we don't know the option lengths we have
  1619. * to pass the user mode parameter for the protocols to sort out.
  1620. */
  1621. SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
  1622. char __user *, optval, int, optlen)
  1623. {
  1624. int err, fput_needed;
  1625. struct socket *sock;
  1626. if (optlen < 0)
  1627. return -EINVAL;
  1628. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1629. if (sock != NULL) {
  1630. err = security_socket_setsockopt(sock, level, optname);
  1631. if (err)
  1632. goto out_put;
  1633. if (level == SOL_SOCKET)
  1634. err =
  1635. sock_setsockopt(sock, level, optname, optval,
  1636. optlen);
  1637. else
  1638. err =
  1639. sock->ops->setsockopt(sock, level, optname, optval,
  1640. optlen);
  1641. out_put:
  1642. fput_light(sock->file, fput_needed);
  1643. }
  1644. return err;
  1645. }
  1646. /*
  1647. * Get a socket option. Because we don't know the option lengths we have
  1648. * to pass a user mode parameter for the protocols to sort out.
  1649. */
  1650. SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
  1651. char __user *, optval, int __user *, optlen)
  1652. {
  1653. int err, fput_needed;
  1654. struct socket *sock;
  1655. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1656. if (sock != NULL) {
  1657. err = security_socket_getsockopt(sock, level, optname);
  1658. if (err)
  1659. goto out_put;
  1660. if (level == SOL_SOCKET)
  1661. err =
  1662. sock_getsockopt(sock, level, optname, optval,
  1663. optlen);
  1664. else
  1665. err =
  1666. sock->ops->getsockopt(sock, level, optname, optval,
  1667. optlen);
  1668. out_put:
  1669. fput_light(sock->file, fput_needed);
  1670. }
  1671. return err;
  1672. }
  1673. /*
  1674. * Shutdown a socket.
  1675. */
  1676. SYSCALL_DEFINE2(shutdown, int, fd, int, how)
  1677. {
  1678. int err, fput_needed;
  1679. struct socket *sock;
  1680. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1681. if (sock != NULL) {
  1682. err = security_socket_shutdown(sock, how);
  1683. if (!err)
  1684. err = sock->ops->shutdown(sock, how);
  1685. fput_light(sock->file, fput_needed);
  1686. }
  1687. return err;
  1688. }
  1689. /* A couple of helpful macros for getting the address of the 32/64 bit
  1690. * fields which are the same type (int / unsigned) on our platforms.
  1691. */
  1692. #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
  1693. #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
  1694. #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
  1695. struct used_address {
  1696. struct sockaddr_storage name;
  1697. unsigned int name_len;
  1698. };
  1699. static int copy_msghdr_from_user(struct msghdr *kmsg,
  1700. struct msghdr __user *umsg)
  1701. {
  1702. if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
  1703. return -EFAULT;
  1704. if (kmsg->msg_namelen < 0)
  1705. return -EINVAL;
  1706. if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
  1707. kmsg->msg_namelen = sizeof(struct sockaddr_storage);
  1708. return 0;
  1709. }
  1710. static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
  1711. struct msghdr *msg_sys, unsigned int flags,
  1712. struct used_address *used_address)
  1713. {
  1714. struct compat_msghdr __user *msg_compat =
  1715. (struct compat_msghdr __user *)msg;
  1716. struct sockaddr_storage address;
  1717. struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
  1718. unsigned char ctl[sizeof(struct cmsghdr) + 20]
  1719. __attribute__ ((aligned(sizeof(__kernel_size_t))));
  1720. /* 20 is size of ipv6_pktinfo */
  1721. unsigned char *ctl_buf = ctl;
  1722. int err, ctl_len, total_len;
  1723. err = -EFAULT;
  1724. if (MSG_CMSG_COMPAT & flags) {
  1725. if (get_compat_msghdr(msg_sys, msg_compat))
  1726. return -EFAULT;
  1727. } else {
  1728. err = copy_msghdr_from_user(msg_sys, msg);
  1729. if (err)
  1730. return err;
  1731. }
  1732. if (msg_sys->msg_iovlen > UIO_FASTIOV) {
  1733. err = -EMSGSIZE;
  1734. if (msg_sys->msg_iovlen > UIO_MAXIOV)
  1735. goto out;
  1736. err = -ENOMEM;
  1737. iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
  1738. GFP_KERNEL);
  1739. if (!iov)
  1740. goto out;
  1741. }
  1742. /* This will also move the address data into kernel space */
  1743. if (MSG_CMSG_COMPAT & flags) {
  1744. err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
  1745. } else
  1746. err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
  1747. if (err < 0)
  1748. goto out_freeiov;
  1749. total_len = err;
  1750. err = -ENOBUFS;
  1751. if (msg_sys->msg_controllen > INT_MAX)
  1752. goto out_freeiov;
  1753. ctl_len = msg_sys->msg_controllen;
  1754. if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
  1755. err =
  1756. cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
  1757. sizeof(ctl));
  1758. if (err)
  1759. goto out_freeiov;
  1760. ctl_buf = msg_sys->msg_control;
  1761. ctl_len = msg_sys->msg_controllen;
  1762. } else if (ctl_len) {
  1763. if (ctl_len > sizeof(ctl)) {
  1764. ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
  1765. if (ctl_buf == NULL)
  1766. goto out_freeiov;
  1767. }
  1768. err = -EFAULT;
  1769. /*
  1770. * Careful! Before this, msg_sys->msg_control contains a user pointer.
  1771. * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
  1772. * checking falls down on this.
  1773. */
  1774. if (copy_from_user(ctl_buf,
  1775. (void __user __force *)msg_sys->msg_control,
  1776. ctl_len))
  1777. goto out_freectl;
  1778. msg_sys->msg_control = ctl_buf;
  1779. }
  1780. msg_sys->msg_flags = flags;
  1781. if (sock->file->f_flags & O_NONBLOCK)
  1782. msg_sys->msg_flags |= MSG_DONTWAIT;
  1783. /*
  1784. * If this is sendmmsg() and current destination address is same as
  1785. * previously succeeded address, omit asking LSM's decision.
  1786. * used_address->name_len is initialized to UINT_MAX so that the first
  1787. * destination address never matches.
  1788. */
  1789. if (used_address && msg_sys->msg_name &&
  1790. used_address->name_len == msg_sys->msg_namelen &&
  1791. !memcmp(&used_address->name, msg_sys->msg_name,
  1792. used_address->name_len)) {
  1793. err = sock_sendmsg_nosec(sock, msg_sys, total_len);
  1794. goto out_freectl;
  1795. }
  1796. err = sock_sendmsg(sock, msg_sys, total_len);
  1797. /*
  1798. * If this is sendmmsg() and sending to current destination address was
  1799. * successful, remember it.
  1800. */
  1801. if (used_address && err >= 0) {
  1802. used_address->name_len = msg_sys->msg_namelen;
  1803. if (msg_sys->msg_name)
  1804. memcpy(&used_address->name, msg_sys->msg_name,
  1805. used_address->name_len);
  1806. }
  1807. out_freectl:
  1808. if (ctl_buf != ctl)
  1809. sock_kfree_s(sock->sk, ctl_buf, ctl_len);
  1810. out_freeiov:
  1811. if (iov != iovstack)
  1812. kfree(iov);
  1813. out:
  1814. return err;
  1815. }
  1816. /*
  1817. * BSD sendmsg interface
  1818. */
  1819. long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
  1820. {
  1821. int fput_needed, err;
  1822. struct msghdr msg_sys;
  1823. struct socket *sock;
  1824. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1825. if (!sock)
  1826. goto out;
  1827. err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
  1828. fput_light(sock->file, fput_needed);
  1829. out:
  1830. return err;
  1831. }
  1832. SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
  1833. {
  1834. if (flags & MSG_CMSG_COMPAT)
  1835. return -EINVAL;
  1836. return __sys_sendmsg(fd, msg, flags);
  1837. }
  1838. /*
  1839. * Linux sendmmsg interface
  1840. */
  1841. int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
  1842. unsigned int flags)
  1843. {
  1844. int fput_needed, err, datagrams;
  1845. struct socket *sock;
  1846. struct mmsghdr __user *entry;
  1847. struct compat_mmsghdr __user *compat_entry;
  1848. struct msghdr msg_sys;
  1849. struct used_address used_address;
  1850. if (vlen > UIO_MAXIOV)
  1851. vlen = UIO_MAXIOV;
  1852. datagrams = 0;
  1853. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1854. if (!sock)
  1855. return err;
  1856. used_address.name_len = UINT_MAX;
  1857. entry = mmsg;
  1858. compat_entry = (struct compat_mmsghdr __user *)mmsg;
  1859. err = 0;
  1860. while (datagrams < vlen) {
  1861. if (MSG_CMSG_COMPAT & flags) {
  1862. err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
  1863. &msg_sys, flags, &used_address);
  1864. if (err < 0)
  1865. break;
  1866. err = __put_user(err, &compat_entry->msg_len);
  1867. ++compat_entry;
  1868. } else {
  1869. err = ___sys_sendmsg(sock,
  1870. (struct msghdr __user *)entry,
  1871. &msg_sys, flags, &used_address);
  1872. if (err < 0)
  1873. break;
  1874. err = put_user(err, &entry->msg_len);
  1875. ++entry;
  1876. }
  1877. if (err)
  1878. break;
  1879. ++datagrams;
  1880. }
  1881. fput_light(sock->file, fput_needed);
  1882. /* We only return an error if no datagrams were able to be sent */
  1883. if (datagrams != 0)
  1884. return datagrams;
  1885. return err;
  1886. }
  1887. SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
  1888. unsigned int, vlen, unsigned int, flags)
  1889. {
  1890. if (flags & MSG_CMSG_COMPAT)
  1891. return -EINVAL;
  1892. return __sys_sendmmsg(fd, mmsg, vlen, flags);
  1893. }
  1894. static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
  1895. struct msghdr *msg_sys, unsigned int flags, int nosec)
  1896. {
  1897. struct compat_msghdr __user *msg_compat =
  1898. (struct compat_msghdr __user *)msg;
  1899. struct iovec iovstack[UIO_FASTIOV];
  1900. struct iovec *iov = iovstack;
  1901. unsigned long cmsg_ptr;
  1902. int err, total_len, len;
  1903. /* kernel mode address */
  1904. struct sockaddr_storage addr;
  1905. /* user mode address pointers */
  1906. struct sockaddr __user *uaddr;
  1907. int __user *uaddr_len;
  1908. if (MSG_CMSG_COMPAT & flags) {
  1909. if (get_compat_msghdr(msg_sys, msg_compat))
  1910. return -EFAULT;
  1911. } else {
  1912. err = copy_msghdr_from_user(msg_sys, msg);
  1913. if (err)
  1914. return err;
  1915. }
  1916. if (msg_sys->msg_iovlen > UIO_FASTIOV) {
  1917. err = -EMSGSIZE;
  1918. if (msg_sys->msg_iovlen > UIO_MAXIOV)
  1919. goto out;
  1920. err = -ENOMEM;
  1921. iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
  1922. GFP_KERNEL);
  1923. if (!iov)
  1924. goto out;
  1925. }
  1926. /* Save the user-mode address (verify_iovec will change the
  1927. * kernel msghdr to use the kernel address space)
  1928. */
  1929. uaddr = (__force void __user *)msg_sys->msg_name;
  1930. uaddr_len = COMPAT_NAMELEN(msg);
  1931. if (MSG_CMSG_COMPAT & flags)
  1932. err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
  1933. else
  1934. err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
  1935. if (err < 0)
  1936. goto out_freeiov;
  1937. total_len = err;
  1938. cmsg_ptr = (unsigned long)msg_sys->msg_control;
  1939. msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
  1940. /* We assume all kernel code knows the size of sockaddr_storage */
  1941. msg_sys->msg_namelen = 0;
  1942. if (sock->file->f_flags & O_NONBLOCK)
  1943. flags |= MSG_DONTWAIT;
  1944. err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
  1945. total_len, flags);
  1946. if (err < 0)
  1947. goto out_freeiov;
  1948. len = err;
  1949. if (uaddr != NULL) {
  1950. err = move_addr_to_user(&addr,
  1951. msg_sys->msg_namelen, uaddr,
  1952. uaddr_len);
  1953. if (err < 0)
  1954. goto out_freeiov;
  1955. }
  1956. err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
  1957. COMPAT_FLAGS(msg));
  1958. if (err)
  1959. goto out_freeiov;
  1960. if (MSG_CMSG_COMPAT & flags)
  1961. err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
  1962. &msg_compat->msg_controllen);
  1963. else
  1964. err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
  1965. &msg->msg_controllen);
  1966. if (err)
  1967. goto out_freeiov;
  1968. err = len;
  1969. out_freeiov:
  1970. if (iov != iovstack)
  1971. kfree(iov);
  1972. out:
  1973. return err;
  1974. }
  1975. /*
  1976. * BSD recvmsg interface
  1977. */
  1978. long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
  1979. {
  1980. int fput_needed, err;
  1981. struct msghdr msg_sys;
  1982. struct socket *sock;
  1983. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1984. if (!sock)
  1985. goto out;
  1986. err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
  1987. fput_light(sock->file, fput_needed);
  1988. out:
  1989. return err;
  1990. }
  1991. SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
  1992. unsigned int, flags)
  1993. {
  1994. if (flags & MSG_CMSG_COMPAT)
  1995. return -EINVAL;
  1996. return __sys_recvmsg(fd, msg, flags);
  1997. }
  1998. /*
  1999. * Linux recvmmsg interface
  2000. */
  2001. int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
  2002. unsigned int flags, struct timespec *timeout)
  2003. {
  2004. int fput_needed, err, datagrams;
  2005. struct socket *sock;
  2006. struct mmsghdr __user *entry;
  2007. struct compat_mmsghdr __user *compat_entry;
  2008. struct msghdr msg_sys;
  2009. struct timespec end_time;
  2010. if (timeout &&
  2011. poll_select_set_timeout(&end_time, timeout->tv_sec,
  2012. timeout->tv_nsec))
  2013. return -EINVAL;
  2014. datagrams = 0;
  2015. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  2016. if (!sock)
  2017. return err;
  2018. err = sock_error(sock->sk);
  2019. if (err)
  2020. goto out_put;
  2021. entry = mmsg;
  2022. compat_entry = (struct compat_mmsghdr __user *)mmsg;
  2023. while (datagrams < vlen) {
  2024. /*
  2025. * No need to ask LSM for more than the first datagram.
  2026. */
  2027. if (MSG_CMSG_COMPAT & flags) {
  2028. err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
  2029. &msg_sys, flags & ~MSG_WAITFORONE,
  2030. datagrams);
  2031. if (err < 0)
  2032. break;
  2033. err = __put_user(err, &compat_entry->msg_len);
  2034. ++compat_entry;
  2035. } else {
  2036. err = ___sys_recvmsg(sock,
  2037. (struct msghdr __user *)entry,
  2038. &msg_sys, flags & ~MSG_WAITFORONE,
  2039. datagrams);
  2040. if (err < 0)
  2041. break;
  2042. err = put_user(err, &entry->msg_len);
  2043. ++entry;
  2044. }
  2045. if (err)
  2046. break;
  2047. ++datagrams;
  2048. /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
  2049. if (flags & MSG_WAITFORONE)
  2050. flags |= MSG_DONTWAIT;
  2051. if (timeout) {
  2052. ktime_get_ts(timeout);
  2053. *timeout = timespec_sub(end_time, *timeout);
  2054. if (timeout->tv_sec < 0) {
  2055. timeout->tv_sec = timeout->tv_nsec = 0;
  2056. break;
  2057. }
  2058. /* Timeout, return less than vlen datagrams */
  2059. if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
  2060. break;
  2061. }
  2062. /* Out of band data, return right away */
  2063. if (msg_sys.msg_flags & MSG_OOB)
  2064. break;
  2065. }
  2066. out_put:
  2067. fput_light(sock->file, fput_needed);
  2068. if (err == 0)
  2069. return datagrams;
  2070. if (datagrams != 0) {
  2071. /*
  2072. * We may return less entries than requested (vlen) if the
  2073. * sock is non block and there aren't enough datagrams...
  2074. */
  2075. if (err != -EAGAIN) {
  2076. /*
  2077. * ... or if recvmsg returns an error after we
  2078. * received some datagrams, where we record the
  2079. * error to return on the next call or if the
  2080. * app asks about it using getsockopt(SO_ERROR).
  2081. */
  2082. sock->sk->sk_err = -err;
  2083. }
  2084. return datagrams;
  2085. }
  2086. return err;
  2087. }
  2088. SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
  2089. unsigned int, vlen, unsigned int, flags,
  2090. struct timespec __user *, timeout)
  2091. {
  2092. int datagrams;
  2093. struct timespec timeout_sys;
  2094. if (flags & MSG_CMSG_COMPAT)
  2095. return -EINVAL;
  2096. if (!timeout)
  2097. return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
  2098. if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
  2099. return -EFAULT;
  2100. datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
  2101. if (datagrams > 0 &&
  2102. copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
  2103. datagrams = -EFAULT;
  2104. return datagrams;
  2105. }
  2106. #ifdef __ARCH_WANT_SYS_SOCKETCALL
  2107. /* Argument list sizes for sys_socketcall */
  2108. #define AL(x) ((x) * sizeof(unsigned long))
  2109. static const unsigned char nargs[21] = {
  2110. AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
  2111. AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
  2112. AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
  2113. AL(4), AL(5), AL(4)
  2114. };
  2115. #undef AL
  2116. /*
  2117. * System call vectors.
  2118. *
  2119. * Argument checking cleaned up. Saved 20% in size.
  2120. * This function doesn't need to set the kernel lock because
  2121. * it is set by the callees.
  2122. */
  2123. SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
  2124. {
  2125. unsigned long a[6];
  2126. unsigned long a0, a1;
  2127. int err;
  2128. unsigned int len;
  2129. if (call < 1 || call > SYS_SENDMMSG)
  2130. return -EINVAL;
  2131. len = nargs[call];
  2132. if (len > sizeof(a))
  2133. return -EINVAL;
  2134. /* copy_from_user should be SMP safe. */
  2135. if (copy_from_user(a, args, len))
  2136. return -EFAULT;
  2137. audit_socketcall(nargs[call] / sizeof(unsigned long), a);
  2138. a0 = a[0];
  2139. a1 = a[1];
  2140. switch (call) {
  2141. case SYS_SOCKET:
  2142. err = sys_socket(a0, a1, a[2]);
  2143. break;
  2144. case SYS_BIND:
  2145. err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
  2146. break;
  2147. case SYS_CONNECT:
  2148. err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
  2149. break;
  2150. case SYS_LISTEN:
  2151. err = sys_listen(a0, a1);
  2152. break;
  2153. case SYS_ACCEPT:
  2154. err = sys_accept4(a0, (struct sockaddr __user *)a1,
  2155. (int __user *)a[2], 0);
  2156. break;
  2157. case SYS_GETSOCKNAME:
  2158. err =
  2159. sys_getsockname(a0, (struct sockaddr __user *)a1,
  2160. (int __user *)a[2]);
  2161. break;
  2162. case SYS_GETPEERNAME:
  2163. err =
  2164. sys_getpeername(a0, (struct sockaddr __user *)a1,
  2165. (int __user *)a[2]);
  2166. break;
  2167. case SYS_SOCKETPAIR:
  2168. err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
  2169. break;
  2170. case SYS_SEND:
  2171. err = sys_send(a0, (void __user *)a1, a[2], a[3]);
  2172. break;
  2173. case SYS_SENDTO:
  2174. err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
  2175. (struct sockaddr __user *)a[4], a[5]);
  2176. break;
  2177. case SYS_RECV:
  2178. err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
  2179. break;
  2180. case SYS_RECVFROM:
  2181. err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
  2182. (struct sockaddr __user *)a[4],
  2183. (int __user *)a[5]);
  2184. break;
  2185. case SYS_SHUTDOWN:
  2186. err = sys_shutdown(a0, a1);
  2187. break;
  2188. case SYS_SETSOCKOPT:
  2189. err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
  2190. break;
  2191. case SYS_GETSOCKOPT:
  2192. err =
  2193. sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
  2194. (int __user *)a[4]);
  2195. break;
  2196. case SYS_SENDMSG:
  2197. err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
  2198. break;
  2199. case SYS_SENDMMSG:
  2200. err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
  2201. break;
  2202. case SYS_RECVMSG:
  2203. err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
  2204. break;
  2205. case SYS_RECVMMSG:
  2206. err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
  2207. (struct timespec __user *)a[4]);
  2208. break;
  2209. case SYS_ACCEPT4:
  2210. err = sys_accept4(a0, (struct sockaddr __user *)a1,
  2211. (int __user *)a[2], a[3]);
  2212. break;
  2213. default:
  2214. err = -EINVAL;
  2215. break;
  2216. }
  2217. return err;
  2218. }
  2219. #endif /* __ARCH_WANT_SYS_SOCKETCALL */
  2220. /**
  2221. * sock_register - add a socket protocol handler
  2222. * @ops: description of protocol
  2223. *
  2224. * This function is called by a protocol handler that wants to
  2225. * advertise its address family, and have it linked into the
  2226. * socket interface. The value ops->family coresponds to the
  2227. * socket system call protocol family.
  2228. */
  2229. int sock_register(const struct net_proto_family *ops)
  2230. {
  2231. int err;
  2232. if (ops->family >= NPROTO) {
  2233. printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
  2234. NPROTO);
  2235. return -ENOBUFS;
  2236. }
  2237. spin_lock(&net_family_lock);
  2238. if (rcu_dereference_protected(net_families[ops->family],
  2239. lockdep_is_held(&net_family_lock)))
  2240. err = -EEXIST;
  2241. else {
  2242. rcu_assign_pointer(net_families[ops->family], ops);
  2243. err = 0;
  2244. }
  2245. spin_unlock(&net_family_lock);
  2246. printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
  2247. return err;
  2248. }
  2249. EXPORT_SYMBOL(sock_register);
  2250. /**
  2251. * sock_unregister - remove a protocol handler
  2252. * @family: protocol family to remove
  2253. *
  2254. * This function is called by a protocol handler that wants to
  2255. * remove its address family, and have it unlinked from the
  2256. * new socket creation.
  2257. *
  2258. * If protocol handler is a module, then it can use module reference
  2259. * counts to protect against new references. If protocol handler is not
  2260. * a module then it needs to provide its own protection in
  2261. * the ops->create routine.
  2262. */
  2263. void sock_unregister(int family)
  2264. {
  2265. BUG_ON(family < 0 || family >= NPROTO);
  2266. spin_lock(&net_family_lock);
  2267. RCU_INIT_POINTER(net_families[family], NULL);
  2268. spin_unlock(&net_family_lock);
  2269. synchronize_rcu();
  2270. printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
  2271. }
  2272. EXPORT_SYMBOL(sock_unregister);
  2273. static int __init sock_init(void)
  2274. {
  2275. int err;
  2276. /*
  2277. * Initialize the network sysctl infrastructure.
  2278. */
  2279. err = net_sysctl_init();
  2280. if (err)
  2281. goto out;
  2282. /*
  2283. * Initialize skbuff SLAB cache
  2284. */
  2285. skb_init();
  2286. /*
  2287. * Initialize the protocols module.
  2288. */
  2289. init_inodecache();
  2290. err = register_filesystem(&sock_fs_type);
  2291. if (err)
  2292. goto out_fs;
  2293. sock_mnt = kern_mount(&sock_fs_type);
  2294. if (IS_ERR(sock_mnt)) {
  2295. err = PTR_ERR(sock_mnt);
  2296. goto out_mount;
  2297. }
  2298. /* The real protocol initialization is performed in later initcalls.
  2299. */
  2300. #ifdef CONFIG_NETFILTER
  2301. netfilter_init();
  2302. #endif
  2303. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  2304. skb_timestamping_init();
  2305. #endif
  2306. out:
  2307. return err;
  2308. out_mount:
  2309. unregister_filesystem(&sock_fs_type);
  2310. out_fs:
  2311. goto out;
  2312. }
  2313. core_initcall(sock_init); /* early initcall */
  2314. #ifdef CONFIG_PROC_FS
  2315. void socket_seq_show(struct seq_file *seq)
  2316. {
  2317. int cpu;
  2318. int counter = 0;
  2319. for_each_possible_cpu(cpu)
  2320. counter += per_cpu(sockets_in_use, cpu);
  2321. /* It can be negative, by the way. 8) */
  2322. if (counter < 0)
  2323. counter = 0;
  2324. seq_printf(seq, "sockets: used %d\n", counter);
  2325. }
  2326. #endif /* CONFIG_PROC_FS */
  2327. #ifdef CONFIG_COMPAT
  2328. static int do_siocgstamp(struct net *net, struct socket *sock,
  2329. unsigned int cmd, void __user *up)
  2330. {
  2331. mm_segment_t old_fs = get_fs();
  2332. struct timeval ktv;
  2333. int err;
  2334. set_fs(KERNEL_DS);
  2335. err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
  2336. set_fs(old_fs);
  2337. if (!err)
  2338. err = compat_put_timeval(&ktv, up);
  2339. return err;
  2340. }
  2341. static int do_siocgstampns(struct net *net, struct socket *sock,
  2342. unsigned int cmd, void __user *up)
  2343. {
  2344. mm_segment_t old_fs = get_fs();
  2345. struct timespec kts;
  2346. int err;
  2347. set_fs(KERNEL_DS);
  2348. err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
  2349. set_fs(old_fs);
  2350. if (!err)
  2351. err = compat_put_timespec(&kts, up);
  2352. return err;
  2353. }
  2354. static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
  2355. {
  2356. struct ifreq __user *uifr;
  2357. int err;
  2358. uifr = compat_alloc_user_space(sizeof(struct ifreq));
  2359. if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
  2360. return -EFAULT;
  2361. err = dev_ioctl(net, SIOCGIFNAME, uifr);
  2362. if (err)
  2363. return err;
  2364. if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
  2365. return -EFAULT;
  2366. return 0;
  2367. }
  2368. static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
  2369. {
  2370. struct compat_ifconf ifc32;
  2371. struct ifconf ifc;
  2372. struct ifconf __user *uifc;
  2373. struct compat_ifreq __user *ifr32;
  2374. struct ifreq __user *ifr;
  2375. unsigned int i, j;
  2376. int err;
  2377. if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
  2378. return -EFAULT;
  2379. memset(&ifc, 0, sizeof(ifc));
  2380. if (ifc32.ifcbuf == 0) {
  2381. ifc32.ifc_len = 0;
  2382. ifc.ifc_len = 0;
  2383. ifc.ifc_req = NULL;
  2384. uifc = compat_alloc_user_space(sizeof(struct ifconf));
  2385. } else {
  2386. size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
  2387. sizeof(struct ifreq);
  2388. uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
  2389. ifc.ifc_len = len;
  2390. ifr = ifc.ifc_req = (void __user *)(uifc + 1);
  2391. ifr32 = compat_ptr(ifc32.ifcbuf);
  2392. for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
  2393. if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
  2394. return -EFAULT;
  2395. ifr++;
  2396. ifr32++;
  2397. }
  2398. }
  2399. if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
  2400. return -EFAULT;
  2401. err = dev_ioctl(net, SIOCGIFCONF, uifc);
  2402. if (err)
  2403. return err;
  2404. if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
  2405. return -EFAULT;
  2406. ifr = ifc.ifc_req;
  2407. ifr32 = compat_ptr(ifc32.ifcbuf);
  2408. for (i = 0, j = 0;
  2409. i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
  2410. i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
  2411. if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
  2412. return -EFAULT;
  2413. ifr32++;
  2414. ifr++;
  2415. }
  2416. if (ifc32.ifcbuf == 0) {
  2417. /* Translate from 64-bit structure multiple to
  2418. * a 32-bit one.
  2419. */
  2420. i = ifc.ifc_len;
  2421. i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
  2422. ifc32.ifc_len = i;
  2423. } else {
  2424. ifc32.ifc_len = i;
  2425. }
  2426. if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
  2427. return -EFAULT;
  2428. return 0;
  2429. }
  2430. static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
  2431. {
  2432. struct compat_ethtool_rxnfc __user *compat_rxnfc;
  2433. bool convert_in = false, convert_out = false;
  2434. size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
  2435. struct ethtool_rxnfc __user *rxnfc;
  2436. struct ifreq __user *ifr;
  2437. u32 rule_cnt = 0, actual_rule_cnt;
  2438. u32 ethcmd;
  2439. u32 data;
  2440. int ret;
  2441. if (get_user(data, &ifr32->ifr_ifru.ifru_data))
  2442. return -EFAULT;
  2443. compat_rxnfc = compat_ptr(data);
  2444. if (get_user(ethcmd, &compat_rxnfc->cmd))
  2445. return -EFAULT;
  2446. /* Most ethtool structures are defined without padding.
  2447. * Unfortunately struct ethtool_rxnfc is an exception.
  2448. */
  2449. switch (ethcmd) {
  2450. default:
  2451. break;
  2452. case ETHTOOL_GRXCLSRLALL:
  2453. /* Buffer size is variable */
  2454. if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
  2455. return -EFAULT;
  2456. if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
  2457. return -ENOMEM;
  2458. buf_size += rule_cnt * sizeof(u32);
  2459. /* fall through */
  2460. case ETHTOOL_GRXRINGS:
  2461. case ETHTOOL_GRXCLSRLCNT:
  2462. case ETHTOOL_GRXCLSRULE:
  2463. case ETHTOOL_SRXCLSRLINS:
  2464. convert_out = true;
  2465. /* fall through */
  2466. case ETHTOOL_SRXCLSRLDEL:
  2467. buf_size += sizeof(struct ethtool_rxnfc);
  2468. convert_in = true;
  2469. break;
  2470. }
  2471. ifr = compat_alloc_user_space(buf_size);
  2472. rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
  2473. if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
  2474. return -EFAULT;
  2475. if (put_user(convert_in ? rxnfc : compat_ptr(data),
  2476. &ifr->ifr_ifru.ifru_data))
  2477. return -EFAULT;
  2478. if (convert_in) {
  2479. /* We expect there to be holes between fs.m_ext and
  2480. * fs.ring_cookie and at the end of fs, but nowhere else.
  2481. */
  2482. BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
  2483. sizeof(compat_rxnfc->fs.m_ext) !=
  2484. offsetof(struct ethtool_rxnfc, fs.m_ext) +
  2485. sizeof(rxnfc->fs.m_ext));
  2486. BUILD_BUG_ON(
  2487. offsetof(struct compat_ethtool_rxnfc, fs.location) -
  2488. offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
  2489. offsetof(struct ethtool_rxnfc, fs.location) -
  2490. offsetof(struct ethtool_rxnfc, fs.ring_cookie));
  2491. if (copy_in_user(rxnfc, compat_rxnfc,
  2492. (void *)(&rxnfc->fs.m_ext + 1) -
  2493. (void *)rxnfc) ||
  2494. copy_in_user(&rxnfc->fs.ring_cookie,
  2495. &compat_rxnfc->fs.ring_cookie,
  2496. (void *)(&rxnfc->fs.location + 1) -
  2497. (void *)&rxnfc->fs.ring_cookie) ||
  2498. copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
  2499. sizeof(rxnfc->rule_cnt)))
  2500. return -EFAULT;
  2501. }
  2502. ret = dev_ioctl(net, SIOCETHTOOL, ifr);
  2503. if (ret)
  2504. return ret;
  2505. if (convert_out) {
  2506. if (copy_in_user(compat_rxnfc, rxnfc,
  2507. (const void *)(&rxnfc->fs.m_ext + 1) -
  2508. (const void *)rxnfc) ||
  2509. copy_in_user(&compat_rxnfc->fs.ring_cookie,
  2510. &rxnfc->fs.ring_cookie,
  2511. (const void *)(&rxnfc->fs.location + 1) -
  2512. (const void *)&rxnfc->fs.ring_cookie) ||
  2513. copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
  2514. sizeof(rxnfc->rule_cnt)))
  2515. return -EFAULT;
  2516. if (ethcmd == ETHTOOL_GRXCLSRLALL) {
  2517. /* As an optimisation, we only copy the actual
  2518. * number of rules that the underlying
  2519. * function returned. Since Mallory might
  2520. * change the rule count in user memory, we
  2521. * check that it is less than the rule count
  2522. * originally given (as the user buffer size),
  2523. * which has been range-checked.
  2524. */
  2525. if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
  2526. return -EFAULT;
  2527. if (actual_rule_cnt < rule_cnt)
  2528. rule_cnt = actual_rule_cnt;
  2529. if (copy_in_user(&compat_rxnfc->rule_locs[0],
  2530. &rxnfc->rule_locs[0],
  2531. rule_cnt * sizeof(u32)))
  2532. return -EFAULT;
  2533. }
  2534. }
  2535. return 0;
  2536. }
  2537. static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
  2538. {
  2539. void __user *uptr;
  2540. compat_uptr_t uptr32;
  2541. struct ifreq __user *uifr;
  2542. uifr = compat_alloc_user_space(sizeof(*uifr));
  2543. if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
  2544. return -EFAULT;
  2545. if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
  2546. return -EFAULT;
  2547. uptr = compat_ptr(uptr32);
  2548. if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
  2549. return -EFAULT;
  2550. return dev_ioctl(net, SIOCWANDEV, uifr);
  2551. }
  2552. static int bond_ioctl(struct net *net, unsigned int cmd,
  2553. struct compat_ifreq __user *ifr32)
  2554. {
  2555. struct ifreq kifr;
  2556. struct ifreq __user *uifr;
  2557. mm_segment_t old_fs;
  2558. int err;
  2559. u32 data;
  2560. void __user *datap;
  2561. switch (cmd) {
  2562. case SIOCBONDENSLAVE:
  2563. case SIOCBONDRELEASE:
  2564. case SIOCBONDSETHWADDR:
  2565. case SIOCBONDCHANGEACTIVE:
  2566. if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
  2567. return -EFAULT;
  2568. old_fs = get_fs();
  2569. set_fs(KERNEL_DS);
  2570. err = dev_ioctl(net, cmd,
  2571. (struct ifreq __user __force *) &kifr);
  2572. set_fs(old_fs);
  2573. return err;
  2574. case SIOCBONDSLAVEINFOQUERY:
  2575. case SIOCBONDINFOQUERY:
  2576. uifr = compat_alloc_user_space(sizeof(*uifr));
  2577. if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
  2578. return -EFAULT;
  2579. if (get_user(data, &ifr32->ifr_ifru.ifru_data))
  2580. return -EFAULT;
  2581. datap = compat_ptr(data);
  2582. if (put_user(datap, &uifr->ifr_ifru.ifru_data))
  2583. return -EFAULT;
  2584. return dev_ioctl(net, cmd, uifr);
  2585. default:
  2586. return -ENOIOCTLCMD;
  2587. }
  2588. }
  2589. static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
  2590. struct compat_ifreq __user *u_ifreq32)
  2591. {
  2592. struct ifreq __user *u_ifreq64;
  2593. char tmp_buf[IFNAMSIZ];
  2594. void __user *data64;
  2595. u32 data32;
  2596. if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
  2597. IFNAMSIZ))
  2598. return -EFAULT;
  2599. if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
  2600. return -EFAULT;
  2601. data64 = compat_ptr(data32);
  2602. u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
  2603. /* Don't check these user accesses, just let that get trapped
  2604. * in the ioctl handler instead.
  2605. */
  2606. if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
  2607. IFNAMSIZ))
  2608. return -EFAULT;
  2609. if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
  2610. return -EFAULT;
  2611. return dev_ioctl(net, cmd, u_ifreq64);
  2612. }
  2613. static int dev_ifsioc(struct net *net, struct socket *sock,
  2614. unsigned int cmd, struct compat_ifreq __user *uifr32)
  2615. {
  2616. struct ifreq __user *uifr;
  2617. int err;
  2618. uifr = compat_alloc_user_space(sizeof(*uifr));
  2619. if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
  2620. return -EFAULT;
  2621. err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
  2622. if (!err) {
  2623. switch (cmd) {
  2624. case SIOCGIFFLAGS:
  2625. case SIOCGIFMETRIC:
  2626. case SIOCGIFMTU:
  2627. case SIOCGIFMEM:
  2628. case SIOCGIFHWADDR:
  2629. case SIOCGIFINDEX:
  2630. case SIOCGIFADDR:
  2631. case SIOCGIFBRDADDR:
  2632. case SIOCGIFDSTADDR:
  2633. case SIOCGIFNETMASK:
  2634. case SIOCGIFPFLAGS:
  2635. case SIOCGIFTXQLEN:
  2636. case SIOCGMIIPHY:
  2637. case SIOCGMIIREG:
  2638. if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
  2639. err = -EFAULT;
  2640. break;
  2641. }
  2642. }
  2643. return err;
  2644. }
  2645. static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
  2646. struct compat_ifreq __user *uifr32)
  2647. {
  2648. struct ifreq ifr;
  2649. struct compat_ifmap __user *uifmap32;
  2650. mm_segment_t old_fs;
  2651. int err;
  2652. uifmap32 = &uifr32->ifr_ifru.ifru_map;
  2653. err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
  2654. err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
  2655. err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
  2656. err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
  2657. err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
  2658. err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
  2659. err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
  2660. if (err)
  2661. return -EFAULT;
  2662. old_fs = get_fs();
  2663. set_fs(KERNEL_DS);
  2664. err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
  2665. set_fs(old_fs);
  2666. if (cmd == SIOCGIFMAP && !err) {
  2667. err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
  2668. err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
  2669. err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
  2670. err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
  2671. err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
  2672. err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
  2673. err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
  2674. if (err)
  2675. err = -EFAULT;
  2676. }
  2677. return err;
  2678. }
  2679. static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
  2680. {
  2681. void __user *uptr;
  2682. compat_uptr_t uptr32;
  2683. struct ifreq __user *uifr;
  2684. uifr = compat_alloc_user_space(sizeof(*uifr));
  2685. if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
  2686. return -EFAULT;
  2687. if (get_user(uptr32, &uifr32->ifr_data))
  2688. return -EFAULT;
  2689. uptr = compat_ptr(uptr32);
  2690. if (put_user(uptr, &uifr->ifr_data))
  2691. return -EFAULT;
  2692. return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
  2693. }
  2694. struct rtentry32 {
  2695. u32 rt_pad1;
  2696. struct sockaddr rt_dst; /* target address */
  2697. struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
  2698. struct sockaddr rt_genmask; /* target network mask (IP) */
  2699. unsigned short rt_flags;
  2700. short rt_pad2;
  2701. u32 rt_pad3;
  2702. unsigned char rt_tos;
  2703. unsigned char rt_class;
  2704. short rt_pad4;
  2705. short rt_metric; /* +1 for binary compatibility! */
  2706. /* char * */ u32 rt_dev; /* forcing the device at add */
  2707. u32 rt_mtu; /* per route MTU/Window */
  2708. u32 rt_window; /* Window clamping */
  2709. unsigned short rt_irtt; /* Initial RTT */
  2710. };
  2711. struct in6_rtmsg32 {
  2712. struct in6_addr rtmsg_dst;
  2713. struct in6_addr rtmsg_src;
  2714. struct in6_addr rtmsg_gateway;
  2715. u32 rtmsg_type;
  2716. u16 rtmsg_dst_len;
  2717. u16 rtmsg_src_len;
  2718. u32 rtmsg_metric;
  2719. u32 rtmsg_info;
  2720. u32 rtmsg_flags;
  2721. s32 rtmsg_ifindex;
  2722. };
  2723. static int routing_ioctl(struct net *net, struct socket *sock,
  2724. unsigned int cmd, void __user *argp)
  2725. {
  2726. int ret;
  2727. void *r = NULL;
  2728. struct in6_rtmsg r6;
  2729. struct rtentry r4;
  2730. char devname[16];
  2731. u32 rtdev;
  2732. mm_segment_t old_fs = get_fs();
  2733. if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
  2734. struct in6_rtmsg32 __user *ur6 = argp;
  2735. ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
  2736. 3 * sizeof(struct in6_addr));
  2737. ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
  2738. ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
  2739. ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
  2740. ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
  2741. ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
  2742. ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
  2743. ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
  2744. r = (void *) &r6;
  2745. } else { /* ipv4 */
  2746. struct rtentry32 __user *ur4 = argp;
  2747. ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
  2748. 3 * sizeof(struct sockaddr));
  2749. ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
  2750. ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
  2751. ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
  2752. ret |= __get_user(r4.rt_window, &(ur4->rt_window));
  2753. ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
  2754. ret |= __get_user(rtdev, &(ur4->rt_dev));
  2755. if (rtdev) {
  2756. ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
  2757. r4.rt_dev = (char __user __force *)devname;
  2758. devname[15] = 0;
  2759. } else
  2760. r4.rt_dev = NULL;
  2761. r = (void *) &r4;
  2762. }
  2763. if (ret) {
  2764. ret = -EFAULT;
  2765. goto out;
  2766. }
  2767. set_fs(KERNEL_DS);
  2768. ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
  2769. set_fs(old_fs);
  2770. out:
  2771. return ret;
  2772. }
  2773. /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
  2774. * for some operations; this forces use of the newer bridge-utils that
  2775. * use compatible ioctls
  2776. */
  2777. static int old_bridge_ioctl(compat_ulong_t __user *argp)
  2778. {
  2779. compat_ulong_t tmp;
  2780. if (get_user(tmp, argp))
  2781. return -EFAULT;
  2782. if (tmp == BRCTL_GET_VERSION)
  2783. return BRCTL_VERSION + 1;
  2784. return -EINVAL;
  2785. }
  2786. static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
  2787. unsigned int cmd, unsigned long arg)
  2788. {
  2789. void __user *argp = compat_ptr(arg);
  2790. struct sock *sk = sock->sk;
  2791. struct net *net = sock_net(sk);
  2792. if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
  2793. return siocdevprivate_ioctl(net, cmd, argp);
  2794. switch (cmd) {
  2795. case SIOCSIFBR:
  2796. case SIOCGIFBR:
  2797. return old_bridge_ioctl(argp);
  2798. case SIOCGIFNAME:
  2799. return dev_ifname32(net, argp);
  2800. case SIOCGIFCONF:
  2801. return dev_ifconf(net, argp);
  2802. case SIOCETHTOOL:
  2803. return ethtool_ioctl(net, argp);
  2804. case SIOCWANDEV:
  2805. return compat_siocwandev(net, argp);
  2806. case SIOCGIFMAP:
  2807. case SIOCSIFMAP:
  2808. return compat_sioc_ifmap(net, cmd, argp);
  2809. case SIOCBONDENSLAVE:
  2810. case SIOCBONDRELEASE:
  2811. case SIOCBONDSETHWADDR:
  2812. case SIOCBONDSLAVEINFOQUERY:
  2813. case SIOCBONDINFOQUERY:
  2814. case SIOCBONDCHANGEACTIVE:
  2815. return bond_ioctl(net, cmd, argp);
  2816. case SIOCADDRT:
  2817. case SIOCDELRT:
  2818. return routing_ioctl(net, sock, cmd, argp);
  2819. case SIOCGSTAMP:
  2820. return do_siocgstamp(net, sock, cmd, argp);
  2821. case SIOCGSTAMPNS:
  2822. return do_siocgstampns(net, sock, cmd, argp);
  2823. case SIOCSHWTSTAMP:
  2824. return compat_siocshwtstamp(net, argp);
  2825. case FIOSETOWN:
  2826. case SIOCSPGRP:
  2827. case FIOGETOWN:
  2828. case SIOCGPGRP:
  2829. case SIOCBRADDBR:
  2830. case SIOCBRDELBR:
  2831. case SIOCGIFVLAN:
  2832. case SIOCSIFVLAN:
  2833. case SIOCADDDLCI:
  2834. case SIOCDELDLCI:
  2835. return sock_ioctl(file, cmd, arg);
  2836. case SIOCGIFFLAGS:
  2837. case SIOCSIFFLAGS:
  2838. case SIOCGIFMETRIC:
  2839. case SIOCSIFMETRIC:
  2840. case SIOCGIFMTU:
  2841. case SIOCSIFMTU:
  2842. case SIOCGIFMEM:
  2843. case SIOCSIFMEM:
  2844. case SIOCGIFHWADDR:
  2845. case SIOCSIFHWADDR:
  2846. case SIOCADDMULTI:
  2847. case SIOCDELMULTI:
  2848. case SIOCGIFINDEX:
  2849. case SIOCGIFADDR:
  2850. case SIOCSIFADDR:
  2851. case SIOCSIFHWBROADCAST:
  2852. case SIOCDIFADDR:
  2853. case SIOCGIFBRDADDR:
  2854. case SIOCSIFBRDADDR:
  2855. case SIOCGIFDSTADDR:
  2856. case SIOCSIFDSTADDR:
  2857. case SIOCGIFNETMASK:
  2858. case SIOCSIFNETMASK:
  2859. case SIOCSIFPFLAGS:
  2860. case SIOCGIFPFLAGS:
  2861. case SIOCGIFTXQLEN:
  2862. case SIOCSIFTXQLEN:
  2863. case SIOCBRADDIF:
  2864. case SIOCBRDELIF:
  2865. case SIOCSIFNAME:
  2866. case SIOCGMIIPHY:
  2867. case SIOCGMIIREG:
  2868. case SIOCSMIIREG:
  2869. return dev_ifsioc(net, sock, cmd, argp);
  2870. case SIOCSARP:
  2871. case SIOCGARP:
  2872. case SIOCDARP:
  2873. case SIOCATMARK:
  2874. return sock_do_ioctl(net, sock, cmd, arg);
  2875. }
  2876. return -ENOIOCTLCMD;
  2877. }
  2878. static long compat_sock_ioctl(struct file *file, unsigned int cmd,
  2879. unsigned long arg)
  2880. {
  2881. struct socket *sock = file->private_data;
  2882. int ret = -ENOIOCTLCMD;
  2883. struct sock *sk;
  2884. struct net *net;
  2885. sk = sock->sk;
  2886. net = sock_net(sk);
  2887. if (sock->ops->compat_ioctl)
  2888. ret = sock->ops->compat_ioctl(sock, cmd, arg);
  2889. if (ret == -ENOIOCTLCMD &&
  2890. (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
  2891. ret = compat_wext_handle_ioctl(net, cmd, arg);
  2892. if (ret == -ENOIOCTLCMD)
  2893. ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
  2894. return ret;
  2895. }
  2896. #endif
  2897. int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
  2898. {
  2899. return sock->ops->bind(sock, addr, addrlen);
  2900. }
  2901. EXPORT_SYMBOL(kernel_bind);
  2902. int kernel_listen(struct socket *sock, int backlog)
  2903. {
  2904. return sock->ops->listen(sock, backlog);
  2905. }
  2906. EXPORT_SYMBOL(kernel_listen);
  2907. int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
  2908. {
  2909. struct sock *sk = sock->sk;
  2910. int err;
  2911. err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
  2912. newsock);
  2913. if (err < 0)
  2914. goto done;
  2915. err = sock->ops->accept(sock, *newsock, flags);
  2916. if (err < 0) {
  2917. sock_release(*newsock);
  2918. *newsock = NULL;
  2919. goto done;
  2920. }
  2921. (*newsock)->ops = sock->ops;
  2922. __module_get((*newsock)->ops->owner);
  2923. done:
  2924. return err;
  2925. }
  2926. EXPORT_SYMBOL(kernel_accept);
  2927. int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
  2928. int flags)
  2929. {
  2930. return sock->ops->connect(sock, addr, addrlen, flags);
  2931. }
  2932. EXPORT_SYMBOL(kernel_connect);
  2933. int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
  2934. int *addrlen)
  2935. {
  2936. return sock->ops->getname(sock, addr, addrlen, 0);
  2937. }
  2938. EXPORT_SYMBOL(kernel_getsockname);
  2939. int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
  2940. int *addrlen)
  2941. {
  2942. return sock->ops->getname(sock, addr, addrlen, 1);
  2943. }
  2944. EXPORT_SYMBOL(kernel_getpeername);
  2945. int kernel_getsockopt(struct socket *sock, int level, int optname,
  2946. char *optval, int *optlen)
  2947. {
  2948. mm_segment_t oldfs = get_fs();
  2949. char __user *uoptval;
  2950. int __user *uoptlen;
  2951. int err;
  2952. uoptval = (char __user __force *) optval;
  2953. uoptlen = (int __user __force *) optlen;
  2954. set_fs(KERNEL_DS);
  2955. if (level == SOL_SOCKET)
  2956. err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
  2957. else
  2958. err = sock->ops->getsockopt(sock, level, optname, uoptval,
  2959. uoptlen);
  2960. set_fs(oldfs);
  2961. return err;
  2962. }
  2963. EXPORT_SYMBOL(kernel_getsockopt);
  2964. int kernel_setsockopt(struct socket *sock, int level, int optname,
  2965. char *optval, unsigned int optlen)
  2966. {
  2967. mm_segment_t oldfs = get_fs();
  2968. char __user *uoptval;
  2969. int err;
  2970. uoptval = (char __user __force *) optval;
  2971. set_fs(KERNEL_DS);
  2972. if (level == SOL_SOCKET)
  2973. err = sock_setsockopt(sock, level, optname, uoptval, optlen);
  2974. else
  2975. err = sock->ops->setsockopt(sock, level, optname, uoptval,
  2976. optlen);
  2977. set_fs(oldfs);
  2978. return err;
  2979. }
  2980. EXPORT_SYMBOL(kernel_setsockopt);
  2981. int kernel_sendpage(struct socket *sock, struct page *page, int offset,
  2982. size_t size, int flags)
  2983. {
  2984. if (sock->ops->sendpage)
  2985. return sock->ops->sendpage(sock, page, offset, size, flags);
  2986. return sock_no_sendpage(sock, page, offset, size, flags);
  2987. }
  2988. EXPORT_SYMBOL(kernel_sendpage);
  2989. int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
  2990. {
  2991. mm_segment_t oldfs = get_fs();
  2992. int err;
  2993. set_fs(KERNEL_DS);
  2994. err = sock->ops->ioctl(sock, cmd, arg);
  2995. set_fs(oldfs);
  2996. return err;
  2997. }
  2998. EXPORT_SYMBOL(kernel_sock_ioctl);
  2999. int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
  3000. {
  3001. return sock->ops->shutdown(sock, how);
  3002. }
  3003. EXPORT_SYMBOL(kernel_sock_shutdown);