PageRenderTime 264ms CodeModel.GetById 17ms app.highlight 209ms RepoModel.GetById 2ms app.codeStats 1ms

/drivers/char/istallion.c

https://bitbucket.org/evzijst/gittest
C | 5276 lines | 3590 code | 777 blank | 909 comment | 755 complexity | 35cbe6dab5652e5cf384df0804d64b1d MD5 | raw file
   1/*****************************************************************************/
   2
   3/*
   4 *	istallion.c  -- stallion intelligent multiport serial driver.
   5 *
   6 *	Copyright (C) 1996-1999  Stallion Technologies
   7 *	Copyright (C) 1994-1996  Greg Ungerer.
   8 *
   9 *	This code is loosely based on the Linux serial driver, written by
  10 *	Linus Torvalds, Theodore T'so and others.
  11 *
  12 *	This program is free software; you can redistribute it and/or modify
  13 *	it under the terms of the GNU General Public License as published by
  14 *	the Free Software Foundation; either version 2 of the License, or
  15 *	(at your option) any later version.
  16 *
  17 *	This program is distributed in the hope that it will be useful,
  18 *	but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *	GNU General Public License for more details.
  21 *
  22 *	You should have received a copy of the GNU General Public License
  23 *	along with this program; if not, write to the Free Software
  24 *	Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25 */
  26
  27/*****************************************************************************/
  28
  29#include <linux/config.h>
  30#include <linux/module.h>
  31#include <linux/slab.h>
  32#include <linux/interrupt.h>
  33#include <linux/tty.h>
  34#include <linux/tty_flip.h>
  35#include <linux/serial.h>
  36#include <linux/cdk.h>
  37#include <linux/comstats.h>
  38#include <linux/istallion.h>
  39#include <linux/ioport.h>
  40#include <linux/delay.h>
  41#include <linux/init.h>
  42#include <linux/devfs_fs_kernel.h>
  43#include <linux/device.h>
  44#include <linux/wait.h>
  45
  46#include <asm/io.h>
  47#include <asm/uaccess.h>
  48
  49#ifdef CONFIG_PCI
  50#include <linux/pci.h>
  51#endif
  52
  53/*****************************************************************************/
  54
  55/*
  56 *	Define different board types. Not all of the following board types
  57 *	are supported by this driver. But I will use the standard "assigned"
  58 *	board numbers. Currently supported boards are abbreviated as:
  59 *	ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
  60 *	STAL = Stallion.
  61 */
  62#define	BRD_UNKNOWN	0
  63#define	BRD_STALLION	1
  64#define	BRD_BRUMBY4	2
  65#define	BRD_ONBOARD2	3
  66#define	BRD_ONBOARD	4
  67#define	BRD_BRUMBY8	5
  68#define	BRD_BRUMBY16	6
  69#define	BRD_ONBOARDE	7
  70#define	BRD_ONBOARD32	9
  71#define	BRD_ONBOARD2_32	10
  72#define	BRD_ONBOARDRS	11
  73#define	BRD_EASYIO	20
  74#define	BRD_ECH		21
  75#define	BRD_ECHMC	22
  76#define	BRD_ECP		23
  77#define BRD_ECPE	24
  78#define	BRD_ECPMC	25
  79#define	BRD_ECHPCI	26
  80#define	BRD_ECH64PCI	27
  81#define	BRD_EASYIOPCI	28
  82#define	BRD_ECPPCI	29
  83
  84#define	BRD_BRUMBY	BRD_BRUMBY4
  85
  86/*
  87 *	Define a configuration structure to hold the board configuration.
  88 *	Need to set this up in the code (for now) with the boards that are
  89 *	to be configured into the system. This is what needs to be modified
  90 *	when adding/removing/modifying boards. Each line entry in the
  91 *	stli_brdconf[] array is a board. Each line contains io/irq/memory
  92 *	ranges for that board (as well as what type of board it is).
  93 *	Some examples:
  94 *		{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
  95 *	This line will configure an EasyConnection 8/64 at io address 2a0,
  96 *	and shared memory address of cc000. Multiple EasyConnection 8/64
  97 *	boards can share the same shared memory address space. No interrupt
  98 *	is required for this board type.
  99 *	Another example:
 100 *		{ BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
 101 *	This line will configure an EasyConnection 8/64 EISA in slot 5 and
 102 *	shared memory address of 0x80000000 (2 GByte). Multiple
 103 *	EasyConnection 8/64 EISA boards can share the same shared memory
 104 *	address space. No interrupt is required for this board type.
 105 *	Another example:
 106 *		{ BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
 107 *	This line will configure an ONboard (ISA type) at io address 240,
 108 *	and shared memory address of d0000. Multiple ONboards can share
 109 *	the same shared memory address space. No interrupt required.
 110 *	Another example:
 111 *		{ BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
 112 *	This line will configure a Brumby board (any number of ports!) at
 113 *	io address 360 and shared memory address of c8000. All Brumby boards
 114 *	configured into a system must have their own separate io and memory
 115 *	addresses. No interrupt is required.
 116 *	Another example:
 117 *		{ BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
 118 *	This line will configure an original Stallion board at io address 330
 119 *	and shared memory address d0000 (this would only be valid for a "V4.0"
 120 *	or Rev.O Stallion board). All Stallion boards configured into the
 121 *	system must have their own separate io and memory addresses. No
 122 *	interrupt is required.
 123 */
 124
 125typedef struct {
 126	int		brdtype;
 127	int		ioaddr1;
 128	int		ioaddr2;
 129	unsigned long	memaddr;
 130	int		irq;
 131	int		irqtype;
 132} stlconf_t;
 133
 134static stlconf_t	stli_brdconf[] = {
 135	/*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
 136};
 137
 138static int	stli_nrbrds = sizeof(stli_brdconf) / sizeof(stlconf_t);
 139
 140/*
 141 *	There is some experimental EISA board detection code in this driver.
 142 *	By default it is disabled, but for those that want to try it out,
 143 *	then set the define below to be 1.
 144 */
 145#define	STLI_EISAPROBE	0
 146
 147/*****************************************************************************/
 148
 149/*
 150 *	Define some important driver characteristics. Device major numbers
 151 *	allocated as per Linux Device Registry.
 152 */
 153#ifndef	STL_SIOMEMMAJOR
 154#define	STL_SIOMEMMAJOR		28
 155#endif
 156#ifndef	STL_SERIALMAJOR
 157#define	STL_SERIALMAJOR		24
 158#endif
 159#ifndef	STL_CALLOUTMAJOR
 160#define	STL_CALLOUTMAJOR	25
 161#endif
 162
 163/*****************************************************************************/
 164
 165/*
 166 *	Define our local driver identity first. Set up stuff to deal with
 167 *	all the local structures required by a serial tty driver.
 168 */
 169static char	*stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
 170static char	*stli_drvname = "istallion";
 171static char	*stli_drvversion = "5.6.0";
 172static char	*stli_serialname = "ttyE";
 173
 174static struct tty_driver	*stli_serial;
 175
 176/*
 177 *	We will need to allocate a temporary write buffer for chars that
 178 *	come direct from user space. The problem is that a copy from user
 179 *	space might cause a page fault (typically on a system that is
 180 *	swapping!). All ports will share one buffer - since if the system
 181 *	is already swapping a shared buffer won't make things any worse.
 182 */
 183static char			*stli_tmpwritebuf;
 184static DECLARE_MUTEX(stli_tmpwritesem);
 185
 186#define	STLI_TXBUFSIZE		4096
 187
 188/*
 189 *	Use a fast local buffer for cooked characters. Typically a whole
 190 *	bunch of cooked characters come in for a port, 1 at a time. So we
 191 *	save those up into a local buffer, then write out the whole lot
 192 *	with a large memcpy. Just use 1 buffer for all ports, since its
 193 *	use it is only need for short periods of time by each port.
 194 */
 195static char			*stli_txcookbuf;
 196static int			stli_txcooksize;
 197static int			stli_txcookrealsize;
 198static struct tty_struct	*stli_txcooktty;
 199
 200/*
 201 *	Define a local default termios struct. All ports will be created
 202 *	with this termios initially. Basically all it defines is a raw port
 203 *	at 9600 baud, 8 data bits, no parity, 1 stop bit.
 204 */
 205static struct termios		stli_deftermios = {
 206	.c_cflag	= (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
 207	.c_cc		= INIT_C_CC,
 208};
 209
 210/*
 211 *	Define global stats structures. Not used often, and can be
 212 *	re-used for each stats call.
 213 */
 214static comstats_t	stli_comstats;
 215static combrd_t		stli_brdstats;
 216static asystats_t	stli_cdkstats;
 217static stlibrd_t	stli_dummybrd;
 218static stliport_t	stli_dummyport;
 219
 220/*****************************************************************************/
 221
 222static stlibrd_t	*stli_brds[STL_MAXBRDS];
 223
 224static int		stli_shared;
 225
 226/*
 227 *	Per board state flags. Used with the state field of the board struct.
 228 *	Not really much here... All we need to do is keep track of whether
 229 *	the board has been detected, and whether it is actually running a slave
 230 *	or not.
 231 */
 232#define	BST_FOUND	0x1
 233#define	BST_STARTED	0x2
 234
 235/*
 236 *	Define the set of port state flags. These are marked for internal
 237 *	state purposes only, usually to do with the state of communications
 238 *	with the slave. Most of them need to be updated atomically, so always
 239 *	use the bit setting operations (unless protected by cli/sti).
 240 */
 241#define	ST_INITIALIZING	1
 242#define	ST_OPENING	2
 243#define	ST_CLOSING	3
 244#define	ST_CMDING	4
 245#define	ST_TXBUSY	5
 246#define	ST_RXING	6
 247#define	ST_DOFLUSHRX	7
 248#define	ST_DOFLUSHTX	8
 249#define	ST_DOSIGS	9
 250#define	ST_RXSTOP	10
 251#define	ST_GETSIGS	11
 252
 253/*
 254 *	Define an array of board names as printable strings. Handy for
 255 *	referencing boards when printing trace and stuff.
 256 */
 257static char	*stli_brdnames[] = {
 258	"Unknown",
 259	"Stallion",
 260	"Brumby",
 261	"ONboard-MC",
 262	"ONboard",
 263	"Brumby",
 264	"Brumby",
 265	"ONboard-EI",
 266	(char *) NULL,
 267	"ONboard",
 268	"ONboard-MC",
 269	"ONboard-MC",
 270	(char *) NULL,
 271	(char *) NULL,
 272	(char *) NULL,
 273	(char *) NULL,
 274	(char *) NULL,
 275	(char *) NULL,
 276	(char *) NULL,
 277	(char *) NULL,
 278	"EasyIO",
 279	"EC8/32-AT",
 280	"EC8/32-MC",
 281	"EC8/64-AT",
 282	"EC8/64-EI",
 283	"EC8/64-MC",
 284	"EC8/32-PCI",
 285	"EC8/64-PCI",
 286	"EasyIO-PCI",
 287	"EC/RA-PCI",
 288};
 289
 290/*****************************************************************************/
 291
 292#ifdef MODULE
 293/*
 294 *	Define some string labels for arguments passed from the module
 295 *	load line. These allow for easy board definitions, and easy
 296 *	modification of the io, memory and irq resoucres.
 297 */
 298
 299static char	*board0[8];
 300static char	*board1[8];
 301static char	*board2[8];
 302static char	*board3[8];
 303
 304static char	**stli_brdsp[] = {
 305	(char **) &board0,
 306	(char **) &board1,
 307	(char **) &board2,
 308	(char **) &board3
 309};
 310
 311/*
 312 *	Define a set of common board names, and types. This is used to
 313 *	parse any module arguments.
 314 */
 315
 316typedef struct stlibrdtype {
 317	char	*name;
 318	int	type;
 319} stlibrdtype_t;
 320
 321static stlibrdtype_t	stli_brdstr[] = {
 322	{ "stallion", BRD_STALLION },
 323	{ "1", BRD_STALLION },
 324	{ "brumby", BRD_BRUMBY },
 325	{ "brumby4", BRD_BRUMBY },
 326	{ "brumby/4", BRD_BRUMBY },
 327	{ "brumby-4", BRD_BRUMBY },
 328	{ "brumby8", BRD_BRUMBY },
 329	{ "brumby/8", BRD_BRUMBY },
 330	{ "brumby-8", BRD_BRUMBY },
 331	{ "brumby16", BRD_BRUMBY },
 332	{ "brumby/16", BRD_BRUMBY },
 333	{ "brumby-16", BRD_BRUMBY },
 334	{ "2", BRD_BRUMBY },
 335	{ "onboard2", BRD_ONBOARD2 },
 336	{ "onboard-2", BRD_ONBOARD2 },
 337	{ "onboard/2", BRD_ONBOARD2 },
 338	{ "onboard-mc", BRD_ONBOARD2 },
 339	{ "onboard/mc", BRD_ONBOARD2 },
 340	{ "onboard-mca", BRD_ONBOARD2 },
 341	{ "onboard/mca", BRD_ONBOARD2 },
 342	{ "3", BRD_ONBOARD2 },
 343	{ "onboard", BRD_ONBOARD },
 344	{ "onboardat", BRD_ONBOARD },
 345	{ "4", BRD_ONBOARD },
 346	{ "onboarde", BRD_ONBOARDE },
 347	{ "onboard-e", BRD_ONBOARDE },
 348	{ "onboard/e", BRD_ONBOARDE },
 349	{ "onboard-ei", BRD_ONBOARDE },
 350	{ "onboard/ei", BRD_ONBOARDE },
 351	{ "7", BRD_ONBOARDE },
 352	{ "ecp", BRD_ECP },
 353	{ "ecpat", BRD_ECP },
 354	{ "ec8/64", BRD_ECP },
 355	{ "ec8/64-at", BRD_ECP },
 356	{ "ec8/64-isa", BRD_ECP },
 357	{ "23", BRD_ECP },
 358	{ "ecpe", BRD_ECPE },
 359	{ "ecpei", BRD_ECPE },
 360	{ "ec8/64-e", BRD_ECPE },
 361	{ "ec8/64-ei", BRD_ECPE },
 362	{ "24", BRD_ECPE },
 363	{ "ecpmc", BRD_ECPMC },
 364	{ "ec8/64-mc", BRD_ECPMC },
 365	{ "ec8/64-mca", BRD_ECPMC },
 366	{ "25", BRD_ECPMC },
 367	{ "ecppci", BRD_ECPPCI },
 368	{ "ec/ra", BRD_ECPPCI },
 369	{ "ec/ra-pc", BRD_ECPPCI },
 370	{ "ec/ra-pci", BRD_ECPPCI },
 371	{ "29", BRD_ECPPCI },
 372};
 373
 374/*
 375 *	Define the module agruments.
 376 */
 377MODULE_AUTHOR("Greg Ungerer");
 378MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
 379MODULE_LICENSE("GPL");
 380
 381
 382MODULE_PARM(board0, "1-3s");
 383MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
 384MODULE_PARM(board1, "1-3s");
 385MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
 386MODULE_PARM(board2, "1-3s");
 387MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
 388MODULE_PARM(board3, "1-3s");
 389MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
 390
 391#endif
 392
 393/*
 394 *	Set up a default memory address table for EISA board probing.
 395 *	The default addresses are all bellow 1Mbyte, which has to be the
 396 *	case anyway. They should be safe, since we only read values from
 397 *	them, and interrupts are disabled while we do it. If the higher
 398 *	memory support is compiled in then we also try probing around
 399 *	the 1Gb, 2Gb and 3Gb areas as well...
 400 */
 401static unsigned long	stli_eisamemprobeaddrs[] = {
 402	0xc0000,    0xd0000,    0xe0000,    0xf0000,
 403	0x80000000, 0x80010000, 0x80020000, 0x80030000,
 404	0x40000000, 0x40010000, 0x40020000, 0x40030000,
 405	0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
 406	0xff000000, 0xff010000, 0xff020000, 0xff030000,
 407};
 408
 409static int	stli_eisamempsize = sizeof(stli_eisamemprobeaddrs) / sizeof(unsigned long);
 410int		stli_eisaprobe = STLI_EISAPROBE;
 411
 412/*
 413 *	Define the Stallion PCI vendor and device IDs.
 414 */
 415#ifdef CONFIG_PCI
 416#ifndef	PCI_VENDOR_ID_STALLION
 417#define	PCI_VENDOR_ID_STALLION		0x124d
 418#endif
 419#ifndef PCI_DEVICE_ID_ECRA
 420#define	PCI_DEVICE_ID_ECRA		0x0004
 421#endif
 422
 423static struct pci_device_id istallion_pci_tbl[] = {
 424	{ PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
 425	{ 0 }
 426};
 427MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
 428
 429#endif /* CONFIG_PCI */
 430
 431/*****************************************************************************/
 432
 433/*
 434 *	Hardware configuration info for ECP boards. These defines apply
 435 *	to the directly accessible io ports of the ECP. There is a set of
 436 *	defines for each ECP board type, ISA, EISA, MCA and PCI.
 437 */
 438#define	ECP_IOSIZE	4
 439
 440#define	ECP_MEMSIZE	(128 * 1024)
 441#define	ECP_PCIMEMSIZE	(256 * 1024)
 442
 443#define	ECP_ATPAGESIZE	(4 * 1024)
 444#define	ECP_MCPAGESIZE	(4 * 1024)
 445#define	ECP_EIPAGESIZE	(64 * 1024)
 446#define	ECP_PCIPAGESIZE	(64 * 1024)
 447
 448#define	STL_EISAID	0x8c4e
 449
 450/*
 451 *	Important defines for the ISA class of ECP board.
 452 */
 453#define	ECP_ATIREG	0
 454#define	ECP_ATCONFR	1
 455#define	ECP_ATMEMAR	2
 456#define	ECP_ATMEMPR	3
 457#define	ECP_ATSTOP	0x1
 458#define	ECP_ATINTENAB	0x10
 459#define	ECP_ATENABLE	0x20
 460#define	ECP_ATDISABLE	0x00
 461#define	ECP_ATADDRMASK	0x3f000
 462#define	ECP_ATADDRSHFT	12
 463
 464/*
 465 *	Important defines for the EISA class of ECP board.
 466 */
 467#define	ECP_EIIREG	0
 468#define	ECP_EIMEMARL	1
 469#define	ECP_EICONFR	2
 470#define	ECP_EIMEMARH	3
 471#define	ECP_EIENABLE	0x1
 472#define	ECP_EIDISABLE	0x0
 473#define	ECP_EISTOP	0x4
 474#define	ECP_EIEDGE	0x00
 475#define	ECP_EILEVEL	0x80
 476#define	ECP_EIADDRMASKL	0x00ff0000
 477#define	ECP_EIADDRSHFTL	16
 478#define	ECP_EIADDRMASKH	0xff000000
 479#define	ECP_EIADDRSHFTH	24
 480#define	ECP_EIBRDENAB	0xc84
 481
 482#define	ECP_EISAID	0x4
 483
 484/*
 485 *	Important defines for the Micro-channel class of ECP board.
 486 *	(It has a lot in common with the ISA boards.)
 487 */
 488#define	ECP_MCIREG	0
 489#define	ECP_MCCONFR	1
 490#define	ECP_MCSTOP	0x20
 491#define	ECP_MCENABLE	0x80
 492#define	ECP_MCDISABLE	0x00
 493
 494/*
 495 *	Important defines for the PCI class of ECP board.
 496 *	(It has a lot in common with the other ECP boards.)
 497 */
 498#define	ECP_PCIIREG	0
 499#define	ECP_PCICONFR	1
 500#define	ECP_PCISTOP	0x01
 501
 502/*
 503 *	Hardware configuration info for ONboard and Brumby boards. These
 504 *	defines apply to the directly accessible io ports of these boards.
 505 */
 506#define	ONB_IOSIZE	16
 507#define	ONB_MEMSIZE	(64 * 1024)
 508#define	ONB_ATPAGESIZE	(64 * 1024)
 509#define	ONB_MCPAGESIZE	(64 * 1024)
 510#define	ONB_EIMEMSIZE	(128 * 1024)
 511#define	ONB_EIPAGESIZE	(64 * 1024)
 512
 513/*
 514 *	Important defines for the ISA class of ONboard board.
 515 */
 516#define	ONB_ATIREG	0
 517#define	ONB_ATMEMAR	1
 518#define	ONB_ATCONFR	2
 519#define	ONB_ATSTOP	0x4
 520#define	ONB_ATENABLE	0x01
 521#define	ONB_ATDISABLE	0x00
 522#define	ONB_ATADDRMASK	0xff0000
 523#define	ONB_ATADDRSHFT	16
 524
 525#define	ONB_MEMENABLO	0
 526#define	ONB_MEMENABHI	0x02
 527
 528/*
 529 *	Important defines for the EISA class of ONboard board.
 530 */
 531#define	ONB_EIIREG	0
 532#define	ONB_EIMEMARL	1
 533#define	ONB_EICONFR	2
 534#define	ONB_EIMEMARH	3
 535#define	ONB_EIENABLE	0x1
 536#define	ONB_EIDISABLE	0x0
 537#define	ONB_EISTOP	0x4
 538#define	ONB_EIEDGE	0x00
 539#define	ONB_EILEVEL	0x80
 540#define	ONB_EIADDRMASKL	0x00ff0000
 541#define	ONB_EIADDRSHFTL	16
 542#define	ONB_EIADDRMASKH	0xff000000
 543#define	ONB_EIADDRSHFTH	24
 544#define	ONB_EIBRDENAB	0xc84
 545
 546#define	ONB_EISAID	0x1
 547
 548/*
 549 *	Important defines for the Brumby boards. They are pretty simple,
 550 *	there is not much that is programmably configurable.
 551 */
 552#define	BBY_IOSIZE	16
 553#define	BBY_MEMSIZE	(64 * 1024)
 554#define	BBY_PAGESIZE	(16 * 1024)
 555
 556#define	BBY_ATIREG	0
 557#define	BBY_ATCONFR	1
 558#define	BBY_ATSTOP	0x4
 559
 560/*
 561 *	Important defines for the Stallion boards. They are pretty simple,
 562 *	there is not much that is programmably configurable.
 563 */
 564#define	STAL_IOSIZE	16
 565#define	STAL_MEMSIZE	(64 * 1024)
 566#define	STAL_PAGESIZE	(64 * 1024)
 567
 568/*
 569 *	Define the set of status register values for EasyConnection panels.
 570 *	The signature will return with the status value for each panel. From
 571 *	this we can determine what is attached to the board - before we have
 572 *	actually down loaded any code to it.
 573 */
 574#define	ECH_PNLSTATUS	2
 575#define	ECH_PNL16PORT	0x20
 576#define	ECH_PNLIDMASK	0x07
 577#define	ECH_PNLXPID	0x40
 578#define	ECH_PNLINTRPEND	0x80
 579
 580/*
 581 *	Define some macros to do things to the board. Even those these boards
 582 *	are somewhat related there is often significantly different ways of
 583 *	doing some operation on it (like enable, paging, reset, etc). So each
 584 *	board class has a set of functions which do the commonly required
 585 *	operations. The macros below basically just call these functions,
 586 *	generally checking for a NULL function - which means that the board
 587 *	needs nothing done to it to achieve this operation!
 588 */
 589#define	EBRDINIT(brdp)						\
 590	if (brdp->init != NULL)					\
 591		(* brdp->init)(brdp)
 592
 593#define	EBRDENABLE(brdp)					\
 594	if (brdp->enable != NULL)				\
 595		(* brdp->enable)(brdp);
 596
 597#define	EBRDDISABLE(brdp)					\
 598	if (brdp->disable != NULL)				\
 599		(* brdp->disable)(brdp);
 600
 601#define	EBRDINTR(brdp)						\
 602	if (brdp->intr != NULL)					\
 603		(* brdp->intr)(brdp);
 604
 605#define	EBRDRESET(brdp)						\
 606	if (brdp->reset != NULL)				\
 607		(* brdp->reset)(brdp);
 608
 609#define	EBRDGETMEMPTR(brdp,offset)				\
 610	(* brdp->getmemptr)(brdp, offset, __LINE__)
 611
 612/*
 613 *	Define the maximal baud rate, and the default baud base for ports.
 614 */
 615#define	STL_MAXBAUD	460800
 616#define	STL_BAUDBASE	115200
 617#define	STL_CLOSEDELAY	(5 * HZ / 10)
 618
 619/*****************************************************************************/
 620
 621/*
 622 *	Define macros to extract a brd or port number from a minor number.
 623 */
 624#define	MINOR2BRD(min)		(((min) & 0xc0) >> 6)
 625#define	MINOR2PORT(min)		((min) & 0x3f)
 626
 627/*
 628 *	Define a baud rate table that converts termios baud rate selector
 629 *	into the actual baud rate value. All baud rate calculations are based
 630 *	on the actual baud rate required.
 631 */
 632static unsigned int	stli_baudrates[] = {
 633	0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
 634	9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
 635};
 636
 637/*****************************************************************************/
 638
 639/*
 640 *	Define some handy local macros...
 641 */
 642#undef MIN
 643#define	MIN(a,b)	(((a) <= (b)) ? (a) : (b))
 644
 645#undef	TOLOWER
 646#define	TOLOWER(x)	((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
 647
 648/*****************************************************************************/
 649
 650/*
 651 *	Prototype all functions in this driver!
 652 */
 653
 654#ifdef MODULE
 655static void	stli_argbrds(void);
 656static int	stli_parsebrd(stlconf_t *confp, char **argp);
 657
 658static unsigned long	stli_atol(char *str);
 659#endif
 660
 661int		stli_init(void);
 662static int	stli_open(struct tty_struct *tty, struct file *filp);
 663static void	stli_close(struct tty_struct *tty, struct file *filp);
 664static int	stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
 665static void	stli_putchar(struct tty_struct *tty, unsigned char ch);
 666static void	stli_flushchars(struct tty_struct *tty);
 667static int	stli_writeroom(struct tty_struct *tty);
 668static int	stli_charsinbuffer(struct tty_struct *tty);
 669static int	stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
 670static void	stli_settermios(struct tty_struct *tty, struct termios *old);
 671static void	stli_throttle(struct tty_struct *tty);
 672static void	stli_unthrottle(struct tty_struct *tty);
 673static void	stli_stop(struct tty_struct *tty);
 674static void	stli_start(struct tty_struct *tty);
 675static void	stli_flushbuffer(struct tty_struct *tty);
 676static void	stli_breakctl(struct tty_struct *tty, int state);
 677static void	stli_waituntilsent(struct tty_struct *tty, int timeout);
 678static void	stli_sendxchar(struct tty_struct *tty, char ch);
 679static void	stli_hangup(struct tty_struct *tty);
 680static int	stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos);
 681
 682static int	stli_brdinit(stlibrd_t *brdp);
 683static int	stli_startbrd(stlibrd_t *brdp);
 684static ssize_t	stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
 685static ssize_t	stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
 686static int	stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
 687static void	stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp);
 688static void	stli_poll(unsigned long arg);
 689static int	stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
 690static int	stli_initopen(stlibrd_t *brdp, stliport_t *portp);
 691static int	stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
 692static int	stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
 693static int	stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp);
 694static void	stli_dohangup(void *arg);
 695static int	stli_setport(stliport_t *portp);
 696static int	stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
 697static void	stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
 698static void	stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp);
 699static void	stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp);
 700static void	stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
 701static long	stli_mktiocm(unsigned long sigvalue);
 702static void	stli_read(stlibrd_t *brdp, stliport_t *portp);
 703static int	stli_getserial(stliport_t *portp, struct serial_struct __user *sp);
 704static int	stli_setserial(stliport_t *portp, struct serial_struct __user *sp);
 705static int	stli_getbrdstats(combrd_t __user *bp);
 706static int	stli_getportstats(stliport_t *portp, comstats_t __user *cp);
 707static int	stli_portcmdstats(stliport_t *portp);
 708static int	stli_clrportstats(stliport_t *portp, comstats_t __user *cp);
 709static int	stli_getportstruct(stliport_t __user *arg);
 710static int	stli_getbrdstruct(stlibrd_t __user *arg);
 711static void	*stli_memalloc(int len);
 712static stlibrd_t *stli_allocbrd(void);
 713
 714static void	stli_ecpinit(stlibrd_t *brdp);
 715static void	stli_ecpenable(stlibrd_t *brdp);
 716static void	stli_ecpdisable(stlibrd_t *brdp);
 717static char	*stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
 718static void	stli_ecpreset(stlibrd_t *brdp);
 719static void	stli_ecpintr(stlibrd_t *brdp);
 720static void	stli_ecpeiinit(stlibrd_t *brdp);
 721static void	stli_ecpeienable(stlibrd_t *brdp);
 722static void	stli_ecpeidisable(stlibrd_t *brdp);
 723static char	*stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
 724static void	stli_ecpeireset(stlibrd_t *brdp);
 725static void	stli_ecpmcenable(stlibrd_t *brdp);
 726static void	stli_ecpmcdisable(stlibrd_t *brdp);
 727static char	*stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
 728static void	stli_ecpmcreset(stlibrd_t *brdp);
 729static void	stli_ecppciinit(stlibrd_t *brdp);
 730static char	*stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
 731static void	stli_ecppcireset(stlibrd_t *brdp);
 732
 733static void	stli_onbinit(stlibrd_t *brdp);
 734static void	stli_onbenable(stlibrd_t *brdp);
 735static void	stli_onbdisable(stlibrd_t *brdp);
 736static char	*stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
 737static void	stli_onbreset(stlibrd_t *brdp);
 738static void	stli_onbeinit(stlibrd_t *brdp);
 739static void	stli_onbeenable(stlibrd_t *brdp);
 740static void	stli_onbedisable(stlibrd_t *brdp);
 741static char	*stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
 742static void	stli_onbereset(stlibrd_t *brdp);
 743static void	stli_bbyinit(stlibrd_t *brdp);
 744static char	*stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
 745static void	stli_bbyreset(stlibrd_t *brdp);
 746static void	stli_stalinit(stlibrd_t *brdp);
 747static char	*stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
 748static void	stli_stalreset(stlibrd_t *brdp);
 749
 750static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
 751
 752static int	stli_initecp(stlibrd_t *brdp);
 753static int	stli_initonb(stlibrd_t *brdp);
 754static int	stli_eisamemprobe(stlibrd_t *brdp);
 755static int	stli_initports(stlibrd_t *brdp);
 756
 757#ifdef	CONFIG_PCI
 758static int	stli_initpcibrd(int brdtype, struct pci_dev *devp);
 759#endif
 760
 761/*****************************************************************************/
 762
 763/*
 764 *	Define the driver info for a user level shared memory device. This
 765 *	device will work sort of like the /dev/kmem device - except that it
 766 *	will give access to the shared memory on the Stallion intelligent
 767 *	board. This is also a very useful debugging tool.
 768 */
 769static struct file_operations	stli_fsiomem = {
 770	.owner		= THIS_MODULE,
 771	.read		= stli_memread,
 772	.write		= stli_memwrite,
 773	.ioctl		= stli_memioctl,
 774};
 775
 776/*****************************************************************************/
 777
 778/*
 779 *	Define a timer_list entry for our poll routine. The slave board
 780 *	is polled every so often to see if anything needs doing. This is
 781 *	much cheaper on host cpu than using interrupts. It turns out to
 782 *	not increase character latency by much either...
 783 */
 784static struct timer_list stli_timerlist = TIMER_INITIALIZER(stli_poll, 0, 0);
 785
 786static int	stli_timeron;
 787
 788/*
 789 *	Define the calculation for the timeout routine.
 790 */
 791#define	STLI_TIMEOUT	(jiffies + 1)
 792
 793/*****************************************************************************/
 794
 795static struct class_simple *istallion_class;
 796
 797#ifdef MODULE
 798
 799/*
 800 *	Loadable module initialization stuff.
 801 */
 802
 803static int __init istallion_module_init(void)
 804{
 805	unsigned long	flags;
 806
 807#ifdef DEBUG
 808	printk("init_module()\n");
 809#endif
 810
 811	save_flags(flags);
 812	cli();
 813	stli_init();
 814	restore_flags(flags);
 815
 816	return(0);
 817}
 818
 819/*****************************************************************************/
 820
 821static void __exit istallion_module_exit(void)
 822{
 823	stlibrd_t	*brdp;
 824	stliport_t	*portp;
 825	unsigned long	flags;
 826	int		i, j;
 827
 828#ifdef DEBUG
 829	printk("cleanup_module()\n");
 830#endif
 831
 832	printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
 833		stli_drvversion);
 834
 835	save_flags(flags);
 836	cli();
 837
 838/*
 839 *	Free up all allocated resources used by the ports. This includes
 840 *	memory and interrupts.
 841 */
 842	if (stli_timeron) {
 843		stli_timeron = 0;
 844		del_timer(&stli_timerlist);
 845	}
 846
 847	i = tty_unregister_driver(stli_serial);
 848	if (i) {
 849		printk("STALLION: failed to un-register tty driver, "
 850			"errno=%d\n", -i);
 851		restore_flags(flags);
 852		return;
 853	}
 854	put_tty_driver(stli_serial);
 855	for (i = 0; i < 4; i++) {
 856		devfs_remove("staliomem/%d", i);
 857		class_simple_device_remove(MKDEV(STL_SIOMEMMAJOR, i));
 858	}
 859	devfs_remove("staliomem");
 860	class_simple_destroy(istallion_class);
 861	if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
 862		printk("STALLION: failed to un-register serial memory device, "
 863			"errno=%d\n", -i);
 864	if (stli_tmpwritebuf != (char *) NULL)
 865		kfree(stli_tmpwritebuf);
 866	if (stli_txcookbuf != (char *) NULL)
 867		kfree(stli_txcookbuf);
 868
 869	for (i = 0; (i < stli_nrbrds); i++) {
 870		if ((brdp = stli_brds[i]) == (stlibrd_t *) NULL)
 871			continue;
 872		for (j = 0; (j < STL_MAXPORTS); j++) {
 873			portp = brdp->ports[j];
 874			if (portp != (stliport_t *) NULL) {
 875				if (portp->tty != (struct tty_struct *) NULL)
 876					tty_hangup(portp->tty);
 877				kfree(portp);
 878			}
 879		}
 880
 881		iounmap(brdp->membase);
 882		if (brdp->iosize > 0)
 883			release_region(brdp->iobase, brdp->iosize);
 884		kfree(brdp);
 885		stli_brds[i] = (stlibrd_t *) NULL;
 886	}
 887
 888	restore_flags(flags);
 889}
 890
 891module_init(istallion_module_init);
 892module_exit(istallion_module_exit);
 893
 894/*****************************************************************************/
 895
 896/*
 897 *	Check for any arguments passed in on the module load command line.
 898 */
 899
 900static void stli_argbrds(void)
 901{
 902	stlconf_t	conf;
 903	stlibrd_t	*brdp;
 904	int		nrargs, i;
 905
 906#ifdef DEBUG
 907	printk("stli_argbrds()\n");
 908#endif
 909
 910	nrargs = sizeof(stli_brdsp) / sizeof(char **);
 911
 912	for (i = stli_nrbrds; (i < nrargs); i++) {
 913		memset(&conf, 0, sizeof(conf));
 914		if (stli_parsebrd(&conf, stli_brdsp[i]) == 0)
 915			continue;
 916		if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
 917			continue;
 918		stli_nrbrds = i + 1;
 919		brdp->brdnr = i;
 920		brdp->brdtype = conf.brdtype;
 921		brdp->iobase = conf.ioaddr1;
 922		brdp->memaddr = conf.memaddr;
 923		stli_brdinit(brdp);
 924	}
 925}
 926
 927/*****************************************************************************/
 928
 929/*
 930 *	Convert an ascii string number into an unsigned long.
 931 */
 932
 933static unsigned long stli_atol(char *str)
 934{
 935	unsigned long	val;
 936	int		base, c;
 937	char		*sp;
 938
 939	val = 0;
 940	sp = str;
 941	if ((*sp == '0') && (*(sp+1) == 'x')) {
 942		base = 16;
 943		sp += 2;
 944	} else if (*sp == '0') {
 945		base = 8;
 946		sp++;
 947	} else {
 948		base = 10;
 949	}
 950
 951	for (; (*sp != 0); sp++) {
 952		c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
 953		if ((c < 0) || (c >= base)) {
 954			printk("STALLION: invalid argument %s\n", str);
 955			val = 0;
 956			break;
 957		}
 958		val = (val * base) + c;
 959	}
 960	return(val);
 961}
 962
 963/*****************************************************************************/
 964
 965/*
 966 *	Parse the supplied argument string, into the board conf struct.
 967 */
 968
 969static int stli_parsebrd(stlconf_t *confp, char **argp)
 970{
 971	char	*sp;
 972	int	nrbrdnames, i;
 973
 974#ifdef DEBUG
 975	printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
 976#endif
 977
 978	if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
 979		return(0);
 980
 981	for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
 982		*sp = TOLOWER(*sp);
 983
 984	nrbrdnames = sizeof(stli_brdstr) / sizeof(stlibrdtype_t);
 985	for (i = 0; (i < nrbrdnames); i++) {
 986		if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
 987			break;
 988	}
 989	if (i >= nrbrdnames) {
 990		printk("STALLION: unknown board name, %s?\n", argp[0]);
 991		return(0);
 992	}
 993
 994	confp->brdtype = stli_brdstr[i].type;
 995	if ((argp[1] != (char *) NULL) && (*argp[1] != 0))
 996		confp->ioaddr1 = stli_atol(argp[1]);
 997	if ((argp[2] != (char *) NULL) && (*argp[2] != 0))
 998		confp->memaddr = stli_atol(argp[2]);
 999	return(1);
1000}
1001
1002#endif
1003
1004/*****************************************************************************/
1005
1006/*
1007 *	Local driver kernel malloc routine.
1008 */
1009
1010static void *stli_memalloc(int len)
1011{
1012	return((void *) kmalloc(len, GFP_KERNEL));
1013}
1014
1015/*****************************************************************************/
1016
1017static int stli_open(struct tty_struct *tty, struct file *filp)
1018{
1019	stlibrd_t	*brdp;
1020	stliport_t	*portp;
1021	unsigned int	minordev;
1022	int		brdnr, portnr, rc;
1023
1024#ifdef DEBUG
1025	printk("stli_open(tty=%x,filp=%x): device=%s\n", (int) tty,
1026		(int) filp, tty->name);
1027#endif
1028
1029	minordev = tty->index;
1030	brdnr = MINOR2BRD(minordev);
1031	if (brdnr >= stli_nrbrds)
1032		return(-ENODEV);
1033	brdp = stli_brds[brdnr];
1034	if (brdp == (stlibrd_t *) NULL)
1035		return(-ENODEV);
1036	if ((brdp->state & BST_STARTED) == 0)
1037		return(-ENODEV);
1038	portnr = MINOR2PORT(minordev);
1039	if ((portnr < 0) || (portnr > brdp->nrports))
1040		return(-ENODEV);
1041
1042	portp = brdp->ports[portnr];
1043	if (portp == (stliport_t *) NULL)
1044		return(-ENODEV);
1045	if (portp->devnr < 1)
1046		return(-ENODEV);
1047
1048
1049/*
1050 *	Check if this port is in the middle of closing. If so then wait
1051 *	until it is closed then return error status based on flag settings.
1052 *	The sleep here does not need interrupt protection since the wakeup
1053 *	for it is done with the same context.
1054 */
1055	if (portp->flags & ASYNC_CLOSING) {
1056		interruptible_sleep_on(&portp->close_wait);
1057		if (portp->flags & ASYNC_HUP_NOTIFY)
1058			return(-EAGAIN);
1059		return(-ERESTARTSYS);
1060	}
1061
1062/*
1063 *	On the first open of the device setup the port hardware, and
1064 *	initialize the per port data structure. Since initializing the port
1065 *	requires several commands to the board we will need to wait for any
1066 *	other open that is already initializing the port.
1067 */
1068	portp->tty = tty;
1069	tty->driver_data = portp;
1070	portp->refcount++;
1071
1072	wait_event_interruptible(portp->raw_wait,
1073			!test_bit(ST_INITIALIZING, &portp->state));
1074	if (signal_pending(current))
1075		return(-ERESTARTSYS);
1076
1077	if ((portp->flags & ASYNC_INITIALIZED) == 0) {
1078		set_bit(ST_INITIALIZING, &portp->state);
1079		if ((rc = stli_initopen(brdp, portp)) >= 0) {
1080			portp->flags |= ASYNC_INITIALIZED;
1081			clear_bit(TTY_IO_ERROR, &tty->flags);
1082		}
1083		clear_bit(ST_INITIALIZING, &portp->state);
1084		wake_up_interruptible(&portp->raw_wait);
1085		if (rc < 0)
1086			return(rc);
1087	}
1088
1089/*
1090 *	Check if this port is in the middle of closing. If so then wait
1091 *	until it is closed then return error status, based on flag settings.
1092 *	The sleep here does not need interrupt protection since the wakeup
1093 *	for it is done with the same context.
1094 */
1095	if (portp->flags & ASYNC_CLOSING) {
1096		interruptible_sleep_on(&portp->close_wait);
1097		if (portp->flags & ASYNC_HUP_NOTIFY)
1098			return(-EAGAIN);
1099		return(-ERESTARTSYS);
1100	}
1101
1102/*
1103 *	Based on type of open being done check if it can overlap with any
1104 *	previous opens still in effect. If we are a normal serial device
1105 *	then also we might have to wait for carrier.
1106 */
1107	if (!(filp->f_flags & O_NONBLOCK)) {
1108		if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
1109			return(rc);
1110	}
1111	portp->flags |= ASYNC_NORMAL_ACTIVE;
1112	return(0);
1113}
1114
1115/*****************************************************************************/
1116
1117static void stli_close(struct tty_struct *tty, struct file *filp)
1118{
1119	stlibrd_t	*brdp;
1120	stliport_t	*portp;
1121	unsigned long	flags;
1122
1123#ifdef DEBUG
1124	printk("stli_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1125#endif
1126
1127	portp = tty->driver_data;
1128	if (portp == (stliport_t *) NULL)
1129		return;
1130
1131	save_flags(flags);
1132	cli();
1133	if (tty_hung_up_p(filp)) {
1134		restore_flags(flags);
1135		return;
1136	}
1137	if ((tty->count == 1) && (portp->refcount != 1))
1138		portp->refcount = 1;
1139	if (portp->refcount-- > 1) {
1140		restore_flags(flags);
1141		return;
1142	}
1143
1144	portp->flags |= ASYNC_CLOSING;
1145
1146/*
1147 *	May want to wait for data to drain before closing. The BUSY flag
1148 *	keeps track of whether we are still transmitting or not. It is
1149 *	updated by messages from the slave - indicating when all chars
1150 *	really have drained.
1151 */
1152	if (tty == stli_txcooktty)
1153		stli_flushchars(tty);
1154	tty->closing = 1;
1155	if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1156		tty_wait_until_sent(tty, portp->closing_wait);
1157
1158	portp->flags &= ~ASYNC_INITIALIZED;
1159	brdp = stli_brds[portp->brdnr];
1160	stli_rawclose(brdp, portp, 0, 0);
1161	if (tty->termios->c_cflag & HUPCL) {
1162		stli_mkasysigs(&portp->asig, 0, 0);
1163		if (test_bit(ST_CMDING, &portp->state))
1164			set_bit(ST_DOSIGS, &portp->state);
1165		else
1166			stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
1167				sizeof(asysigs_t), 0);
1168	}
1169	clear_bit(ST_TXBUSY, &portp->state);
1170	clear_bit(ST_RXSTOP, &portp->state);
1171	set_bit(TTY_IO_ERROR, &tty->flags);
1172	if (tty->ldisc.flush_buffer)
1173		(tty->ldisc.flush_buffer)(tty);
1174	set_bit(ST_DOFLUSHRX, &portp->state);
1175	stli_flushbuffer(tty);
1176
1177	tty->closing = 0;
1178	portp->tty = (struct tty_struct *) NULL;
1179
1180	if (portp->openwaitcnt) {
1181		if (portp->close_delay)
1182			msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1183		wake_up_interruptible(&portp->open_wait);
1184	}
1185
1186	portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1187	wake_up_interruptible(&portp->close_wait);
1188	restore_flags(flags);
1189}
1190
1191/*****************************************************************************/
1192
1193/*
1194 *	Carry out first open operations on a port. This involves a number of
1195 *	commands to be sent to the slave. We need to open the port, set the
1196 *	notification events, set the initial port settings, get and set the
1197 *	initial signal values. We sleep and wait in between each one. But
1198 *	this still all happens pretty quickly.
1199 */
1200
1201static int stli_initopen(stlibrd_t *brdp, stliport_t *portp)
1202{
1203	struct tty_struct	*tty;
1204	asynotify_t		nt;
1205	asyport_t		aport;
1206	int			rc;
1207
1208#ifdef DEBUG
1209	printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp, (int) portp);
1210#endif
1211
1212	if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
1213		return(rc);
1214
1215	memset(&nt, 0, sizeof(asynotify_t));
1216	nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
1217	nt.signal = SG_DCD;
1218	if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
1219	    sizeof(asynotify_t), 0)) < 0)
1220		return(rc);
1221
1222	tty = portp->tty;
1223	if (tty == (struct tty_struct *) NULL)
1224		return(-ENODEV);
1225	stli_mkasyport(portp, &aport, tty->termios);
1226	if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
1227	    sizeof(asyport_t), 0)) < 0)
1228		return(rc);
1229
1230	set_bit(ST_GETSIGS, &portp->state);
1231	if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
1232	    sizeof(asysigs_t), 1)) < 0)
1233		return(rc);
1234	if (test_and_clear_bit(ST_GETSIGS, &portp->state))
1235		portp->sigs = stli_mktiocm(portp->asig.sigvalue);
1236	stli_mkasysigs(&portp->asig, 1, 1);
1237	if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1238	    sizeof(asysigs_t), 0)) < 0)
1239		return(rc);
1240
1241	return(0);
1242}
1243
1244/*****************************************************************************/
1245
1246/*
1247 *	Send an open message to the slave. This will sleep waiting for the
1248 *	acknowledgement, so must have user context. We need to co-ordinate
1249 *	with close events here, since we don't want open and close events
1250 *	to overlap.
1251 */
1252
1253static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1254{
1255	volatile cdkhdr_t	*hdrp;
1256	volatile cdkctrl_t	*cp;
1257	volatile unsigned char	*bits;
1258	unsigned long		flags;
1259	int			rc;
1260
1261#ifdef DEBUG
1262	printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1263		(int) brdp, (int) portp, (int) arg, wait);
1264#endif
1265
1266/*
1267 *	Send a message to the slave to open this port.
1268 */
1269	save_flags(flags);
1270	cli();
1271
1272/*
1273 *	Slave is already closing this port. This can happen if a hangup
1274 *	occurs on this port. So we must wait until it is complete. The
1275 *	order of opens and closes may not be preserved across shared
1276 *	memory, so we must wait until it is complete.
1277 */
1278	wait_event_interruptible(portp->raw_wait,
1279			!test_bit(ST_CLOSING, &portp->state));
1280	if (signal_pending(current)) {
1281		restore_flags(flags);
1282		return -ERESTARTSYS;
1283	}
1284
1285/*
1286 *	Everything is ready now, so write the open message into shared
1287 *	memory. Once the message is in set the service bits to say that
1288 *	this port wants service.
1289 */
1290	EBRDENABLE(brdp);
1291	cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1292	cp->openarg = arg;
1293	cp->open = 1;
1294	hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1295	bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1296		portp->portidx;
1297	*bits |= portp->portbit;
1298	EBRDDISABLE(brdp);
1299
1300	if (wait == 0) {
1301		restore_flags(flags);
1302		return(0);
1303	}
1304
1305/*
1306 *	Slave is in action, so now we must wait for the open acknowledgment
1307 *	to come back.
1308 */
1309	rc = 0;
1310	set_bit(ST_OPENING, &portp->state);
1311	wait_event_interruptible(portp->raw_wait,
1312			!test_bit(ST_OPENING, &portp->state));
1313	if (signal_pending(current))
1314		rc = -ERESTARTSYS;
1315	restore_flags(flags);
1316
1317	if ((rc == 0) && (portp->rc != 0))
1318		rc = -EIO;
1319	return(rc);
1320}
1321
1322/*****************************************************************************/
1323
1324/*
1325 *	Send a close message to the slave. Normally this will sleep waiting
1326 *	for the acknowledgement, but if wait parameter is 0 it will not. If
1327 *	wait is true then must have user context (to sleep).
1328 */
1329
1330static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1331{
1332	volatile cdkhdr_t	*hdrp;
1333	volatile cdkctrl_t	*cp;
1334	volatile unsigned char	*bits;
1335	unsigned long		flags;
1336	int			rc;
1337
1338#ifdef DEBUG
1339	printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1340		(int) brdp, (int) portp, (int) arg, wait);
1341#endif
1342
1343	save_flags(flags);
1344	cli();
1345
1346/*
1347 *	Slave is already closing this port. This can happen if a hangup
1348 *	occurs on this port.
1349 */
1350	if (wait) {
1351		wait_event_interruptible(portp->raw_wait,
1352				!test_bit(ST_CLOSING, &portp->state));
1353		if (signal_pending(current)) {
1354			restore_flags(flags);
1355			return -ERESTARTSYS;
1356		}
1357	}
1358
1359/*
1360 *	Write the close command into shared memory.
1361 */
1362	EBRDENABLE(brdp);
1363	cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1364	cp->closearg = arg;
1365	cp->close = 1;
1366	hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1367	bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1368		portp->portidx;
1369	*bits |= portp->portbit;
1370	EBRDDISABLE(brdp);
1371
1372	set_bit(ST_CLOSING, &portp->state);
1373	if (wait == 0) {
1374		restore_flags(flags);
1375		return(0);
1376	}
1377
1378/*
1379 *	Slave is in action, so now we must wait for the open acknowledgment
1380 *	to come back.
1381 */
1382	rc = 0;
1383	wait_event_interruptible(portp->raw_wait,
1384			!test_bit(ST_CLOSING, &portp->state));
1385	if (signal_pending(current))
1386		rc = -ERESTARTSYS;
1387	restore_flags(flags);
1388
1389	if ((rc == 0) && (portp->rc != 0))
1390		rc = -EIO;
1391	return(rc);
1392}
1393
1394/*****************************************************************************/
1395
1396/*
1397 *	Send a command to the slave and wait for the response. This must
1398 *	have user context (it sleeps). This routine is generic in that it
1399 *	can send any type of command. Its purpose is to wait for that command
1400 *	to complete (as opposed to initiating the command then returning).
1401 */
1402
1403static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
1404{
1405	unsigned long	flags;
1406
1407#ifdef DEBUG
1408	printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
1409		"copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
1410		(int) arg, size, copyback);
1411#endif
1412
1413	save_flags(flags);
1414	cli();
1415	wait_event_interruptible(portp->raw_wait,
1416			!test_bit(ST_CMDING, &portp->state));
1417	if (signal_pending(current)) {
1418		restore_flags(flags);
1419		return -ERESTARTSYS;
1420	}
1421
1422	stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1423
1424	wait_event_interruptible(portp->raw_wait,
1425			!test_bit(ST_CMDING, &portp->state));
1426	if (signal_pending(current)) {
1427		restore_flags(flags);
1428		return -ERESTARTSYS;
1429	}
1430	restore_flags(flags);
1431
1432	if (portp->rc != 0)
1433		return(-EIO);
1434	return(0);
1435}
1436
1437/*****************************************************************************/
1438
1439/*
1440 *	Send the termios settings for this port to the slave. This sleeps
1441 *	waiting for the command to complete - so must have user context.
1442 */
1443
1444static int stli_setport(stliport_t *portp)
1445{
1446	stlibrd_t	*brdp;
1447	asyport_t	aport;
1448
1449#ifdef DEBUG
1450	printk("stli_setport(portp=%x)\n", (int) portp);
1451#endif
1452
1453	if (portp == (stliport_t *) NULL)
1454		return(-ENODEV);
1455	if (portp->tty == (struct tty_struct *) NULL)
1456		return(-ENODEV);
1457	if ((portp->brdnr < 0) && (portp->brdnr >= stli_nrbrds))
1458		return(-ENODEV);
1459	brdp = stli_brds[portp->brdnr];
1460	if (brdp == (stlibrd_t *) NULL)
1461		return(-ENODEV);
1462
1463	stli_mkasyport(portp, &aport, portp->tty->termios);
1464	return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1465}
1466
1467/*****************************************************************************/
1468
1469/*
1470 *	Possibly need to wait for carrier (DCD signal) to come high. Say
1471 *	maybe because if we are clocal then we don't need to wait...
1472 */
1473
1474static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp)
1475{
1476	unsigned long	flags;
1477	int		rc, doclocal;
1478
1479#ifdef DEBUG
1480	printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n",
1481		(int) brdp, (int) portp, (int) filp);
1482#endif
1483
1484	rc = 0;
1485	doclocal = 0;
1486
1487	if (portp->tty->termios->c_cflag & CLOCAL)
1488		doclocal++;
1489
1490	save_flags(flags);
1491	cli();
1492	portp->openwaitcnt++;
1493	if (! tty_hung_up_p(filp))
1494		portp->refcount--;
1495
1496	for (;;) {
1497		stli_mkasysigs(&portp->asig, 1, 1);
1498		if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1499		    &portp->asig, sizeof(asysigs_t), 0)) < 0)
1500			break;
1501		if (tty_hung_up_p(filp) ||
1502		    ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1503			if (portp->flags & ASYNC_HUP_NOTIFY)
1504				rc = -EBUSY;
1505			else
1506				rc = -ERESTARTSYS;
1507			break;
1508		}
1509		if (((portp->flags & ASYNC_CLOSING) == 0) &&
1510		    (doclocal || (portp->sigs & TIOCM_CD))) {
1511			break;
1512		}
1513		if (signal_pending(current)) {
1514			rc = -ERESTARTSYS;
1515			break;
1516		}
1517		interruptible_sleep_on(&portp->open_wait);
1518	}
1519
1520	if (! tty_hung_up_p(filp))
1521		portp->refcount++;
1522	portp->openwaitcnt--;
1523	restore_flags(flags);
1524
1525	return(rc);
1526}
1527
1528/*****************************************************************************/
1529
1530/*
1531 *	Write routine. Take the data and put it in the shared memory ring
1532 *	queue. If port is not already sending chars then need to mark the
1533 *	service bits for this port.
1534 */
1535
1536static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1537{
1538	volatile cdkasy_t	*ap;
1539	volatile cdkhdr_t	*hdrp;
1540	volatile unsigned char	*bits;
1541	unsigned char		*shbuf, *chbuf;
1542	stliport_t		*portp;
1543	stlibrd_t		*brdp;
1544	unsigned int		len, stlen, head, tail, size;
1545	unsigned long		flags;
1546
1547#ifdef DEBUG
1548	printk("stli_write(tty=%x,buf=%x,count=%d)\n",
1549		(int) tty, (int) buf, count);
1550#endif
1551
1552	if ((tty == (struct tty_struct *) NULL) ||
1553	    (stli_tmpwritebuf == (char *) NULL))
1554		return(0);
1555	if (tty == stli_txcooktty)
1556		stli_flushchars(tty);
1557	portp = tty->driver_data;
1558	if (portp == (stliport_t *) NULL)
1559		return(0);
1560	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1561		return(0);
1562	brdp = stli_brds[portp->brdnr];
1563	if (brdp == (stlibrd_t *) NULL)
1564		return(0);
1565	chbuf = (unsigned char *) buf;
1566
1567/*
1568 *	All data is now local, shove as much as possible into shared memory.
1569 */
1570	save_flags(flags);
1571	cli();
1572	EBRDENABLE(brdp);
1573	ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1574	head = (unsigned int) ap->txq.head;
1575	tail = (unsigned int) ap->txq.tail;
1576	if (tail != ((unsigned int) ap->txq.tail))
1577		tail = (unsigned int) ap->txq.tail;
1578	size = portp->txsize;
1579	if (head >= tail) {
1580		len = size - (head - tail) - 1;
1581		stlen = size - head;
1582	} else {
1583		len = tail - head - 1;
1584		stlen = len;
1585	}
1586
1587	len = MIN(len, count);
1588	count = 0;
1589	shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1590
1591	while (len > 0) {
1592		stlen = MIN(len, stlen);
1593		memcpy((shbuf + head), chbuf, stlen);
1594		chbuf += stlen;
1595		len -= stlen;
1596		count += stlen;
1597		head += stlen;
1598		if (head >= size) {
1599			head = 0;
1600			stlen = tail;
1601		}
1602	}
1603
1604	ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1605	ap->txq.head = head;
1606	if (test_bit(ST_TXBUSY, &portp->state)) {
1607		if (ap->changed.data & DT_TXEMPTY)
1608			ap->changed.data &= ~DT_TXEMPTY;
1609	}
1610	hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1611	bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1612		portp->portidx;
1613	*bits |= portp->portbit;
1614	set_bit(ST_TXBUSY, &portp->state);
1615	EBRDDISABLE(brdp);
1616
1617	restore_flags(flags);
1618
1619	return(count);
1620}
1621
1622/*****************************************************************************/
1623
1624/*
1625 *	Output a single character. We put it into a temporary local buffer
1626 *	(for speed) then write out that buffer when the flushchars routine
1627 *	is called. There is a safety catch here so that if some other port
1628 *	writes chars before the current buffer has been, then we write them
1629 *	first them do the new ports.
1630 */
1631
1632static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1633{
1634#ifdef DEBUG
1635	printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1636#endif
1637
1638	if (tty == (struct tty_struct *) NULL)
1639		return;
1640	if (tty != stli_txcooktty) {
1641		if (stli_txcooktty != (struct tty_struct *) NULL)
1642			stli_flushchars(stli_txcooktty);
1643		stli_txcooktty = tty;
1644	}
1645
1646	stli_txcookbuf[stli_txcooksize++] = ch;
1647}
1648
1649/*****************************************************************************/
1650
1651/*
1652 *	Transfer characters from the local TX cooking buffer to the board.
1653 *	We sort of ignore the tty that gets passed in here. We rely on the
1654 *	info stored with the TX cook buffer to tell us which port to flush
1655 *	the data on. In any case we clean out the TX cook buffer, for re-use
1656 *	by someone else.
1657 */
1658
1659static void stli_flushchars(struct tty_struct *tty)
1660{
1661	volatile cdkhdr_t	*hdrp;
1662	volatile unsigned char	*bits;
1663	volatile cdkasy_t	*ap;
1664	struct tty_struct	*cooktty;
1665	stliport_t		*portp;
1666	stlibrd_t		*brdp;
1667	unsigned int		len, stlen, head, tail, size, count, cooksize;
1668	unsigned char		*buf, *shbuf;
1669	unsigned long		flags;
1670
1671#ifdef DEBUG
1672	printk("stli_flushchars(tty=%x)\n", (int) tty);
1673#endif
1674
1675	cooksize = stli_txcooksize;
1676	cooktty = stli_txcooktty;
1677	stli_txcooksize = 0;
1678	stli_txcookrealsize = 0;
1679	stli_txcooktty = (struct tty_struct *) NULL;
1680
1681	if (tty == (struct tty_struct *) NULL)
1682		return;
1683	if (cooktty == (struct tty_struct *) NULL)
1684		return;
1685	if (tty != cooktty)
1686		tty = cooktty;
1687	if (cooksize == 0)
1688		return;
1689
1690	portp = tty->driver_data;
1691	if (portp == (stliport_t *) NULL)
1692		return;
1693	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1694		return;
1695	brdp = stli_brds[portp->brdnr];
1696	if (brdp == (stlibrd_t *) NULL)
1697		return;
1698
1699	save_flags(flags);
1700	cli();
1701	EBRDENABLE(brdp);
1702
1703	ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1704	head = (unsigned int) ap->txq.head;
1705	tail = (unsigned int) ap->txq.tail;
1706	if (tail != ((unsigned int) ap->txq.tail))
1707		tail = (unsigned int) ap->txq.tail;
1708	size = portp->txsize;
1709	if (head >= tail) {
1710		len = size - (head - tail) - 1;
1711		stlen = size - head;
1712	} else {
1713		len = tail - head - 1;
1714		stlen = len;
1715	}
1716
1717	len = MIN(len, cooksize);
1718	count = 0;
1719	shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1720	buf = stli_txcookbuf;
1721
1722	while (len > 0) {
1723		stlen = MIN(len, stlen);
1724		memcpy((shbuf + head), buf, stlen);
1725		buf += stlen;
1726		len -= stlen;
1727		count += stlen;
1728		head += stlen;
1729		if (head >= size) {
1730			head = 0;
1731			stlen = tail;
1732		}
1733	}
1734
1735	ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1736	ap->txq.head = head;
1737
1738	if (test_bit(ST_TXBUSY, &portp->state)) {
1739		if (ap->changed.data & DT_TXEMPTY)
1740			ap->changed.data &= ~DT_TXEMPTY;
1741	}
1742	hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1743	bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1744		portp->portidx;
1745	*bits |= portp->portbit;
1746	set_bit(ST_TXBUSY, &portp->state);
1747
1748	EBRDDISABLE(brdp);
1749	restore_flags(flags);
1750}
1751
1752/*****************************************************************************/
1753
1754static int stli_writeroom(struct tty_struct *tty)
1755{
1756	volatile cdkasyrq_t	*rp;
1757	stliport_t		*portp;
1758	stlibrd_t		*brdp;
1759	unsigned int		head, tail, len;
1760	unsigned long		flags;
1761
1762#ifdef DEBUG
1763	printk("stli_writeroom(tty=%x)\n", (int) tty);
1764#endif
1765
1766	if (tty == (struct tty_struct *) NULL)
1767		return(0);
1768	if (tty == stli_txcooktty) {
1769		if (stli_txcookrealsize != 0) {
1770			len = stli_txcookrealsize - stli_txcooksize;
1771			return(len);
1772		}
1773	}
1774
1775	portp = tty->driver_data;
1776	if (portp == (stliport_t *) NULL)
1777		return(0);
1778	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1779		return(0);
1780	brdp = stli_brds[portp->brdnr];
1781	if (brdp == (stlibrd_t *) NULL)
1782		return(0);
1783
1784	save_flags(flags);
1785	cli();
1786	EBRDENABLE(brdp);
1787	rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1788	head = (unsigned int) rp->head;
1789	tail = (unsigned int) rp->tail;
1790	if (tail != ((unsigned int) rp->tail))
1791		tail = (unsigned int) rp->tail;
1792	len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1793	len--;
1794	EBRDDISABLE(brdp);
1795	restore_flags(flags);
1796
1797	if (tty == stli_txcooktty) {
1798		stli_txcookrealsize = len;
1799		len -= stli_txcooksize;
1800	}
1801	return(len);
1802}
1803
1804/*****************************************************************************/
1805
1806/*
1807 *	Return the number of characters in the transmit buffer. Normally we
1808 *	will return the number of chars in the shared memory ring queue.
1809 *	We need to kludge around the case where the shared memory buffer is
1810 *	empty but not all characters have drained yet, for this case just
1811 *	return that there is 1 character in the buffer!
1812 */
1813
1814static int stli_charsinbuffer(struct tty_struct *tty)
1815{
1816	volatile cdkasyrq_t	*rp;
1817	stliport_t		*portp;
1818	stlibrd_t		*brdp;
1819	unsigned int		head, tail, len;
1820	unsigned long		flags;
1821
1822#ifdef DEBUG
1823	printk("stli_charsinbuffer(tty=%x)\n", (int) tty);
1824#endif
1825
1826	if (tty == (struct tty_struct *) NULL)
1827		return(0);
1828	if (tty == stli_txcooktty)
1829		stli_flushchars(tty);
1830	portp = tty->driver_data;
1831	if (portp == (stliport_t *) NULL)
1832		return(0);
1833	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1834		return(0);
1835	brdp = stli_brds[portp->brdnr];
1836	if (brdp == (stlibrd_t *) NULL)
1837		return(0);
1838
1839	save_flags(flags);
1840	cli();
1841	EBRDENABLE(brdp);
1842	rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1843	head = (unsigned int) rp->head;
1844	tail = (unsigned int) rp->tail;
1845	if (tail != ((unsigned int) rp->tail))
1846		tail = (unsigned int) rp->tail;
1847	len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1848	if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1849		len = 1;
1850	EBRDDISABLE(brdp);
1851	restore_flags(flags);
1852
1853	return(len);
1854}
1855
1856/*****************************************************************************/
1857
1858/*
1859 *	Generate the serial struct info.
1860 */
1861
1862static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp)
1863{
1864	struct serial_struct	sio;
1865	stlibrd_t		*brdp;
1866
1867#ifdef DEBUG
1868	printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1869#endif
1870
1871	memset(&sio, 0, sizeof(struct serial_struct));
1872	sio.type = PORT_UNKNOWN;
1873	sio.line = portp->portnr;
1874	sio.irq = 0;
1875	sio.flags = portp->flags;
1876	sio.baud_base = portp->baud_base;
1877	sio.close_delay = portp->close_delay;
1878	sio.closing_wait = portp->closing_wait;
1879	sio.custom_divisor = portp->custom_divisor;
1880	sio.xmit_fifo_size = 0;
1881	sio.hub6 = 0;
1882
1883	brdp = stli_brds[portp->brdnr];
1884	if (brdp != (stlibrd_t *) NULL)
1885		sio.port = brdp->iobase;
1886		
1887	return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1888			-EFAULT : 0;
1889}
1890
1891/*****************************************************************************/
1892
1893/*
1894 *	Set port according to the serial struct info.
1895 *	At this point we do not do any auto-configure stuff, so we will
1896 *	just quietly ignore any requests to change irq, etc.
1897 */
1898
1899static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp)
1900{
1901	struct serial_struct	sio;
1902	int			rc;
1903
1904#ifdef DEBUG
1905	printk("stli_setserial(portp=%p,sp=%p)\n", portp, sp);
1906#endif
1907
1908	if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1909		return -EFAULT;
1910	if (!capable(CAP_SYS_ADMIN)) {
1911		if ((sio.baud_base != portp->baud_base) ||
1912		    (sio.close_delay != portp->close_delay) ||
1913		    ((sio.flags & ~ASYNC_USR_MASK) !=
1914		    (portp->flags & ~ASYNC_USR_MASK)))
1915			return(-EPERM);
1916	} 
1917
1918	portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1919		(sio.flags & ASYNC_USR_MASK);
1920	portp->baud_base = sio.baud_base;
1921	portp->close_delay = sio.close_delay;
1922	portp->closing_wait = sio.closing_wait;
1923	portp->custom_divisor = sio.custom_divisor;
1924
1925	if ((rc = stli_setport(portp)) < 0)
1926		return(rc);
1927	return(0);
1928}
1929
1930/*****************************************************************************/
1931
1932static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1933{
1934	stliport_t *portp = tty->driver_data;
1935	stlibrd_t *brdp;
1936	int rc;
1937
1938	if (portp == (stliport_t *) NULL)
1939		return(-ENODEV);
1940	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1941		return(0);
1942	brdp = stli_brds[portp->brdnr];
1943	if (brdp == (stlibrd_t *) NULL)
1944		return(0);
1945	if (tty->flags & (1 << TTY_IO_ERROR))
1946		return(-EIO);
1947
1948	if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1949			       &portp->asig, sizeof(asysigs_t), 1)) < 0)
1950		return(rc);
1951
1952	return stli_mktiocm(portp->asig.sigvalue);
1953}
1954
1955static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1956			 unsigned int set, unsigned int clear)
1957{
1958	stliport_t *portp = tty->driver_data;
1959	stlibrd_t *brdp;
1960	int rts = -1, dtr = -1;
1961
1962	if (portp == (stliport_t *) NULL)
1963		return(-ENODEV);
1964	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1965		return(0);
1966	brdp = stli_brds[portp->brdnr];
1967	if (brdp == (stlibrd_t *) NULL)
1968		return(0);
1969	if (tty->flags & (1 << TTY_IO_ERROR))
1970		return(-EIO);
1971
1972	if (set & TIOCM_RTS)
1973		rts = 1;
1974	if (set & TIOCM_DTR)
1975		dtr = 1;
1976	if (clear & TIOCM_RTS)
1977		rts = 0;
1978	if (clear & TIOCM_DTR)
1979		dtr = 0;
1980
1981	stli_mkasysigs(&portp->asig, dtr, rts);
1982
1983	return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1984			    sizeof(asysigs_t), 0);
1985}
1986
1987static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1988{
1989	stliport_t	*portp;
1990	stlibrd_t	*brdp;
1991	unsigned int	ival;
1992	int		rc;
1993	void __user *argp = (void __user *)arg;
1994
1995#ifdef DEBUG
1996	printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1997		(int) tty, (int) file, cmd, (int) arg);
1998#endif
1999
2000	if (tty == (struct tty_struct *) NULL)
2001		return(-ENODEV);
2002	portp = tty->driver_data;
2003	if (portp == (stliport_t *) NULL)
2004		return(-ENODEV);
2005	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2006		return(0);
2007	brdp = stli_brds[portp->brdnr];
2008	if (brdp == (stlibrd_t *) NULL)
2009		return(0);
2010
2011	if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
2012 	    (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
2013		if (tty->flags & (1 << TTY_IO_ERROR))
2014			return(-EIO);
2015	}
2016
2017	rc = 0;
2018
2019	switch (cmd) {
2020	case TIOCGSOFTCAR:
2021		rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
2022			(unsigned __user *) arg);
2023		break;
2024	case TIOCSSOFTCAR:
2025		if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
2026			tty->termios->c_cflag =
2027				(tty->termios->c_cflag & ~CLOCAL) |
2028				(ival ? CLOCAL : 0);
2029		break;
2030	case TIOCGSERIAL:
2031		rc = stli_getserial(portp, argp);
2032		break;
2033	case TIOCSSERIAL:
2034		rc = stli_setserial(portp, argp);
2035		break;
2036	case STL_GETPFLAG:
2037		rc = put_user(portp->pflag, (unsigned __user *)argp);
2038		break;
2039	case STL_SETPFLAG:
2040		if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
2041			stli_setport(portp);
2042		break;
2043	case COM_GETPORTSTATS:
2044		rc = stli_getportstats(portp, argp);
2045		break;
2046	case COM_CLRPORTSTATS:
2047		rc = stli_clrportstats(portp, argp);
2048		break;
2049	case TIOCSERCONFIG:
2050	case TIOCSERGWILD:
2051	case TIOCSERSWILD:
2052	case TIOCSERGETLSR:
2053	case TIOCSERGSTRUCT:
2054	case TIOCSERGETMULTI:
2055	case TIOCSERSETMULTI:
2056	default:
2057		rc = -ENOIOCTLCMD;
2058		break;
2059	}
2060
2061	return(rc);
2062}
2063
2064/*****************************************************************************/
2065
2066/*
2067 *	This routine assumes that we have user context and can sleep.
2068 *	Looks like it is true for the current ttys implementation..!!
2069 */
2070
2071static void stli_settermios(struct tty_struct *tty, struct termios *old)
2072{
2073	stliport_t	*portp;
2074	stlibrd_t	*brdp;
2075	struct termios	*tiosp;
2076	asyport_t	aport;
2077
2078#ifdef DEBUG
2079	printk("stli_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
2080#endif
2081
2082	if (tty == (struct tty_struct *) NULL)
2083		return;
2084	portp = tty->driver_data;
2085	if (portp == (stliport_t *) NULL)
2086		return;
2087	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2088		return;
2089	brdp = stli_brds[portp->brdnr];
2090	if (brdp == (stlibrd_t *) NULL)
2091		return;
2092
2093	tiosp = tty->termios;
2094	if ((tiosp->c_cflag == old->c_cflag) &&
2095	    (tiosp->c_iflag == old->c_iflag))
2096		return;
2097
2098	stli_mkasyport(portp, &aport, tiosp);
2099	stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
2100	stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
2101	stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
2102		sizeof(asysigs_t), 0);
2103	if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
2104		tty->hw_stopped = 0;
2105	if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
2106		wake_up_interruptible(&portp->open_wait);
2107}
2108
2109/*****************************************************************************/
2110
2111/*
2112 *	Attempt to flow control who ever is sending us data. We won't really
2113 *	do any flow control action here. We can't directly, and even if we
2114 *	wanted to we would have to send a command to the slave. The slave
2115 *	knows how to flow control, and will do so when its buffers reach its
2116 *	internal high water marks. So what we will do is set a local state
2117 *	bit that will stop us sending any RX data up from the poll routine
2118 *	(which is the place where RX data from the slave is handled).
2119 */
2120
2121static void stli_throttle(struct tty_struct *tty)
2122{
2123	stliport_t	*portp;
2124
2125#ifdef DEBUG
2126	printk("stli_throttle(tty=%x)\n", (int) tty);
2127#endif
2128
2129	if (tty == (struct tty_struct *) NULL)
2130		return;
2131	portp = tty->driver_data;
2132	if (portp == (stliport_t *) NULL)
2133		return;
2134
2135	set_bit(ST_RXSTOP, &portp->state);
2136}
2137
2138/*****************************************************************************/
2139
2140/*
2141 *	Unflow control the device sending us data... That means that all
2142 *	we have to do is clear the RXSTOP state bit. The next poll call
2143 *	will then be able to pass the RX data back up.
2144 */
2145
2146static void stli_unthrottle(struct tty_struct *tty)
2147{
2148	stliport_t	*portp;
2149
2150#ifdef DEBUG
2151	printk("stli_unthrottle(tty=%x)\n", (int) tty);
2152#endif
2153
2154	if (tty == (struct tty_struct *) NULL)
2155		return;
2156	portp = tty->driver_data;
2157	if (portp == (stliport_t *) NULL)
2158		return;
2159
2160	clear_bit(ST_RXSTOP, &portp->state);
2161}
2162
2163/*****************************************************************************/
2164
2165/*
2166 *	Stop the transmitter. Basically to do this we will just turn TX
2167 *	interrupts off.
2168 */
2169
2170static void stli_stop(struct tty_struct *tty)
2171{
2172	stlibrd_t	*brdp;
2173	stliport_t	*portp;
2174	asyctrl_t	actrl;
2175
2176#ifdef DEBUG
2177	printk("stli_stop(tty=%x)\n", (int) tty);
2178#endif
2179
2180	if (tty == (struct tty_struct *) NULL)
2181		return;
2182	portp = tty->driver_data;
2183	if (portp == (stliport_t *) NULL)
2184		return;
2185	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2186		return;
2187	brdp = stli_brds[portp->brdnr];
2188	if (brdp == (stlibrd_t *) NULL)
2189		return;
2190
2191	memset(&actrl, 0, sizeof(asyctrl_t));
2192	actrl.txctrl = CT_STOPFLOW;
2193#if 0
2194	stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2195#endif
2196}
2197
2198/*****************************************************************************/
2199
2200/*
2201 *	Start the transmitter again. Just turn TX interrupts back on.
2202 */
2203
2204static void stli_start(struct tty_struct *tty)
2205{
2206	stliport_t	*portp;
2207	stlibrd_t	*brdp;
2208	asyctrl_t	actrl;
2209
2210#ifdef DEBUG
2211	printk("stli_start(tty=%x)\n", (int) tty);
2212#endif
2213
2214	if (tty == (struct tty_struct *) NULL)
2215		return;
2216	portp = tty->driver_data;
2217	if (portp == (stliport_t *) NULL)
2218		return;
2219	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2220		return;
2221	brdp = stli_brds[portp->brdnr];
2222	if (brdp == (stlibrd_t *) NULL)
2223		return;
2224
2225	memset(&actrl, 0, sizeof(asyctrl_t));
2226	actrl.txctrl = CT_STARTFLOW;
2227#if 0
2228	stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2229#endif
2230}
2231
2232/*****************************************************************************/
2233
2234/*
2235 *	Scheduler called hang up routine. This is called from the scheduler,
2236 *	not direct from the driver "poll" routine. We can't call it there
2237 *	since the real local hangup code will enable/disable the board and
2238 *	other things that we can't do while handling the poll. Much easier
2239 *	to deal with it some time later (don't really care when, hangups
2240 *	aren't that time critical).
2241 */
2242
2243static void stli_dohangup(void *arg)
2244{
2245	stliport_t	*portp;
2246
2247#ifdef DEBUG
2248	printk(KERN_DEBUG "stli_dohangup(portp=%x)\n", (int) arg);
2249#endif
2250
2251	/*
2252	 * FIXME: There's a module removal race here: tty_hangup
2253	 * calls schedule_work which will call into this
2254	 * driver later.
2255	 */
2256	portp = (stliport_t *) arg;
2257	if (portp != (stliport_t *) NULL) {
2258		if (portp->tty != (struct tty_struct *) NULL) {
2259			tty_hangup(portp->tty);
2260		}
2261	}
2262}
2263
2264/*****************************************************************************/
2265
2266/*
2267 *	Hangup this port. This is pretty much like closing the port, only
2268 *	a little more brutal. No waiting for data to drain. Shutdown the
2269 *	port and maybe drop signals. This is rather tricky really. We want
2270 *	to close the port as well.
2271 */
2272
2273static void stli_hangup(struct tty_struct *tty)
2274{
2275	stliport_t	*portp;
2276	stlibrd_t	*brdp;
2277	unsigned long	flags;
2278
2279#ifdef DEBUG
2280	printk(KERN_DEBUG "stli_hangup(tty=%x)\n", (int) tty);
2281#endif
2282
2283	if (tty == (struct tty_struct *) NULL)
2284		return;
2285	portp = tty->driver_data;
2286	if (portp == (stliport_t *) NULL)
2287		return;
2288	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2289		return;
2290	brdp = stli_brds[portp->brdnr];
2291	if (brdp == (stlibrd_t *) NULL)
2292		return;
2293
2294	portp->flags &= ~ASYNC_INITIALIZED;
2295
2296	save_flags(flags);
2297	cli();
2298	if (! test_bit(ST_CLOSING, &portp->state))
2299		stli_rawclose(brdp, portp, 0, 0);
2300	if (tty->termios->c_cflag & HUPCL) {
2301		stli_mkasysigs(&portp->asig, 0, 0);
2302		if (test_bit(ST_CMDING, &portp->state)) {
2303			set_bit(ST_DOSIGS, &portp->state);
2304			set_bit(ST_DOFLUSHTX, &portp->state);
2305			set_bit(ST_DOFLUSHRX, &portp->state);
2306		} else {
2307			stli_sendcmd(brdp, portp, A_SETSIGNALSF,
2308				&portp->asig, sizeof(asysigs_t), 0);
2309		}
2310	}
2311	restore_flags(flags);
2312
2313	clear_bit(ST_TXBUSY, &portp->state);
2314	clear_bit(ST_RXSTOP, &portp->state);
2315	set_bit(TTY_IO_ERROR, &tty->flags);
2316	portp->tty = (struct tty_struct *) NULL;
2317	portp->flags &= ~ASYNC_NORMAL_ACTIVE;
2318	portp->refcount = 0;
2319	wake_up_interruptible(&portp->open_wait);
2320}
2321
2322/*****************************************************************************/
2323
2324/*
2325 *	Flush characters from the lower buffer. We may not have user context
2326 *	so we cannot sleep waiting for it to complete. Also we need to check
2327 *	if there is chars for this port in the TX cook buffer, and flush them
2328 *	as well.
2329 */
2330
2331static void stli_flushbuffer(struct tty_struct *tty)
2332{
2333	stliport_t	*portp;
2334	stlibrd_t	*brdp;
2335	unsigned long	ftype, flags;
2336
2337#ifdef DEBUG
2338	printk(KERN_DEBUG "stli_flushbuffer(tty=%x)\n", (int) tty);
2339#endif
2340
2341	if (tty == (struct tty_struct *) NULL)
2342		return;
2343	portp = tty->driver_data;
2344	if (portp == (stliport_t *) NULL)
2345		return;
2346	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2347		return;
2348	brdp = stli_brds[portp->brdnr];
2349	if (brdp == (stlibrd_t *) NULL)
2350		return;
2351
2352	save_flags(flags);
2353	cli();
2354	if (tty == stli_txcooktty) {
2355		stli_txcooktty = (struct tty_struct *) NULL;
2356		stli_txcooksize = 0;
2357		stli_txcookrealsize = 0;
2358	}
2359	if (test_bit(ST_CMDING, &portp->state)) {
2360		set_bit(ST_DOFLUSHTX, &portp->state);
2361	} else {
2362		ftype = FLUSHTX;
2363		if (test_bit(ST_DOFLUSHRX, &portp->state)) {
2364			ftype |= FLUSHRX;
2365			clear_bit(ST_DOFLUSHRX, &portp->state);
2366		}
2367		stli_sendcmd(brdp, portp, A_FLUSH, &ftype,
2368			sizeof(unsigned long), 0);
2369	}
2370	restore_flags(flags);
2371
2372	wake_up_interruptible(&tty->write_wait);
2373	if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2374	    tty->ldisc.write_wakeup)
2375		(tty->ldisc.write_wakeup)(tty);
2376}
2377
2378/*****************************************************************************/
2379
2380static void stli_breakctl(struct tty_struct *tty, int state)
2381{
2382	stlibrd_t	*brdp;
2383	stliport_t	*portp;
2384	long		arg;
2385	/* long savestate, savetime; */
2386
2387#ifdef DEBUG
2388	printk(KERN_DEBUG "stli_breakctl(tty=%x,state=%d)\n", (int) tty, state);
2389#endif
2390
2391	if (tty == (struct tty_struct *) NULL)
2392		return;
2393	portp = tty->driver_data;
2394	if (portp == (stliport_t *) NULL)
2395		return;
2396	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2397		return;
2398	brdp = stli_brds[portp->brdnr];
2399	if (brdp == (stlibrd_t *) NULL)
2400		return;
2401
2402/*
2403 *	Due to a bug in the tty send_break() code we need to preserve
2404 *	the current process state and timeout...
2405	savetime = current->timeout;
2406	savestate = current->state;
2407 */
2408
2409	arg = (state == -1) ? BREAKON : BREAKOFF;
2410	stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
2411
2412/*
2413 *
2414	current->timeout = savetime;
2415	current->state = savestate;
2416 */
2417}
2418
2419/*****************************************************************************/
2420
2421static void stli_waituntilsent(struct tty_struct *tty, int timeout)
2422{
2423	stliport_t	*portp;
2424	unsigned long	tend;
2425
2426#ifdef DEBUG
2427	printk(KERN_DEBUG "stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty, timeout);
2428#endif
2429
2430	if (tty == (struct tty_struct *) NULL)
2431		return;
2432	portp = tty->driver_data;
2433	if (portp == (stliport_t *) NULL)
2434		return;
2435
2436	if (timeout == 0)
2437		timeout = HZ;
2438	tend = jiffies + timeout;
2439
2440	while (test_bit(ST_TXBUSY, &portp->state)) {
2441		if (signal_pending(current))
2442			break;
2443		msleep_interruptible(20);
2444		if (time_after_eq(jiffies, tend))
2445			break;
2446	}
2447}
2448
2449/*****************************************************************************/
2450
2451static void stli_sendxchar(struct tty_struct *tty, char ch)
2452{
2453	stlibrd_t	*brdp;
2454	stliport_t	*portp;
2455	asyctrl_t	actrl;
2456
2457#ifdef DEBUG
2458	printk(KERN_DEBUG "stli_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
2459#endif
2460
2461	if (tty == (struct tty_struct *) NULL)
2462		return;
2463	portp = tty->driver_data;
2464	if (portp == (stliport_t *) NULL)
2465		return;
2466	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2467		return;
2468	brdp = stli_brds[portp->brdnr];
2469	if (brdp == (stlibrd_t *) NULL)
2470		return;
2471
2472	memset(&actrl, 0, sizeof(asyctrl_t));
2473	if (ch == STOP_CHAR(tty)) {
2474		actrl.rxctrl = CT_STOPFLOW;
2475	} else if (ch == START_CHAR(tty)) {
2476		actrl.rxctrl = CT_STARTFLOW;
2477	} else {
2478		actrl.txctrl = CT_SENDCHR;
2479		actrl.tximdch = ch;
2480	}
2481
2482	stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2483}
2484
2485/*****************************************************************************/
2486
2487#define	MAXLINE		80
2488
2489/*
2490 *	Format info for a specified port. The line is deliberately limited
2491 *	to 80 characters. (If it is too long it will be truncated, if too
2492 *	short then padded with spaces).
2493 */
2494
2495static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos)
2496{
2497	char	*sp, *uart;
2498	int	rc, cnt;
2499
2500	rc = stli_portcmdstats(portp);
2501
2502	uart = "UNKNOWN";
2503	if (brdp->state & BST_STARTED) {
2504		switch (stli_comstats.hwid) {
2505		case 0:		uart = "2681"; break;
2506		case 1:		uart = "SC26198"; break;
2507		default:	uart = "CD1400"; break;
2508		}
2509	}
2510
2511	sp = pos;
2512	sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2513
2514	if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2515		sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2516			(int) stli_comstats.rxtotal);
2517
2518		if (stli_comstats.rxframing)
2519			sp += sprintf(sp, " fe:%d",
2520				(int) stli_comstats.rxframing);
2521		if (stli_comstats.rxparity)
2522			sp += sprintf(sp, " pe:%d",
2523				(int) stli_comstats.rxparity);
2524		if (stli_comstats.rxbreaks)
2525			sp += sprintf(sp, " brk:%d",
2526				(int) stli_comstats.rxbreaks);
2527		if (stli_comstats.rxoverrun)
2528			sp += sprintf(sp, " oe:%d",
2529				(int) stli_comstats.rxoverrun);
2530
2531		cnt = sprintf(sp, "%s%s%s%s%s ",
2532			(stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2533			(stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2534			(stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2535			(stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2536			(stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2537		*sp = ' ';
2538		sp += cnt;
2539	}
2540
2541	for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2542		*sp++ = ' ';
2543	if (cnt >= MAXLINE)
2544		pos[(MAXLINE - 2)] = '+';
2545	pos[(MAXLINE - 1)] = '\n';
2546
2547	return(MAXLINE);
2548}
2549
2550/*****************************************************************************/
2551
2552/*
2553 *	Port info, read from the /proc file system.
2554 */
2555
2556static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2557{
2558	stlibrd_t	*brdp;
2559	stliport_t	*portp;
2560	int		brdnr, portnr, totalport;
2561	int		curoff, maxoff;
2562	char		*pos;
2563
2564#ifdef DEBUG
2565	printk(KERN_DEBUG "stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
2566		"data=%x\n", (int) page, (int) start, (int) off, count,
2567		(int) eof, (int) data);
2568#endif
2569
2570	pos = page;
2571	totalport = 0;
2572	curoff = 0;
2573
2574	if (off == 0) {
2575		pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2576			stli_drvversion);
2577		while (pos < (page + MAXLINE - 1))
2578			*pos++ = ' ';
2579		*pos++ = '\n';
2580	}
2581	curoff =  MAXLINE;
2582
2583/*
2584 *	We scan through for each board, panel and port. The offset is
2585 *	calculated on the fly, and irrelevant ports are skipped.
2586 */
2587	for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2588		brdp = stli_brds[brdnr];
2589		if (brdp == (stlibrd_t *) NULL)
2590			continue;
2591		if (brdp->state == 0)
2592			continue;
2593
2594		maxoff = curoff + (brdp->nrports * MAXLINE);
2595		if (off >= maxoff) {
2596			curoff = maxoff;
2597			continue;
2598		}
2599
2600		totalport = brdnr * STL_MAXPORTS;
2601		for (portnr = 0; (portnr < brdp->nrports); portnr++,
2602		    totalport++) {
2603			portp = brdp->ports[portnr];
2604			if (portp == (stliport_t *) NULL)
2605				continue;
2606			if (off >= (curoff += MAXLINE))
2607				continue;
2608			if ((pos - page + MAXLINE) > count)
2609				goto stli_readdone;
2610			pos += stli_portinfo(brdp, portp, totalport, pos);
2611		}
2612	}
2613
2614	*eof = 1;
2615
2616stli_readdone:
2617	*start = page;
2618	return(pos - page);
2619}
2620
2621/*****************************************************************************/
2622
2623/*
2624 *	Generic send command routine. This will send a message to the slave,
2625 *	of the specified type with the specified argument. Must be very
2626 *	careful of data that will be copied out from shared memory -
2627 *	containing command results. The command completion is all done from
2628 *	a poll routine that does not have user context. Therefore you cannot
2629 *	copy back directly into user space, or to the kernel stack of a
2630 *	process. This routine does not sleep, so can be called from anywhere.
2631 */
2632
2633static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
2634{
2635	volatile cdkhdr_t	*hdrp;
2636	volatile cdkctrl_t	*cp;
2637	volatile unsigned char	*bits;
2638	unsigned long		flags;
2639
2640#ifdef DEBUG
2641	printk(KERN_DEBUG "stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
2642		"copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
2643		(int) arg, size, copyback);
2644#endif
2645
2646	save_flags(flags);
2647	cli();
2648
2649	if (test_bit(ST_CMDING, &portp->state)) {
2650		printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2651				(int) cmd);
2652		restore_flags(flags);
2653		return;
2654	}
2655
2656	EBRDENABLE(brdp);
2657	cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2658	if (size > 0) {
2659		memcpy((void *) &(cp->args[0]), arg, size);
2660		if (copyback) {
2661			portp->argp = arg;
2662			portp->argsize = size;
2663		}
2664	}
2665	cp->status = 0;
2666	cp->cmd = cmd;
2667	hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2668	bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
2669		portp->portidx;
2670	*bits |= portp->portbit;
2671	set_bit(ST_CMDING, &portp->state);
2672	EBRDDISABLE(brdp);
2673	restore_flags(flags);
2674}
2675
2676/*****************************************************************************/
2677
2678/*
2679 *	Read data from shared memory. This assumes that the shared memory
2680 *	is enabled and that interrupts are off. Basically we just empty out
2681 *	the shared memory buffer into the tty buffer. Must be careful to
2682 *	handle the case where we fill up the tty buffer, but still have
2683 *	more chars to unload.
2684 */
2685
2686static void stli_read(stlibrd_t *brdp, stliport_t *portp)
2687{
2688	volatile cdkasyrq_t	*rp;
2689	volatile char		*shbuf;
2690	struct tty_struct	*tty;
2691	unsigned int		head, tail, size;
2692	unsigned int		len, stlen;
2693
2694#ifdef DEBUG
2695	printk(KERN_DEBUG "stli_read(brdp=%x,portp=%d)\n",
2696			(int) brdp, (int) portp);
2697#endif
2698
2699	if (test_bit(ST_RXSTOP, &portp->state))
2700		return;
2701	tty = portp->tty;
2702	if (tty == (struct tty_struct *) NULL)
2703		return;
2704
2705	rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2706	head = (unsigned int) rp->head;
2707	if (head != ((unsigned int) rp->head))
2708		head = (unsigned int) rp->head;
2709	tail = (unsigned int) rp->tail;
2710	size = portp->rxsize;
2711	if (head >= tail) {
2712		len = head - tail;
2713		stlen = len;
2714	} else {
2715		len = size - (tail - head);
2716		stlen = size - tail;
2717	}
2718
2719	len = MIN(len, (TTY_FLIPBUF_SIZE - tty->flip.count));
2720	shbuf = (volatile char *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2721
2722	while (len > 0) {
2723		stlen = MIN(len, stlen);
2724		memcpy(tty->flip.char_buf_ptr, (char *) (shbuf + tail), stlen);
2725		memset(tty->flip.flag_buf_ptr, 0, stlen);
2726		tty->flip.char_buf_ptr += stlen;
2727		tty->flip.flag_buf_ptr += stlen;
2728		tty->flip.count += stlen;
2729
2730		len -= stlen;
2731		tail += stlen;
2732		if (tail >= size) {
2733			tail = 0;
2734			stlen = head;
2735		}
2736	}
2737	rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2738	rp->tail = tail;
2739
2740	if (head != tail)
2741		set_bit(ST_RXING, &portp->state);
2742
2743	tty_schedule_flip(tty);
2744}
2745
2746/*****************************************************************************/
2747
2748/*
2749 *	Set up and carry out any delayed commands. There is only a small set
2750 *	of slave commands that can be done "off-level". So it is not too
2751 *	difficult to deal with them here.
2752 */
2753
2754static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp)
2755{
2756	int	cmd;
2757
2758	if (test_bit(ST_DOSIGS, &portp->state)) {
2759		if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2760		    test_bit(ST_DOFLUSHRX, &portp->state))
2761			cmd = A_SETSIGNALSF;
2762		else if (test_bit(ST_DOFLUSHTX, &portp->state))
2763			cmd = A_SETSIGNALSFTX;
2764		else if (test_bit(ST_DOFLUSHRX, &portp->state))
2765			cmd = A_SETSIGNALSFRX;
2766		else
2767			cmd = A_SETSIGNALS;
2768		clear_bit(ST_DOFLUSHTX, &portp->state);
2769		clear_bit(ST_DOFLUSHRX, &portp->state);
2770		clear_bit(ST_DOSIGS, &portp->state);
2771		memcpy((void *) &(cp->args[0]), (void *) &portp->asig,
2772			sizeof(asysigs_t));
2773		cp->status = 0;
2774		cp->cmd = cmd;
2775		set_bit(ST_CMDING, &portp->state);
2776	} else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2777	    test_bit(ST_DOFLUSHRX, &portp->state)) {
2778		cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2779		cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2780		clear_bit(ST_DOFLUSHTX, &portp->state);
2781		clear_bit(ST_DOFLUSHRX, &portp->state);
2782		memcpy((void *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2783		cp->status = 0;
2784		cp->cmd = A_FLUSH;
2785		set_bit(ST_CMDING, &portp->state);
2786	}
2787}
2788
2789/*****************************************************************************/
2790
2791/*
2792 *	Host command service checking. This handles commands or messages
2793 *	coming from the slave to the host. Must have board shared memory
2794 *	enabled and interrupts off when called. Notice that by servicing the
2795 *	read data last we don't need to change the shared memory pointer
2796 *	during processing (which is a slow IO operation).
2797 *	Return value indicates if this port is still awaiting actions from
2798 *	the slave (like open, command, or even TX data being sent). If 0
2799 *	then port is still busy, otherwise no longer busy.
2800 */
2801
2802static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
2803{
2804	volatile cdkasy_t	*ap;
2805	volatile cdkctrl_t	*cp;
2806	struct tty_struct	*tty;
2807	asynotify_t		nt;
2808	unsigned long		oldsigs;
2809	int			rc, donerx;
2810
2811#ifdef DEBUG
2812	printk(KERN_DEBUG "stli_hostcmd(brdp=%x,channr=%d)\n",
2813			(int) brdp, channr);
2814#endif
2815
2816	ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
2817	cp = &ap->ctrl;
2818
2819/*
2820 *	Check if we are waiting for an open completion message.
2821 */
2822	if (test_bit(ST_OPENING, &portp->state)) {
2823		rc = (int) cp->openarg;
2824		if ((cp->open == 0) && (rc != 0)) {
2825			if (rc > 0)
2826				rc--;
2827			cp->openarg = 0;
2828			portp->rc = rc;
2829			clear_bit(ST_OPENING, &portp->state);
2830			wake_up_interruptible(&portp->raw_wait);
2831		}
2832	}
2833
2834/*
2835 *	Check if we are waiting for a close completion message.
2836 */
2837	if (test_bit(ST_CLOSING, &portp->state)) {
2838		rc = (int) cp->closearg;
2839		if ((cp->close == 0) && (rc != 0)) {
2840			if (rc > 0)
2841				rc--;
2842			cp->closearg = 0;
2843			portp->rc = rc;
2844			clear_bit(ST_CLOSING, &portp->state);
2845			wake_up_interruptible(&portp->raw_wait);
2846		}
2847	}
2848
2849/*
2850 *	Check if we are waiting for a command completion message. We may
2851 *	need to copy out the command results associated with this command.
2852 */
2853	if (test_bit(ST_CMDING, &portp->state)) {
2854		rc = cp->status;
2855		if ((cp->cmd == 0) && (rc != 0)) {
2856			if (rc > 0)
2857				rc--;
2858			if (portp->argp != (void *) NULL) {
2859				memcpy(portp->argp, (void *) &(cp->args[0]),
2860					portp->argsize);
2861				portp->argp = (void *) NULL;
2862			}
2863			cp->status = 0;
2864			portp->rc = rc;
2865			clear_bit(ST_CMDING, &portp->state);
2866			stli_dodelaycmd(portp, cp);
2867			wake_up_interruptible(&portp->raw_wait);
2868		}
2869	}
2870
2871/*
2872 *	Check for any notification messages ready. This includes lots of
2873 *	different types of events - RX chars ready, RX break received,
2874 *	TX data low or empty in the slave, modem signals changed state.
2875 */
2876	donerx = 0;
2877
2878	if (ap->notify) {
2879		nt = ap->changed;
2880		ap->notify = 0;
2881		tty = portp->tty;
2882
2883		if (nt.signal & SG_DCD) {
2884			oldsigs = portp->sigs;
2885			portp->sigs = stli_mktiocm(nt.sigvalue);
2886			clear_bit(ST_GETSIGS, &portp->state);
2887			if ((portp->sigs & TIOCM_CD) &&
2888			    ((oldsigs & TIOCM_CD) == 0))
2889				wake_up_interruptible(&portp->open_wait);
2890			if ((oldsigs & TIOCM_CD) &&
2891			    ((portp->sigs & TIOCM_CD) == 0)) {
2892				if (portp->flags & ASYNC_CHECK_CD) {
2893					if (tty)
2894						schedule_work(&portp->tqhangup);
2895				}
2896			}
2897		}
2898
2899		if (nt.data & DT_TXEMPTY)
2900			clear_bit(ST_TXBUSY, &portp->state);
2901		if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2902			if (tty != (struct tty_struct *) NULL) {
2903				if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2904				    tty->ldisc.write_wakeup) {
2905					(tty->ldisc.write_wakeup)(tty);
2906					EBRDENABLE(brdp);
2907				}
2908				wake_up_interruptible(&tty->write_wait);
2909			}
2910		}
2911
2912		if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2913			if (tty != (struct tty_struct *) NULL) {
2914				if (tty->flip.count < TTY_FLIPBUF_SIZE) {
2915					tty->flip.count++;
2916					*tty->flip.flag_buf_ptr++ = TTY_BREAK;
2917					*tty->flip.char_buf_ptr++ = 0;
2918					if (portp->flags & ASYNC_SAK) {
2919						do_SAK(tty);
2920						EBRDENABLE(brdp);
2921					}
2922					tty_schedule_flip(tty);
2923				}
2924			}
2925		}
2926
2927		if (nt.data & DT_RXBUSY) {
2928			donerx++;
2929			stli_read(brdp, portp);
2930		}
2931	}
2932
2933/*
2934 *	It might seem odd that we are checking for more RX chars here.
2935 *	But, we need to handle the case where the tty buffer was previously
2936 *	filled, but we had more characters to pass up. The slave will not
2937 *	send any more RX notify messages until the RX buffer has been emptied.
2938 *	But it will leave the service bits on (since the buffer is not empty).
2939 *	So from here we can try to process more RX chars.
2940 */
2941	if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2942		clear_bit(ST_RXING, &portp->state);
2943		stli_read(brdp, portp);
2944	}
2945
2946	return((test_bit(ST_OPENING, &portp->state) ||
2947		test_bit(ST_CLOSING, &portp->state) ||
2948		test_bit(ST_CMDING, &portp->state) ||
2949		test_bit(ST_TXBUSY, &portp->state) ||
2950		test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2951}
2952
2953/*****************************************************************************/
2954
2955/*
2956 *	Service all ports on a particular board. Assumes that the boards
2957 *	shared memory is enabled, and that the page pointer is pointed
2958 *	at the cdk header structure.
2959 */
2960
2961static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp)
2962{
2963	stliport_t	*portp;
2964	unsigned char	hostbits[(STL_MAXCHANS / 8) + 1];
2965	unsigned char	slavebits[(STL_MAXCHANS / 8) + 1];
2966	unsigned char	*slavep;
2967	int		bitpos, bitat, bitsize;
2968	int 		channr, nrdevs, slavebitchange;
2969
2970	bitsize = brdp->bitsize;
2971	nrdevs = brdp->nrdevs;
2972
2973/*
2974 *	Check if slave wants any service. Basically we try to do as
2975 *	little work as possible here. There are 2 levels of service
2976 *	bits. So if there is nothing to do we bail early. We check
2977 *	8 service bits at a time in the inner loop, so we can bypass
2978 *	the lot if none of them want service.
2979 */
2980	memcpy(&hostbits[0], (((unsigned char *) hdrp) + brdp->hostoffset),
2981		bitsize);
2982
2983	memset(&slavebits[0], 0, bitsize);
2984	slavebitchange = 0;
2985
2986	for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2987		if (hostbits[bitpos] == 0)
2988			continue;
2989		channr = bitpos * 8;
2990		for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2991			if (hostbits[bitpos] & bitat) {
2992				portp = brdp->ports[(channr - 1)];
2993				if (stli_hostcmd(brdp, portp)) {
2994					slavebitchange++;
2995					slavebits[bitpos] |= bitat;
2996				}
2997			}
2998		}
2999	}
3000
3001/*
3002 *	If any of the ports are no longer busy then update them in the
3003 *	slave request bits. We need to do this after, since a host port
3004 *	service may initiate more slave requests.
3005 */
3006	if (slavebitchange) {
3007		hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3008		slavep = ((unsigned char *) hdrp) + brdp->slaveoffset;
3009		for (bitpos = 0; (bitpos < bitsize); bitpos++) {
3010			if (slavebits[bitpos])
3011				slavep[bitpos] &= ~slavebits[bitpos];
3012		}
3013	}
3014}
3015
3016/*****************************************************************************/
3017
3018/*
3019 *	Driver poll routine. This routine polls the boards in use and passes
3020 *	messages back up to host when necessary. This is actually very
3021 *	CPU efficient, since we will always have the kernel poll clock, it
3022 *	adds only a few cycles when idle (since board service can be
3023 *	determined very easily), but when loaded generates no interrupts
3024 *	(with their expensive associated context change).
3025 */
3026
3027static void stli_poll(unsigned long arg)
3028{
3029	volatile cdkhdr_t	*hdrp;
3030	stlibrd_t		*brdp;
3031	int 			brdnr;
3032
3033	stli_timerlist.expires = STLI_TIMEOUT;
3034	add_timer(&stli_timerlist);
3035
3036/*
3037 *	Check each board and do any servicing required.
3038 */
3039	for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
3040		brdp = stli_brds[brdnr];
3041		if (brdp == (stlibrd_t *) NULL)
3042			continue;
3043		if ((brdp->state & BST_STARTED) == 0)
3044			continue;
3045
3046		EBRDENABLE(brdp);
3047		hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3048		if (hdrp->hostreq)
3049			stli_brdpoll(brdp, hdrp);
3050		EBRDDISABLE(brdp);
3051	}
3052}
3053
3054/*****************************************************************************/
3055
3056/*
3057 *	Translate the termios settings into the port setting structure of
3058 *	the slave.
3059 */
3060
3061static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
3062{
3063#ifdef DEBUG
3064	printk(KERN_DEBUG "stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n",
3065		(int) portp, (int) pp, (int) tiosp);
3066#endif
3067
3068	memset(pp, 0, sizeof(asyport_t));
3069
3070/*
3071 *	Start of by setting the baud, char size, parity and stop bit info.
3072 */
3073	pp->baudout = tiosp->c_cflag & CBAUD;
3074	if (pp->baudout & CBAUDEX) {
3075		pp->baudout &= ~CBAUDEX;
3076		if ((pp->baudout < 1) || (pp->baudout > 4))
3077			tiosp->c_cflag &= ~CBAUDEX;
3078		else
3079			pp->baudout += 15;
3080	}
3081	pp->baudout = stli_baudrates[pp->baudout];
3082	if ((tiosp->c_cflag & CBAUD) == B38400) {
3083		if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3084			pp->baudout = 57600;
3085		else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3086			pp->baudout = 115200;
3087		else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3088			pp->baudout = 230400;
3089		else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3090			pp->baudout = 460800;
3091		else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3092			pp->baudout = (portp->baud_base / portp->custom_divisor);
3093	}
3094	if (pp->baudout > STL_MAXBAUD)
3095		pp->baudout = STL_MAXBAUD;
3096	pp->baudin = pp->baudout;
3097
3098	switch (tiosp->c_cflag & CSIZE) {
3099	case CS5:
3100		pp->csize = 5;
3101		break;
3102	case CS6:
3103		pp->csize = 6;
3104		break;
3105	case CS7:
3106		pp->csize = 7;
3107		break;
3108	default:
3109		pp->csize = 8;
3110		break;
3111	}
3112
3113	if (tiosp->c_cflag & CSTOPB)
3114		pp->stopbs = PT_STOP2;
3115	else
3116		pp->stopbs = PT_STOP1;
3117
3118	if (tiosp->c_cflag & PARENB) {
3119		if (tiosp->c_cflag & PARODD)
3120			pp->parity = PT_ODDPARITY;
3121		else
3122			pp->parity = PT_EVENPARITY;
3123	} else {
3124		pp->parity = PT_NOPARITY;
3125	}
3126
3127/*
3128 *	Set up any flow control options enabled.
3129 */
3130	if (tiosp->c_iflag & IXON) {
3131		pp->flow |= F_IXON;
3132		if (tiosp->c_iflag & IXANY)
3133			pp->flow |= F_IXANY;
3134	}
3135	if (tiosp->c_cflag & CRTSCTS)
3136		pp->flow |= (F_RTSFLOW | F_CTSFLOW);
3137
3138	pp->startin = tiosp->c_cc[VSTART];
3139	pp->stopin = tiosp->c_cc[VSTOP];
3140	pp->startout = tiosp->c_cc[VSTART];
3141	pp->stopout = tiosp->c_cc[VSTOP];
3142
3143/*
3144 *	Set up the RX char marking mask with those RX error types we must
3145 *	catch. We can get the slave to help us out a little here, it will
3146 *	ignore parity errors and breaks for us, and mark parity errors in
3147 *	the data stream.
3148 */
3149	if (tiosp->c_iflag & IGNPAR)
3150		pp->iflag |= FI_IGNRXERRS;
3151	if (tiosp->c_iflag & IGNBRK)
3152		pp->iflag |= FI_IGNBREAK;
3153
3154	portp->rxmarkmsk = 0;
3155	if (tiosp->c_iflag & (INPCK | PARMRK))
3156		pp->iflag |= FI_1MARKRXERRS;
3157	if (tiosp->c_iflag & BRKINT)
3158		portp->rxmarkmsk |= BRKINT;
3159
3160/*
3161 *	Set up clocal processing as required.
3162 */
3163	if (tiosp->c_cflag & CLOCAL)
3164		portp->flags &= ~ASYNC_CHECK_CD;
3165	else
3166		portp->flags |= ASYNC_CHECK_CD;
3167
3168/*
3169 *	Transfer any persistent flags into the asyport structure.
3170 */
3171	pp->pflag = (portp->pflag & 0xffff);
3172	pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
3173	pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
3174	pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
3175}
3176
3177/*****************************************************************************/
3178
3179/*
3180 *	Construct a slave signals structure for setting the DTR and RTS
3181 *	signals as specified.
3182 */
3183
3184static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
3185{
3186#ifdef DEBUG
3187	printk(KERN_DEBUG "stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n",
3188			(int) sp, dtr, rts);
3189#endif
3190
3191	memset(sp, 0, sizeof(asysigs_t));
3192	if (dtr >= 0) {
3193		sp->signal |= SG_DTR;
3194		sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
3195	}
3196	if (rts >= 0) {
3197		sp->signal |= SG_RTS;
3198		sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
3199	}
3200}
3201
3202/*****************************************************************************/
3203
3204/*
3205 *	Convert the signals returned from the slave into a local TIOCM type
3206 *	signals value. We keep them locally in TIOCM format.
3207 */
3208
3209static long stli_mktiocm(unsigned long sigvalue)
3210{
3211	long	tiocm;
3212
3213#ifdef DEBUG
3214	printk(KERN_DEBUG "stli_mktiocm(sigvalue=%x)\n", (int) sigvalue);
3215#endif
3216
3217	tiocm = 0;
3218	tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
3219	tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
3220	tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
3221	tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
3222	tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
3223	tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
3224	return(tiocm);
3225}
3226
3227/*****************************************************************************/
3228
3229/*
3230 *	All panels and ports actually attached have been worked out. All
3231 *	we need to do here is set up the appropriate per port data structures.
3232 */
3233
3234static int stli_initports(stlibrd_t *brdp)
3235{
3236	stliport_t	*portp;
3237	int		i, panelnr, panelport;
3238
3239#ifdef DEBUG
3240	printk(KERN_DEBUG "stli_initports(brdp=%x)\n", (int) brdp);
3241#endif
3242
3243	for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
3244		portp = (stliport_t *) stli_memalloc(sizeof(stliport_t));
3245		if (portp == (stliport_t *) NULL) {
3246			printk("STALLION: failed to allocate port structure\n");
3247			continue;
3248		}
3249
3250		memset(portp, 0, sizeof(stliport_t));
3251		portp->magic = STLI_PORTMAGIC;
3252		portp->portnr = i;
3253		portp->brdnr = brdp->brdnr;
3254		portp->panelnr = panelnr;
3255		portp->baud_base = STL_BAUDBASE;
3256		portp->close_delay = STL_CLOSEDELAY;
3257		portp->closing_wait = 30 * HZ;
3258		INIT_WORK(&portp->tqhangup, stli_dohangup, portp);
3259		init_waitqueue_head(&portp->open_wait);
3260		init_waitqueue_head(&portp->close_wait);
3261		init_waitqueue_head(&portp->raw_wait);
3262		panelport++;
3263		if (panelport >= brdp->panels[panelnr]) {
3264			panelport = 0;
3265			panelnr++;
3266		}
3267		brdp->ports[i] = portp;
3268	}
3269
3270	return(0);
3271}
3272
3273/*****************************************************************************/
3274
3275/*
3276 *	All the following routines are board specific hardware operations.
3277 */
3278
3279static void stli_ecpinit(stlibrd_t *brdp)
3280{
3281	unsigned long	memconf;
3282
3283#ifdef DEBUG
3284	printk(KERN_DEBUG "stli_ecpinit(brdp=%d)\n", (int) brdp);
3285#endif
3286
3287	outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3288	udelay(10);
3289	outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3290	udelay(100);
3291
3292	memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
3293	outb(memconf, (brdp->iobase + ECP_ATMEMAR));
3294}
3295
3296/*****************************************************************************/
3297
3298static void stli_ecpenable(stlibrd_t *brdp)
3299{	
3300#ifdef DEBUG
3301	printk(KERN_DEBUG "stli_ecpenable(brdp=%x)\n", (int) brdp);
3302#endif
3303	outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
3304}
3305
3306/*****************************************************************************/
3307
3308static void stli_ecpdisable(stlibrd_t *brdp)
3309{	
3310#ifdef DEBUG
3311	printk(KERN_DEBUG "stli_ecpdisable(brdp=%x)\n", (int) brdp);
3312#endif
3313	outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3314}
3315
3316/*****************************************************************************/
3317
3318static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3319{	
3320	void		*ptr;
3321	unsigned char	val;
3322
3323#ifdef DEBUG
3324	printk(KERN_DEBUG "stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3325		(int) offset);
3326#endif
3327
3328	if (offset > brdp->memsize) {
3329		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3330				"range at line=%d(%d), brd=%d\n",
3331			(int) offset, line, __LINE__, brdp->brdnr);
3332		ptr = NULL;
3333		val = 0;
3334	} else {
3335		ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
3336		val = (unsigned char) (offset / ECP_ATPAGESIZE);
3337	}
3338	outb(val, (brdp->iobase + ECP_ATMEMPR));
3339	return(ptr);
3340}
3341
3342/*****************************************************************************/
3343
3344static void stli_ecpreset(stlibrd_t *brdp)
3345{	
3346#ifdef DEBUG
3347	printk(KERN_DEBUG "stli_ecpreset(brdp=%x)\n", (int) brdp);
3348#endif
3349
3350	outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3351	udelay(10);
3352	outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3353	udelay(500);
3354}
3355
3356/*****************************************************************************/
3357
3358static void stli_ecpintr(stlibrd_t *brdp)
3359{	
3360#ifdef DEBUG
3361	printk(KERN_DEBUG "stli_ecpintr(brdp=%x)\n", (int) brdp);
3362#endif
3363	outb(0x1, brdp->iobase);
3364}
3365
3366/*****************************************************************************/
3367
3368/*
3369 *	The following set of functions act on ECP EISA boards.
3370 */
3371
3372static void stli_ecpeiinit(stlibrd_t *brdp)
3373{
3374	unsigned long	memconf;
3375
3376#ifdef DEBUG
3377	printk(KERN_DEBUG "stli_ecpeiinit(brdp=%x)\n", (int) brdp);
3378#endif
3379
3380	outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3381	outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3382	udelay(10);
3383	outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3384	udelay(500);
3385
3386	memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
3387	outb(memconf, (brdp->iobase + ECP_EIMEMARL));
3388	memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
3389	outb(memconf, (brdp->iobase + ECP_EIMEMARH));
3390}
3391
3392/*****************************************************************************/
3393
3394static void stli_ecpeienable(stlibrd_t *brdp)
3395{	
3396	outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
3397}
3398
3399/*****************************************************************************/
3400
3401static void stli_ecpeidisable(stlibrd_t *brdp)
3402{	
3403	outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3404}
3405
3406/*****************************************************************************/
3407
3408static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3409{	
3410	void		*ptr;
3411	unsigned char	val;
3412
3413#ifdef DEBUG
3414	printk(KERN_DEBUG "stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3415		(int) brdp, (int) offset, line);
3416#endif
3417
3418	if (offset > brdp->memsize) {
3419		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3420				"range at line=%d(%d), brd=%d\n",
3421			(int) offset, line, __LINE__, brdp->brdnr);
3422		ptr = NULL;
3423		val = 0;
3424	} else {
3425		ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
3426		if (offset < ECP_EIPAGESIZE)
3427			val = ECP_EIENABLE;
3428		else
3429			val = ECP_EIENABLE | 0x40;
3430	}
3431	outb(val, (brdp->iobase + ECP_EICONFR));
3432	return(ptr);
3433}
3434
3435/*****************************************************************************/
3436
3437static void stli_ecpeireset(stlibrd_t *brdp)
3438{	
3439	outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3440	udelay(10);
3441	outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3442	udelay(500);
3443}
3444
3445/*****************************************************************************/
3446
3447/*
3448 *	The following set of functions act on ECP MCA boards.
3449 */
3450
3451static void stli_ecpmcenable(stlibrd_t *brdp)
3452{	
3453	outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
3454}
3455
3456/*****************************************************************************/
3457
3458static void stli_ecpmcdisable(stlibrd_t *brdp)
3459{	
3460	outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3461}
3462
3463/*****************************************************************************/
3464
3465static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3466{	
3467	void		*ptr;
3468	unsigned char	val;
3469
3470	if (offset > brdp->memsize) {
3471		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3472				"range at line=%d(%d), brd=%d\n",
3473			(int) offset, line, __LINE__, brdp->brdnr);
3474		ptr = NULL;
3475		val = 0;
3476	} else {
3477		ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
3478		val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
3479	}
3480	outb(val, (brdp->iobase + ECP_MCCONFR));
3481	return(ptr);
3482}
3483
3484/*****************************************************************************/
3485
3486static void stli_ecpmcreset(stlibrd_t *brdp)
3487{	
3488	outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
3489	udelay(10);
3490	outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3491	udelay(500);
3492}
3493
3494/*****************************************************************************/
3495
3496/*
3497 *	The following set of functions act on ECP PCI boards.
3498 */
3499
3500static void stli_ecppciinit(stlibrd_t *brdp)
3501{
3502#ifdef DEBUG
3503	printk(KERN_DEBUG "stli_ecppciinit(brdp=%x)\n", (int) brdp);
3504#endif
3505
3506	outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3507	udelay(10);
3508	outb(0, (brdp->iobase + ECP_PCICONFR));
3509	udelay(500);
3510}
3511
3512/*****************************************************************************/
3513
3514static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3515{	
3516	void		*ptr;
3517	unsigned char	val;
3518
3519#ifdef DEBUG
3520	printk(KERN_DEBUG "stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3521		(int) brdp, (int) offset, line);
3522#endif
3523
3524	if (offset > brdp->memsize) {
3525		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3526				"range at line=%d(%d), board=%d\n",
3527				(int) offset, line, __LINE__, brdp->brdnr);
3528		ptr = NULL;
3529		val = 0;
3530	} else {
3531		ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
3532		val = (offset / ECP_PCIPAGESIZE) << 1;
3533	}
3534	outb(val, (brdp->iobase + ECP_PCICONFR));
3535	return(ptr);
3536}
3537
3538/*****************************************************************************/
3539
3540static void stli_ecppcireset(stlibrd_t *brdp)
3541{	
3542	outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3543	udelay(10);
3544	outb(0, (brdp->iobase + ECP_PCICONFR));
3545	udelay(500);
3546}
3547
3548/*****************************************************************************/
3549
3550/*
3551 *	The following routines act on ONboards.
3552 */
3553
3554static void stli_onbinit(stlibrd_t *brdp)
3555{
3556	unsigned long	memconf;
3557
3558#ifdef DEBUG
3559	printk(KERN_DEBUG "stli_onbinit(brdp=%d)\n", (int) brdp);
3560#endif
3561
3562	outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3563	udelay(10);
3564	outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3565	mdelay(1000);
3566
3567	memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3568	outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3569	outb(0x1, brdp->iobase);
3570	mdelay(1);
3571}
3572
3573/*****************************************************************************/
3574
3575static void stli_onbenable(stlibrd_t *brdp)
3576{	
3577#ifdef DEBUG
3578	printk(KERN_DEBUG "stli_onbenable(brdp=%x)\n", (int) brdp);
3579#endif
3580	outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3581}
3582
3583/*****************************************************************************/
3584
3585static void stli_onbdisable(stlibrd_t *brdp)
3586{	
3587#ifdef DEBUG
3588	printk(KERN_DEBUG "stli_onbdisable(brdp=%x)\n", (int) brdp);
3589#endif
3590	outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3591}
3592
3593/*****************************************************************************/
3594
3595static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3596{	
3597	void	*ptr;
3598
3599#ifdef DEBUG
3600	printk(KERN_DEBUG "stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3601		(int) offset);
3602#endif
3603
3604	if (offset > brdp->memsize) {
3605		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3606				"range at line=%d(%d), brd=%d\n",
3607				(int) offset, line, __LINE__, brdp->brdnr);
3608		ptr = NULL;
3609	} else {
3610		ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3611	}
3612	return(ptr);
3613}
3614
3615/*****************************************************************************/
3616
3617static void stli_onbreset(stlibrd_t *brdp)
3618{	
3619
3620#ifdef DEBUG
3621	printk(KERN_DEBUG "stli_onbreset(brdp=%x)\n", (int) brdp);
3622#endif
3623
3624	outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3625	udelay(10);
3626	outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3627	mdelay(1000);
3628}
3629
3630/*****************************************************************************/
3631
3632/*
3633 *	The following routines act on ONboard EISA.
3634 */
3635
3636static void stli_onbeinit(stlibrd_t *brdp)
3637{
3638	unsigned long	memconf;
3639
3640#ifdef DEBUG
3641	printk(KERN_DEBUG "stli_onbeinit(brdp=%d)\n", (int) brdp);
3642#endif
3643
3644	outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3645	outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3646	udelay(10);
3647	outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3648	mdelay(1000);
3649
3650	memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3651	outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3652	memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3653	outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3654	outb(0x1, brdp->iobase);
3655	mdelay(1);
3656}
3657
3658/*****************************************************************************/
3659
3660static void stli_onbeenable(stlibrd_t *brdp)
3661{	
3662#ifdef DEBUG
3663	printk(KERN_DEBUG "stli_onbeenable(brdp=%x)\n", (int) brdp);
3664#endif
3665	outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3666}
3667
3668/*****************************************************************************/
3669
3670static void stli_onbedisable(stlibrd_t *brdp)
3671{	
3672#ifdef DEBUG
3673	printk(KERN_DEBUG "stli_onbedisable(brdp=%x)\n", (int) brdp);
3674#endif
3675	outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3676}
3677
3678/*****************************************************************************/
3679
3680static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3681{	
3682	void		*ptr;
3683	unsigned char	val;
3684
3685#ifdef DEBUG
3686	printk(KERN_DEBUG "stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n",
3687		(int) brdp, (int) offset, line);
3688#endif
3689
3690	if (offset > brdp->memsize) {
3691		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3692				"range at line=%d(%d), brd=%d\n",
3693			(int) offset, line, __LINE__, brdp->brdnr);
3694		ptr = NULL;
3695		val = 0;
3696	} else {
3697		ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3698		if (offset < ONB_EIPAGESIZE)
3699			val = ONB_EIENABLE;
3700		else
3701			val = ONB_EIENABLE | 0x40;
3702	}
3703	outb(val, (brdp->iobase + ONB_EICONFR));
3704	return(ptr);
3705}
3706
3707/*****************************************************************************/
3708
3709static void stli_onbereset(stlibrd_t *brdp)
3710{	
3711
3712#ifdef DEBUG
3713	printk(KERN_ERR "stli_onbereset(brdp=%x)\n", (int) brdp);
3714#endif
3715
3716	outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3717	udelay(10);
3718	outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3719	mdelay(1000);
3720}
3721
3722/*****************************************************************************/
3723
3724/*
3725 *	The following routines act on Brumby boards.
3726 */
3727
3728static void stli_bbyinit(stlibrd_t *brdp)
3729{
3730
3731#ifdef DEBUG
3732	printk(KERN_ERR "stli_bbyinit(brdp=%d)\n", (int) brdp);
3733#endif
3734
3735	outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3736	udelay(10);
3737	outb(0, (brdp->iobase + BBY_ATCONFR));
3738	mdelay(1000);
3739	outb(0x1, brdp->iobase);
3740	mdelay(1);
3741}
3742
3743/*****************************************************************************/
3744
3745static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3746{	
3747	void		*ptr;
3748	unsigned char	val;
3749
3750#ifdef DEBUG
3751	printk(KERN_ERR "stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3752		(int) offset);
3753#endif
3754
3755	if (offset > brdp->memsize) {
3756		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3757				"range at line=%d(%d), brd=%d\n",
3758				(int) offset, line, __LINE__, brdp->brdnr);
3759		ptr = NULL;
3760		val = 0;
3761	} else {
3762		ptr = brdp->membase + (offset % BBY_PAGESIZE);
3763		val = (unsigned char) (offset / BBY_PAGESIZE);
3764	}
3765	outb(val, (brdp->iobase + BBY_ATCONFR));
3766	return(ptr);
3767}
3768
3769/*****************************************************************************/
3770
3771static void stli_bbyreset(stlibrd_t *brdp)
3772{	
3773
3774#ifdef DEBUG
3775	printk(KERN_DEBUG "stli_bbyreset(brdp=%x)\n", (int) brdp);
3776#endif
3777
3778	outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3779	udelay(10);
3780	outb(0, (brdp->iobase + BBY_ATCONFR));
3781	mdelay(1000);
3782}
3783
3784/*****************************************************************************/
3785
3786/*
3787 *	The following routines act on original old Stallion boards.
3788 */
3789
3790static void stli_stalinit(stlibrd_t *brdp)
3791{
3792
3793#ifdef DEBUG
3794	printk(KERN_DEBUG "stli_stalinit(brdp=%d)\n", (int) brdp);
3795#endif
3796
3797	outb(0x1, brdp->iobase);
3798	mdelay(1000);
3799}
3800
3801/*****************************************************************************/
3802
3803static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3804{	
3805	void	*ptr;
3806
3807#ifdef DEBUG
3808	printk(KERN_DEBUG "stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3809		(int) offset);
3810#endif
3811
3812	if (offset > brdp->memsize) {
3813		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3814				"range at line=%d(%d), brd=%d\n",
3815				(int) offset, line, __LINE__, brdp->brdnr);
3816		ptr = NULL;
3817	} else {
3818		ptr = brdp->membase + (offset % STAL_PAGESIZE);
3819	}
3820	return(ptr);
3821}
3822
3823/*****************************************************************************/
3824
3825static void stli_stalreset(stlibrd_t *brdp)
3826{	
3827	volatile unsigned long	*vecp;
3828
3829#ifdef DEBUG
3830	printk(KERN_DEBUG "stli_stalreset(brdp=%x)\n", (int) brdp);
3831#endif
3832
3833	vecp = (volatile unsigned long *) (brdp->membase + 0x30);
3834	*vecp = 0xffff0000;
3835	outb(0, brdp->iobase);
3836	mdelay(1000);
3837}
3838
3839/*****************************************************************************/
3840
3841/*
3842 *	Try to find an ECP board and initialize it. This handles only ECP
3843 *	board types.
3844 */
3845
3846static int stli_initecp(stlibrd_t *brdp)
3847{
3848	cdkecpsig_t	sig;
3849	cdkecpsig_t	*sigsp;
3850	unsigned int	status, nxtid;
3851	char		*name;
3852	int		panelnr, nrports;
3853
3854#ifdef DEBUG
3855	printk(KERN_DEBUG "stli_initecp(brdp=%x)\n", (int) brdp);
3856#endif
3857
3858	if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3859		return -EIO;
3860	
3861	if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3862	{
3863		release_region(brdp->iobase, brdp->iosize);
3864		return(-ENODEV);
3865	}
3866
3867	brdp->iosize = ECP_IOSIZE;
3868
3869/*
3870 *	Based on the specific board type setup the common vars to access
3871 *	and enable shared memory. Set all board specific information now
3872 *	as well.
3873 */
3874	switch (brdp->brdtype) {
3875	case BRD_ECP:
3876		brdp->membase = (void *) brdp->memaddr;
3877		brdp->memsize = ECP_MEMSIZE;
3878		brdp->pagesize = ECP_ATPAGESIZE;
3879		brdp->init = stli_ecpinit;
3880		brdp->enable = stli_ecpenable;
3881		brdp->reenable = stli_ecpenable;
3882		brdp->disable = stli_ecpdisable;
3883		brdp->getmemptr = stli_ecpgetmemptr;
3884		brdp->intr = stli_ecpintr;
3885		brdp->reset = stli_ecpreset;
3886		name = "serial(EC8/64)";
3887		break;
3888
3889	case BRD_ECPE:
3890		brdp->membase = (void *) brdp->memaddr;
3891		brdp->memsize = ECP_MEMSIZE;
3892		brdp->pagesize = ECP_EIPAGESIZE;
3893		brdp->init = stli_ecpeiinit;
3894		brdp->enable = stli_ecpeienable;
3895		brdp->reenable = stli_ecpeienable;
3896		brdp->disable = stli_ecpeidisable;
3897		brdp->getmemptr = stli_ecpeigetmemptr;
3898		brdp->intr = stli_ecpintr;
3899		brdp->reset = stli_ecpeireset;
3900		name = "serial(EC8/64-EI)";
3901		break;
3902
3903	case BRD_ECPMC:
3904		brdp->membase = (void *) brdp->memaddr;
3905		brdp->memsize = ECP_MEMSIZE;
3906		brdp->pagesize = ECP_MCPAGESIZE;
3907		brdp->init = NULL;
3908		brdp->enable = stli_ecpmcenable;
3909		brdp->reenable = stli_ecpmcenable;
3910		brdp->disable = stli_ecpmcdisable;
3911		brdp->getmemptr = stli_ecpmcgetmemptr;
3912		brdp->intr = stli_ecpintr;
3913		brdp->reset = stli_ecpmcreset;
3914		name = "serial(EC8/64-MCA)";
3915		break;
3916
3917	case BRD_ECPPCI:
3918		brdp->membase = (void *) brdp->memaddr;
3919		brdp->memsize = ECP_PCIMEMSIZE;
3920		brdp->pagesize = ECP_PCIPAGESIZE;
3921		brdp->init = stli_ecppciinit;
3922		brdp->enable = NULL;
3923		brdp->reenable = NULL;
3924		brdp->disable = NULL;
3925		brdp->getmemptr = stli_ecppcigetmemptr;
3926		brdp->intr = stli_ecpintr;
3927		brdp->reset = stli_ecppcireset;
3928		name = "serial(EC/RA-PCI)";
3929		break;
3930
3931	default:
3932		release_region(brdp->iobase, brdp->iosize);
3933		return(-EINVAL);
3934	}
3935
3936/*
3937 *	The per-board operations structure is all set up, so now let's go
3938 *	and get the board operational. Firstly initialize board configuration
3939 *	registers. Set the memory mapping info so we can get at the boards
3940 *	shared memory.
3941 */
3942	EBRDINIT(brdp);
3943
3944	brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3945	if (brdp->membase == (void *) NULL)
3946	{
3947		release_region(brdp->iobase, brdp->iosize);
3948		return(-ENOMEM);
3949	}
3950
3951/*
3952 *	Now that all specific code is set up, enable the shared memory and
3953 *	look for the a signature area that will tell us exactly what board
3954 *	this is, and what it is connected to it.
3955 */
3956	EBRDENABLE(brdp);
3957	sigsp = (cdkecpsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3958	memcpy(&sig, sigsp, sizeof(cdkecpsig_t));
3959	EBRDDISABLE(brdp);
3960
3961#if 0
3962	printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
3963		__FILE__, __LINE__, (int) sig.magic, sig.romver, sig.panelid[0],
3964		(int) sig.panelid[1], (int) sig.panelid[2],
3965		(int) sig.panelid[3], (int) sig.panelid[4],
3966		(int) sig.panelid[5], (int) sig.panelid[6],
3967		(int) sig.panelid[7]);
3968#endif
3969
3970	if (sig.magic != ECP_MAGIC)
3971	{
3972		release_region(brdp->iobase, brdp->iosize);
3973		return(-ENODEV);
3974	}
3975
3976/*
3977 *	Scan through the signature looking at the panels connected to the
3978 *	board. Calculate the total number of ports as we go.
3979 */
3980	for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3981		status = sig.panelid[nxtid];
3982		if ((status & ECH_PNLIDMASK) != nxtid)
3983			break;
3984
3985		brdp->panelids[panelnr] = status;
3986		nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3987		if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3988			nxtid++;
3989		brdp->panels[panelnr] = nrports;
3990		brdp->nrports += nrports;
3991		nxtid++;
3992		brdp->nrpanels++;
3993	}
3994
3995
3996	brdp->state |= BST_FOUND;
3997	return(0);
3998}
3999
4000/*****************************************************************************/
4001
4002/*
4003 *	Try to find an ONboard, Brumby or Stallion board and initialize it.
4004 *	This handles only these board types.
4005 */
4006
4007static int stli_initonb(stlibrd_t *brdp)
4008{
4009	cdkonbsig_t	sig;
4010	cdkonbsig_t	*sigsp;
4011	char		*name;
4012	int		i;
4013
4014#ifdef DEBUG
4015	printk(KERN_DEBUG "stli_initonb(brdp=%x)\n", (int) brdp);
4016#endif
4017
4018/*
4019 *	Do a basic sanity check on the IO and memory addresses.
4020 */
4021	if ((brdp->iobase == 0) || (brdp->memaddr == 0))
4022		return(-ENODEV);
4023
4024	brdp->iosize = ONB_IOSIZE;
4025	
4026	if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
4027		return -EIO;
4028
4029/*
4030 *	Based on the specific board type setup the common vars to access
4031 *	and enable shared memory. Set all board specific information now
4032 *	as well.
4033 */
4034	switch (brdp->brdtype) {
4035	case BRD_ONBOARD:
4036	case BRD_ONBOARD32:
4037	case BRD_ONBOARD2:
4038	case BRD_ONBOARD2_32:
4039	case BRD_ONBOARDRS:
4040		brdp->membase = (void *) brdp->memaddr;
4041		brdp->memsize = ONB_MEMSIZE;
4042		brdp->pagesize = ONB_ATPAGESIZE;
4043		brdp->init = stli_onbinit;
4044		brdp->enable = stli_onbenable;
4045		brdp->reenable = stli_onbenable;
4046		brdp->disable = stli_onbdisable;
4047		brdp->getmemptr = stli_onbgetmemptr;
4048		brdp->intr = stli_ecpintr;
4049		brdp->reset = stli_onbreset;
4050		if (brdp->memaddr > 0x100000)
4051			brdp->enabval = ONB_MEMENABHI;
4052		else
4053			brdp->enabval = ONB_MEMENABLO;
4054		name = "serial(ONBoard)";
4055		break;
4056
4057	case BRD_ONBOARDE:
4058		brdp->membase = (void *) brdp->memaddr;
4059		brdp->memsize = ONB_EIMEMSIZE;
4060		brdp->pagesize = ONB_EIPAGESIZE;
4061		brdp->init = stli_onbeinit;
4062		brdp->enable = stli_onbeenable;
4063		brdp->reenable = stli_onbeenable;
4064		brdp->disable = stli_onbedisable;
4065		brdp->getmemptr = stli_onbegetmemptr;
4066		brdp->intr = stli_ecpintr;
4067		brdp->reset = stli_onbereset;
4068		name = "serial(ONBoard/E)";
4069		break;
4070
4071	case BRD_BRUMBY4:
4072	case BRD_BRUMBY8:
4073	case BRD_BRUMBY16:
4074		brdp->membase = (void *) brdp->memaddr;
4075		brdp->memsize = BBY_MEMSIZE;
4076		brdp->pagesize = BBY_PAGESIZE;
4077		brdp->init = stli_bbyinit;
4078		brdp->enable = NULL;
4079		brdp->reenable = NULL;
4080		brdp->disable = NULL;
4081		brdp->getmemptr = stli_bbygetmemptr;
4082		brdp->intr = stli_ecpintr;
4083		brdp->reset = stli_bbyreset;
4084		name = "serial(Brumby)";
4085		break;
4086
4087	case BRD_STALLION:
4088		brdp->membase = (void *) brdp->memaddr;
4089		brdp->memsize = STAL_MEMSIZE;
4090		brdp->pagesize = STAL_PAGESIZE;
4091		brdp->init = stli_stalinit;
4092		brdp->enable = NULL;
4093		brdp->reenable = NULL;
4094		brdp->disable = NULL;
4095		brdp->getmemptr = stli_stalgetmemptr;
4096		brdp->intr = stli_ecpintr;
4097		brdp->reset = stli_stalreset;
4098		name = "serial(Stallion)";
4099		break;
4100
4101	default:
4102		release_region(brdp->iobase, brdp->iosize);
4103		return(-EINVAL);
4104	}
4105
4106/*
4107 *	The per-board operations structure is all set up, so now let's go
4108 *	and get the board operational. Firstly initialize board configuration
4109 *	registers. Set the memory mapping info so we can get at the boards
4110 *	shared memory.
4111 */
4112	EBRDINIT(brdp);
4113
4114	brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4115	if (brdp->membase == (void *) NULL)
4116	{
4117		release_region(brdp->iobase, brdp->iosize);
4118		return(-ENOMEM);
4119	}
4120
4121/*
4122 *	Now that all specific code is set up, enable the shared memory and
4123 *	look for the a signature area that will tell us exactly what board
4124 *	this is, and how many ports.
4125 */
4126	EBRDENABLE(brdp);
4127	sigsp = (cdkonbsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
4128	memcpy(&sig, sigsp, sizeof(cdkonbsig_t));
4129	EBRDDISABLE(brdp);
4130
4131#if 0
4132	printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
4133		__FILE__, __LINE__, sig.magic0, sig.magic1, sig.magic2,
4134		sig.magic3, sig.romver, sig.amask0, sig.amask1, sig.amask2);
4135#endif
4136
4137	if ((sig.magic0 != ONB_MAGIC0) || (sig.magic1 != ONB_MAGIC1) ||
4138	    (sig.magic2 != ONB_MAGIC2) || (sig.magic3 != ONB_MAGIC3))
4139	{
4140		release_region(brdp->iobase, brdp->iosize);
4141		return(-ENODEV);
4142	}
4143
4144/*
4145 *	Scan through the signature alive mask and calculate how many ports
4146 *	there are on this board.
4147 */
4148	brdp->nrpanels = 1;
4149	if (sig.amask1) {
4150		brdp->nrports = 32;
4151	} else {
4152		for (i = 0; (i < 16); i++) {
4153			if (((sig.amask0 << i) & 0x8000) == 0)
4154				break;
4155		}
4156		brdp->nrports = i;
4157	}
4158	brdp->panels[0] = brdp->nrports;
4159
4160
4161	brdp->state |= BST_FOUND;
4162	return(0);
4163}
4164
4165/*****************************************************************************/
4166
4167/*
4168 *	Start up a running board. This routine is only called after the
4169 *	code has been down loaded to the board and is operational. It will
4170 *	read in the memory map, and get the show on the road...
4171 */
4172
4173static int stli_startbrd(stlibrd_t *brdp)
4174{
4175	volatile cdkhdr_t	*hdrp;
4176	volatile cdkmem_t	*memp;
4177	volatile cdkasy_t	*ap;
4178	unsigned long		flags;
4179	stliport_t		*portp;
4180	int			portnr, nrdevs, i, rc;
4181
4182#ifdef DEBUG
4183	printk(KERN_DEBUG "stli_startbrd(brdp=%x)\n", (int) brdp);
4184#endif
4185
4186	rc = 0;
4187
4188	save_flags(flags);
4189	cli();
4190	EBRDENABLE(brdp);
4191	hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
4192	nrdevs = hdrp->nrdevs;
4193
4194#if 0
4195	printk("%s(%d): CDK version %d.%d.%d --> "
4196		"nrdevs=%d memp=%x hostp=%x slavep=%x\n",
4197		 __FILE__, __LINE__, hdrp->ver_release, hdrp->ver_modification,
4198		 hdrp->ver_fix, nrdevs, (int) hdrp->memp, (int) hdrp->hostp,
4199		 (int) hdrp->slavep);
4200#endif
4201
4202	if (nrdevs < (brdp->nrports + 1)) {
4203		printk(KERN_ERR "STALLION: slave failed to allocate memory for "
4204				"all devices, devices=%d\n", nrdevs);
4205		brdp->nrports = nrdevs - 1;
4206	}
4207	brdp->nrdevs = nrdevs;
4208	brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
4209	brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
4210	brdp->bitsize = (nrdevs + 7) / 8;
4211	memp = (volatile cdkmem_t *) hdrp->memp;
4212	if (((unsigned long) memp) > brdp->memsize) {
4213		printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
4214		rc = -EIO;
4215		goto stli_donestartup;
4216	}
4217	memp = (volatile cdkmem_t *) EBRDGETMEMPTR(brdp, (unsigned long) memp);
4218	if (memp->dtype != TYP_ASYNCTRL) {
4219		printk(KERN_ERR "STALLION: no slave control device found\n");
4220		goto stli_donestartup;
4221	}
4222	memp++;
4223
4224/*
4225 *	Cycle through memory allocation of each port. We are guaranteed to
4226 *	have all ports inside the first page of slave window, so no need to
4227 *	change pages while reading memory map.
4228 */
4229	for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
4230		if (memp->dtype != TYP_ASYNC)
4231			break;
4232		portp = brdp->ports[portnr];
4233		if (portp == (stliport_t *) NULL)
4234			break;
4235		portp->devnr = i;
4236		portp->addr = memp->offset;
4237		portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
4238		portp->portidx = (unsigned char) (i / 8);
4239		portp->portbit = (unsigned char) (0x1 << (i % 8));
4240	}
4241
4242	hdrp->slavereq = 0xff;
4243
4244/*
4245 *	For each port setup a local copy of the RX and TX buffer offsets
4246 *	and sizes. We do this separate from the above, because we need to
4247 *	move the shared memory page...
4248 */
4249	for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
4250		portp = brdp->ports[portnr];
4251		if (portp == (stliport_t *) NULL)
4252			break;
4253		if (portp->addr == 0)
4254			break;
4255		ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
4256		if (ap != (volatile cdkasy_t *) NULL) {
4257			portp->rxsize = ap->rxq.size;
4258			portp->txsize = ap->txq.size;
4259			portp->rxoffset = ap->rxq.offset;
4260			portp->txoffset = ap->txq.offset;
4261		}
4262	}
4263
4264stli_donestartup:
4265	EBRDDISABLE(brdp);
4266	restore_flags(flags);
4267
4268	if (rc == 0)
4269		brdp->state |= BST_STARTED;
4270
4271	if (! stli_timeron) {
4272		stli_timeron++;
4273		stli_timerlist.expires = STLI_TIMEOUT;
4274		add_timer(&stli_timerlist);
4275	}
4276
4277	return(rc);
4278}
4279
4280/*****************************************************************************/
4281
4282/*
4283 *	Probe and initialize the specified board.
4284 */
4285
4286static int __init stli_brdinit(stlibrd_t *brdp)
4287{
4288#ifdef DEBUG
4289	printk(KERN_DEBUG "stli_brdinit(brdp=%x)\n", (int) brdp);
4290#endif
4291
4292	stli_brds[brdp->brdnr] = brdp;
4293
4294	switch (brdp->brdtype) {
4295	case BRD_ECP:
4296	case BRD_ECPE:
4297	case BRD_ECPMC:
4298	case BRD_ECPPCI:
4299		stli_initecp(brdp);
4300		break;
4301	case BRD_ONBOARD:
4302	case BRD_ONBOARDE:
4303	case BRD_ONBOARD2:
4304	case BRD_ONBOARD32:
4305	case BRD_ONBOARD2_32:
4306	case BRD_ONBOARDRS:
4307	case BRD_BRUMBY4:
4308	case BRD_BRUMBY8:
4309	case BRD_BRUMBY16:
4310	case BRD_STALLION:
4311		stli_initonb(brdp);
4312		break;
4313	case BRD_EASYIO:
4314	case BRD_ECH:
4315	case BRD_ECHMC:
4316	case BRD_ECHPCI:
4317		printk(KERN_ERR "STALLION: %s board type not supported in "
4318				"this driver\n", stli_brdnames[brdp->brdtype]);
4319		return(ENODEV);
4320	default:
4321		printk(KERN_ERR "STALLION: board=%d is unknown board "
4322				"type=%d\n", brdp->brdnr, brdp->brdtype);
4323		return(ENODEV);
4324	}
4325
4326	if ((brdp->state & BST_FOUND) == 0) {
4327		printk(KERN_ERR "STALLION: %s board not found, board=%d "
4328				"io=%x mem=%x\n",
4329			stli_brdnames[brdp->brdtype], brdp->brdnr,
4330			brdp->iobase, (int) brdp->memaddr);
4331		return(ENODEV);
4332	}
4333
4334	stli_initports(brdp);
4335	printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
4336		"nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
4337		brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
4338		brdp->nrpanels, brdp->nrports);
4339	return(0);
4340}
4341
4342/*****************************************************************************/
4343
4344/*
4345 *	Probe around trying to find where the EISA boards shared memory
4346 *	might be. This is a bit if hack, but it is the best we can do.
4347 */
4348
4349static int stli_eisamemprobe(stlibrd_t *brdp)
4350{
4351	cdkecpsig_t	ecpsig, *ecpsigp;
4352	cdkonbsig_t	onbsig, *onbsigp;
4353	int		i, foundit;
4354
4355#ifdef DEBUG
4356	printk(KERN_DEBUG "stli_eisamemprobe(brdp=%x)\n", (int) brdp);
4357#endif
4358
4359/*
4360 *	First up we reset the board, to get it into a known state. There
4361 *	is only 2 board types here we need to worry about. Don;t use the
4362 *	standard board init routine here, it programs up the shared
4363 *	memory address, and we don't know it yet...
4364 */
4365	if (brdp->brdtype == BRD_ECPE) {
4366		outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
4367		outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
4368		udelay(10);
4369		outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
4370		udelay(500);
4371		stli_ecpeienable(brdp);
4372	} else if (brdp->brdtype == BRD_ONBOARDE) {
4373		outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
4374		outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
4375		udelay(10);
4376		outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
4377		mdelay(100);
4378		outb(0x1, brdp->iobase);
4379		mdelay(1);
4380		stli_onbeenable(brdp);
4381	} else {
4382		return(-ENODEV);
4383	}
4384
4385	foundit = 0;
4386	brdp->memsize = ECP_MEMSIZE;
4387
4388/*
4389 *	Board shared memory is enabled, so now we have a poke around and
4390 *	see if we can find it.
4391 */
4392	for (i = 0; (i < stli_eisamempsize); i++) {
4393		brdp->memaddr = stli_eisamemprobeaddrs[i];
4394		brdp->membase = (void *) brdp->memaddr;
4395		brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4396		if (brdp->membase == (void *) NULL)
4397			continue;
4398
4399		if (brdp->brdtype == BRD_ECPE) {
4400			ecpsigp = (cdkecpsig_t *) stli_ecpeigetmemptr(brdp,
4401				CDK_SIGADDR, __LINE__);
4402			memcpy(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
4403			if (ecpsig.magic == ECP_MAGIC)
4404				foundit = 1;
4405		} else {
4406			onbsigp = (cdkonbsig_t *) stli_onbegetmemptr(brdp,
4407				CDK_SIGADDR, __LINE__);
4408			memcpy(&onbsig, onbsigp, sizeof(cdkonbsig_t));
4409			if ((onbsig.magic0 == ONB_MAGIC0) &&
4410			    (onbsig.magic1 == ONB_MAGIC1) &&
4411			    (onbsig.magic2 == ONB_MAGIC2) &&
4412			    (onbsig.magic3 == ONB_MAGIC3))
4413				foundit = 1;
4414		}
4415
4416		iounmap(brdp->membase);
4417		if (foundit)
4418			break;
4419	}
4420
4421/*
4422 *	Regardless of whether we found the shared memory or not we must
4423 *	disable the region. After that return success or failure.
4424 */
4425	if (brdp->brdtype == BRD_ECPE)
4426		stli_ecpeidisable(brdp);
4427	else
4428		stli_onbedisable(brdp);
4429
4430	if (! foundit) {
4431		brdp->memaddr = 0;
4432		brdp->membase = NULL;
4433		printk(KERN_ERR "STALLION: failed to probe shared memory "
4434				"region for %s in EISA slot=%d\n",
4435			stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
4436		return(-ENODEV);
4437	}
4438	return(0);
4439}
4440
4441static int stli_getbrdnr(void)
4442{
4443	int i;
4444
4445	for (i = 0; i < STL_MAXBRDS; i++) {
4446		if (!stli_brds[i]) {
4447			if (i >= stli_nrbrds)
4448				stli_nrbrds = i + 1;
4449			return i;
4450		}
4451	}
4452	return -1;
4453}
4454
4455/*****************************************************************************/
4456
4457/*
4458 *	Probe around and try to find any EISA boards in system. The biggest
4459 *	problem here is finding out what memory address is associated with
4460 *	an EISA board after it is found. The registers of the ECPE and
4461 *	ONboardE are not readable - so we can't read them from there. We
4462 *	don't have access to the EISA CMOS (or EISA BIOS) so we don't
4463 *	actually have any way to find out the real value. The best we can
4464 *	do is go probing around in the usual places hoping we can find it.
4465 */
4466
4467static int stli_findeisabrds(void)
4468{
4469	stlibrd_t	*brdp;
4470	unsigned int	iobase, eid;
4471	int		i;
4472
4473#ifdef DEBUG
4474	printk(KERN_DEBUG "stli_findeisabrds()\n");
4475#endif
4476
4477/*
4478 *	Firstly check if this is an EISA system. Do this by probing for
4479 *	the system board EISA ID. If this is not an EISA system then
4480 *	don't bother going any further!
4481 */
4482	outb(0xff, 0xc80);
4483	if (inb(0xc80) == 0xff)
4484		return(0);
4485
4486/*
4487 *	Looks like an EISA system, so go searching for EISA boards.
4488 */
4489	for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
4490		outb(0xff, (iobase + 0xc80));
4491		eid = inb(iobase + 0xc80);
4492		eid |= inb(iobase + 0xc81) << 8;
4493		if (eid != STL_EISAID)
4494			continue;
4495
4496/*
4497 *		We have found a board. Need to check if this board was
4498 *		statically configured already (just in case!).
4499 */
4500		for (i = 0; (i < STL_MAXBRDS); i++) {
4501			brdp = stli_brds[i];
4502			if (brdp == (stlibrd_t *) NULL)
4503				continue;
4504			if (brdp->iobase == iobase)
4505				break;
4506		}
4507		if (i < STL_MAXBRDS)
4508			continue;
4509
4510/*
4511 *		We have found a Stallion board and it is not configured already.
4512 *		Allocate a board structure and initialize it.
4513 */
4514		if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4515			return(-ENOMEM);
4516		if ((brdp->brdnr = stli_getbrdnr()) < 0)
4517			return(-ENOMEM);
4518		eid = inb(iobase + 0xc82);
4519		if (eid == ECP_EISAID)
4520			brdp->brdtype = BRD_ECPE;
4521		else if (eid == ONB_EISAID)
4522			brdp->brdtype = BRD_ONBOARDE;
4523		else
4524			brdp->brdtype = BRD_UNKNOWN;
4525		brdp->iobase = iobase;
4526		outb(0x1, (iobase + 0xc84));
4527		if (stli_eisamemprobe(brdp))
4528			outb(0, (iobase + 0xc84));
4529		stli_brdinit(brdp);
4530	}
4531
4532	return(0);
4533}
4534
4535/*****************************************************************************/
4536
4537/*
4538 *	Find the next available board number that is free.
4539 */
4540
4541/*****************************************************************************/
4542
4543#ifdef	CONFIG_PCI
4544
4545/*
4546 *	We have a Stallion board. Allocate a board structure and
4547 *	initialize it. Read its IO and MEMORY resources from PCI
4548 *	configuration space.
4549 */
4550
4551static int stli_initpcibrd(int brdtype, struct pci_dev *devp)
4552{
4553	stlibrd_t	*brdp;
4554
4555#ifdef DEBUG
4556	printk(KERN_DEBUG "stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n",
4557		brdtype, dev->bus->number, dev->devfn);
4558#endif
4559
4560	if (pci_enable_device(devp))
4561		return(-EIO);
4562	if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4563		return(-ENOMEM);
4564	if ((brdp->brdnr = stli_getbrdnr()) < 0) {
4565		printk(KERN_INFO "STALLION: too many boards found, "
4566			"maximum supported %d\n", STL_MAXBRDS);
4567		return(0);
4568	}
4569	brdp->brdtype = brdtype;
4570
4571#ifdef DEBUG
4572	printk(KERN_DEBUG "%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__, __LINE__,
4573		pci_resource_start(devp, 0),
4574		pci_resource_start(devp, 1),
4575		pci_resource_start(devp, 2),
4576		pci_resource_start(devp, 3));
4577#endif
4578
4579/*
4580 *	We have all resources from the board, so lets setup the actual
4581 *	board structure now.
4582 */
4583	brdp->iobase = pci_resource_start(devp, 3);
4584	brdp->memaddr = pci_resource_start(devp, 2);
4585	stli_brdinit(brdp);
4586
4587	return(0);
4588}
4589
4590/*****************************************************************************/
4591
4592/*
4593 *	Find all Stallion PCI boards that might be installed. Initialize each
4594 *	one as it is found.
4595 */
4596
4597static int stli_findpcibrds(void)
4598{
4599	struct pci_dev	*dev = NULL;
4600	int		rc;
4601
4602#ifdef DEBUG
4603	printk("stli_findpcibrds()\n");
4604#endif
4605
4606	while ((dev = pci_find_device(PCI_VENDOR_ID_STALLION,
4607	    PCI_DEVICE_ID_ECRA, dev))) {
4608		if ((rc = stli_initpcibrd(BRD_ECPPCI, dev)))
4609			return(rc);
4610	}
4611
4612	return(0);
4613}
4614
4615#endif
4616
4617/*****************************************************************************/
4618
4619/*
4620 *	Allocate a new board structure. Fill out the basic info in it.
4621 */
4622
4623static stlibrd_t *stli_allocbrd(void)
4624{
4625	stlibrd_t	*brdp;
4626
4627	brdp = (stlibrd_t *) stli_memalloc(sizeof(stlibrd_t));
4628	if (brdp == (stlibrd_t *) NULL) {
4629		printk(KERN_ERR "STALLION: failed to allocate memory "
4630				"(size=%d)\n", sizeof(stlibrd_t));
4631		return((stlibrd_t *) NULL);
4632	}
4633
4634	memset(brdp, 0, sizeof(stlibrd_t));
4635	brdp->magic = STLI_BOARDMAGIC;
4636	return(brdp);
4637}
4638
4639/*****************************************************************************/
4640
4641/*
4642 *	Scan through all the boards in the configuration and see what we
4643 *	can find.
4644 */
4645
4646static int stli_initbrds(void)
4647{
4648	stlibrd_t	*brdp, *nxtbrdp;
4649	stlconf_t	*confp;
4650	int		i, j;
4651
4652#ifdef DEBUG
4653	printk(KERN_DEBUG "stli_initbrds()\n");
4654#endif
4655
4656	if (stli_nrbrds > STL_MAXBRDS) {
4657		printk(KERN_INFO "STALLION: too many boards in configuration "
4658			"table, truncating to %d\n", STL_MAXBRDS);
4659		stli_nrbrds = STL_MAXBRDS;
4660	}
4661
4662/*
4663 *	Firstly scan the list of static boards configured. Allocate
4664 *	resources and initialize the boards as found. If this is a
4665 *	module then let the module args override static configuration.
4666 */
4667	for (i = 0; (i < stli_nrbrds); i++) {
4668		confp = &stli_brdconf[i];
4669#ifdef MODULE
4670		stli_parsebrd(confp, stli_brdsp[i]);
4671#endif
4672		if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4673			return(-ENOMEM);
4674		brdp->brdnr = i;
4675		brdp->brdtype = confp->brdtype;
4676		brdp->iobase = confp->ioaddr1;
4677		brdp->memaddr = confp->memaddr;
4678		stli_brdinit(brdp);
4679	}
4680
4681/*
4682 *	Static configuration table done, so now use dynamic methods to
4683 *	see if any more boards should be configured.
4684 */
4685#ifdef MODULE
4686	stli_argbrds();
4687#endif
4688	if (stli_eisaprobe)
4689		stli_findeisabrds();
4690#ifdef CONFIG_PCI
4691	stli_findpcibrds();
4692#endif
4693
4694/*
4695 *	All found boards are initialized. Now for a little optimization, if
4696 *	no boards are sharing the "shared memory" regions then we can just
4697 *	leave them all enabled. This is in fact the usual case.
4698 */
4699	stli_shared = 0;
4700	if (stli_nrbrds > 1) {
4701		for (i = 0; (i < stli_nrbrds); i++) {
4702			brdp = stli_brds[i];
4703			if (brdp == (stlibrd_t *) NULL)
4704				continue;
4705			for (j = i + 1; (j < stli_nrbrds); j++) {
4706				nxtbrdp = stli_brds[j];
4707				if (nxtbrdp == (stlibrd_t *) NULL)
4708					continue;
4709				if ((brdp->membase >= nxtbrdp->membase) &&
4710				    (brdp->membase <= (nxtbrdp->membase +
4711				    nxtbrdp->memsize - 1))) {
4712					stli_shared++;
4713					break;
4714				}
4715			}
4716		}
4717	}
4718
4719	if (stli_shared == 0) {
4720		for (i = 0; (i < stli_nrbrds); i++) {
4721			brdp = stli_brds[i];
4722			if (brdp == (stlibrd_t *) NULL)
4723				continue;
4724			if (brdp->state & BST_FOUND) {
4725				EBRDENABLE(brdp);
4726				brdp->enable = NULL;
4727				brdp->disable = NULL;
4728			}
4729		}
4730	}
4731
4732	return(0);
4733}
4734
4735/*****************************************************************************/
4736
4737/*
4738 *	Code to handle an "staliomem" read operation. This device is the 
4739 *	contents of the board shared memory. It is used for down loading
4740 *	the slave image (and debugging :-)
4741 */
4742
4743static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4744{
4745	unsigned long	flags;
4746	void		*memptr;
4747	stlibrd_t	*brdp;
4748	int		brdnr, size, n;
4749
4750#ifdef DEBUG
4751	printk(KERN_DEBUG "stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n",
4752			(int) fp, (int) buf, count, (int) offp);
4753#endif
4754
4755	brdnr = iminor(fp->f_dentry->d_inode);
4756	if (brdnr >= stli_nrbrds)
4757		return(-ENODEV);
4758	brdp = stli_brds[brdnr];
4759	if (brdp == (stlibrd_t *) NULL)
4760		return(-ENODEV);
4761	if (brdp->state == 0)
4762		return(-ENODEV);
4763	if (fp->f_pos >= brdp->memsize)
4764		return(0);
4765
4766	size = MIN(count, (brdp->memsize - fp->f_pos));
4767
4768	save_flags(flags);
4769	cli();
4770	EBRDENABLE(brdp);
4771	while (size > 0) {
4772		memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4773		n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4774		if (copy_to_user(buf, memptr, n)) {
4775			count = -EFAULT;
4776			goto out;
4777		}
4778		fp->f_pos += n;
4779		buf += n;
4780		size -= n;
4781	}
4782out:
4783	EBRDDISABLE(brdp);
4784	restore_flags(flags);
4785
4786	return(count);
4787}
4788
4789/*****************************************************************************/
4790
4791/*
4792 *	Code to handle an "staliomem" write operation. This device is the 
4793 *	contents of the board shared memory. It is used for down loading
4794 *	the slave image (and debugging :-)
4795 */
4796
4797static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4798{
4799	unsigned long	flags;
4800	void		*memptr;
4801	stlibrd_t	*brdp;
4802	char		__user *chbuf;
4803	int		brdnr, size, n;
4804
4805#ifdef DEBUG
4806	printk(KERN_DEBUG "stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n",
4807			(int) fp, (int) buf, count, (int) offp);
4808#endif
4809
4810	brdnr = iminor(fp->f_dentry->d_inode);
4811	if (brdnr >= stli_nrbrds)
4812		return(-ENODEV);
4813	brdp = stli_brds[brdnr];
4814	if (brdp == (stlibrd_t *) NULL)
4815		return(-ENODEV);
4816	if (brdp->state == 0)
4817		return(-ENODEV);
4818	if (fp->f_pos >= brdp->memsize)
4819		return(0);
4820
4821	chbuf = (char __user *) buf;
4822	size = MIN(count, (brdp->memsize - fp->f_pos));
4823
4824	save_flags(flags);
4825	cli();
4826	EBRDENABLE(brdp);
4827	while (size > 0) {
4828		memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4829		n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4830		if (copy_from_user(memptr, chbuf, n)) {
4831			count = -EFAULT;
4832			goto out;
4833		}
4834		fp->f_pos += n;
4835		chbuf += n;
4836		size -= n;
4837	}
4838out:
4839	EBRDDISABLE(brdp);
4840	restore_flags(flags);
4841
4842	return(count);
4843}
4844
4845/*****************************************************************************/
4846
4847/*
4848 *	Return the board stats structure to user app.
4849 */
4850
4851static int stli_getbrdstats(combrd_t __user *bp)
4852{
4853	stlibrd_t	*brdp;
4854	int		i;
4855
4856	if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4857		return -EFAULT;
4858	if (stli_brdstats.brd >= STL_MAXBRDS)
4859		return(-ENODEV);
4860	brdp = stli_brds[stli_brdstats.brd];
4861	if (brdp == (stlibrd_t *) NULL)
4862		return(-ENODEV);
4863
4864	memset(&stli_brdstats, 0, sizeof(combrd_t));
4865	stli_brdstats.brd = brdp->brdnr;
4866	stli_brdstats.type = brdp->brdtype;
4867	stli_brdstats.hwid = 0;
4868	stli_brdstats.state = brdp->state;
4869	stli_brdstats.ioaddr = brdp->iobase;
4870	stli_brdstats.memaddr = brdp->memaddr;
4871	stli_brdstats.nrpanels = brdp->nrpanels;
4872	stli_brdstats.nrports = brdp->nrports;
4873	for (i = 0; (i < brdp->nrpanels); i++) {
4874		stli_brdstats.panels[i].panel = i;
4875		stli_brdstats.panels[i].hwid = brdp->panelids[i];
4876		stli_brdstats.panels[i].nrports = brdp->panels[i];
4877	}
4878
4879	if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4880		return -EFAULT;
4881	return(0);
4882}
4883
4884/*****************************************************************************/
4885
4886/*
4887 *	Resolve the referenced port number into a port struct pointer.
4888 */
4889
4890static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
4891{
4892	stlibrd_t	*brdp;
4893	int		i;
4894
4895	if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
4896		return((stliport_t *) NULL);
4897	brdp = stli_brds[brdnr];
4898	if (brdp == (stlibrd_t *) NULL)
4899		return((stliport_t *) NULL);
4900	for (i = 0; (i < panelnr); i++)
4901		portnr += brdp->panels[i];
4902	if ((portnr < 0) || (portnr >= brdp->nrports))
4903		return((stliport_t *) NULL);
4904	return(brdp->ports[portnr]);
4905}
4906
4907/*****************************************************************************/
4908
4909/*
4910 *	Return the port stats structure to user app. A NULL port struct
4911 *	pointer passed in means that we need to find out from the app
4912 *	what port to get stats for (used through board control device).
4913 */
4914
4915static int stli_portcmdstats(stliport_t *portp)
4916{
4917	unsigned long	flags;
4918	stlibrd_t	*brdp;
4919	int		rc;
4920
4921	memset(&stli_comstats, 0, sizeof(comstats_t));
4922
4923	if (portp == (stliport_t *) NULL)
4924		return(-ENODEV);
4925	brdp = stli_brds[portp->brdnr];
4926	if (brdp == (stlibrd_t *) NULL)
4927		return(-ENODEV);
4928
4929	if (brdp->state & BST_STARTED) {
4930		if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4931		    &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4932			return(rc);
4933	} else {
4934		memset(&stli_cdkstats, 0, sizeof(asystats_t));
4935	}
4936
4937	stli_comstats.brd = portp->brdnr;
4938	stli_comstats.panel = portp->panelnr;
4939	stli_comstats.port = portp->portnr;
4940	stli_comstats.state = portp->state;
4941	stli_comstats.flags = portp->flags;
4942
4943	save_flags(flags);
4944	cli();
4945	if (portp->tty != (struct tty_struct *) NULL) {
4946		if (portp->tty->driver_data == portp) {
4947			stli_comstats.ttystate = portp->tty->flags;
4948			stli_comstats.rxbuffered = portp->tty->flip.count;
4949			if (portp->tty->termios != (struct termios *) NULL) {
4950				stli_comstats.cflags = portp->tty->termios->c_cflag;
4951				stli_comstats.iflags = portp->tty->termios->c_iflag;
4952				stli_comstats.oflags = portp->tty->termios->c_oflag;
4953				stli_comstats.lflags = portp->tty->termios->c_lflag;
4954			}
4955		}
4956	}
4957	restore_flags(flags);
4958
4959	stli_comstats.txtotal = stli_cdkstats.txchars;
4960	stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4961	stli_comstats.txbuffered = stli_cdkstats.txringq;
4962	stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4963	stli_comstats.rxoverrun = stli_cdkstats.overruns;
4964	stli_comstats.rxparity = stli_cdkstats.parity;
4965	stli_comstats.rxframing = stli_cdkstats.framing;
4966	stli_comstats.rxlost = stli_cdkstats.ringover;
4967	stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4968	stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4969	stli_comstats.txxon = stli_cdkstats.txstart;
4970	stli_comstats.txxoff = stli_cdkstats.txstop;
4971	stli_comstats.rxxon = stli_cdkstats.rxstart;
4972	stli_comstats.rxxoff = stli_cdkstats.rxstop;
4973	stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4974	stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4975	stli_comstats.modem = stli_cdkstats.dcdcnt;
4976	stli_comstats.hwid = stli_cdkstats.hwid;
4977	stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4978
4979	return(0);
4980}
4981
4982/*****************************************************************************/
4983
4984/*
4985 *	Return the port stats structure to user app. A NULL port struct
4986 *	pointer passed in means that we need to find out from the app
4987 *	what port to get stats for (used through board control device).
4988 */
4989
4990static int stli_getportstats(stliport_t *portp, comstats_t __user *cp)
4991{
4992	stlibrd_t	*brdp;
4993	int		rc;
4994
4995	if (!portp) {
4996		if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4997			return -EFAULT;
4998		portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4999			stli_comstats.port);
5000		if (!portp)
5001			return -ENODEV;
5002	}
5003
5004	brdp = stli_brds[portp->brdnr];
5005	if (!brdp)
5006		return -ENODEV;
5007
5008	if ((rc = stli_portcmdstats(portp)) < 0)
5009		return rc;
5010
5011	return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
5012			-EFAULT : 0;
5013}
5014
5015/*****************************************************************************/
5016
5017/*
5018 *	Clear the port stats structure. We also return it zeroed out...
5019 */
5020
5021static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp)
5022{
5023	stlibrd_t	*brdp;
5024	int		rc;
5025
5026	if (!portp) {
5027		if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
5028			return -EFAULT;
5029		portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
5030			stli_comstats.port);
5031		if (!portp)
5032			return -ENODEV;
5033	}
5034
5035	brdp = stli_brds[portp->brdnr];
5036	if (!brdp)
5037		return -ENODEV;
5038
5039	if (brdp->state & BST_STARTED) {
5040		if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
5041			return rc;
5042	}
5043
5044	memset(&stli_comstats, 0, sizeof(comstats_t));
5045	stli_comstats.brd = portp->brdnr;
5046	stli_comstats.panel = portp->panelnr;
5047	stli_comstats.port = portp->portnr;
5048
5049	if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
5050		return -EFAULT;
5051	return 0;
5052}
5053
5054/*****************************************************************************/
5055
5056/*
5057 *	Return the entire driver ports structure to a user app.
5058 */
5059
5060static int stli_getportstruct(stliport_t __user *arg)
5061{
5062	stliport_t	*portp;
5063
5064	if (copy_from_user(&stli_dummyport, arg, sizeof(stliport_t)))
5065		return -EFAULT;
5066	portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
5067		 stli_dummyport.portnr);
5068	if (!portp)
5069		return -ENODEV;
5070	if (copy_to_user(arg, portp, sizeof(stliport_t)))
5071		return -EFAULT;
5072	return 0;
5073}
5074
5075/*****************************************************************************/
5076
5077/*
5078 *	Return the entire driver board structure to a user app.
5079 */
5080
5081static int stli_getbrdstruct(stlibrd_t __user *arg)
5082{
5083	stlibrd_t	*brdp;
5084
5085	if (copy_from_user(&stli_dummybrd, arg, sizeof(stlibrd_t)))
5086		return -EFAULT;
5087	if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS))
5088		return -ENODEV;
5089	brdp = stli_brds[stli_dummybrd.brdnr];
5090	if (!brdp)
5091		return -ENODEV;
5092	if (copy_to_user(arg, brdp, sizeof(stlibrd_t)))
5093		return -EFAULT;
5094	return 0;
5095}
5096
5097/*****************************************************************************/
5098
5099/*
5100 *	The "staliomem" device is also required to do some special operations on
5101 *	the board. We need to be able to send an interrupt to the board,
5102 *	reset it, and start/stop it.
5103 */
5104
5105static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
5106{
5107	stlibrd_t	*brdp;
5108	int		brdnr, rc, done;
5109	void __user *argp = (void __user *)arg;
5110
5111#ifdef DEBUG
5112	printk(KERN_DEBUG "stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n",
5113			(int) ip, (int) fp, cmd, (int) arg);
5114#endif
5115
5116/*
5117 *	First up handle the board independent ioctls.
5118 */
5119	done = 0;
5120	rc = 0;
5121
5122	switch (cmd) {
5123	case COM_GETPORTSTATS:
5124		rc = stli_getportstats(NULL, argp);
5125		done++;
5126		break;
5127	case COM_CLRPORTSTATS:
5128		rc = stli_clrportstats(NULL, argp);
5129		done++;
5130		break;
5131	case COM_GETBRDSTATS:
5132		rc = stli_getbrdstats(argp);
5133		done++;
5134		break;
5135	case COM_READPORT:
5136		rc = stli_getportstruct(argp);
5137		done++;
5138		break;
5139	case COM_READBOARD:
5140		rc = stli_getbrdstruct(argp);
5141		done++;
5142		break;
5143	}
5144
5145	if (done)
5146		return(rc);
5147
5148/*
5149 *	Now handle the board specific ioctls. These all depend on the
5150 *	minor number of the device they were called from.
5151 */
5152	brdnr = iminor(ip);
5153	if (brdnr >= STL_MAXBRDS)
5154		return(-ENODEV);
5155	brdp = stli_brds[brdnr];
5156	if (!brdp)
5157		return(-ENODEV);
5158	if (brdp->state == 0)
5159		return(-ENODEV);
5160
5161	switch (cmd) {
5162	case STL_BINTR:
5163		EBRDINTR(brdp);
5164		break;
5165	case STL_BSTART:
5166		rc = stli_startbrd(brdp);
5167		break;
5168	case STL_BSTOP:
5169		brdp->state &= ~BST_STARTED;
5170		break;
5171	case STL_BRESET:
5172		brdp->state &= ~BST_STARTED;
5173		EBRDRESET(brdp);
5174		if (stli_shared == 0) {
5175			if (brdp->reenable != NULL)
5176				(* brdp->reenable)(brdp);
5177		}
5178		break;
5179	default:
5180		rc = -ENOIOCTLCMD;
5181		break;
5182	}
5183
5184	return(rc);
5185}
5186
5187static struct tty_operations stli_ops = {
5188	.open = stli_open,
5189	.close = stli_close,
5190	.write = stli_write,
5191	.put_char = stli_putchar,
5192	.flush_chars = stli_flushchars,
5193	.write_room = stli_writeroom,
5194	.chars_in_buffer = stli_charsinbuffer,
5195	.ioctl = stli_ioctl,
5196	.set_termios = stli_settermios,
5197	.throttle = stli_throttle,
5198	.unthrottle = stli_unthrottle,
5199	.stop = stli_stop,
5200	.start = stli_start,
5201	.hangup = stli_hangup,
5202	.flush_buffer = stli_flushbuffer,
5203	.break_ctl = stli_breakctl,
5204	.wait_until_sent = stli_waituntilsent,
5205	.send_xchar = stli_sendxchar,
5206	.read_proc = stli_readproc,
5207	.tiocmget = stli_tiocmget,
5208	.tiocmset = stli_tiocmset,
5209};
5210
5211/*****************************************************************************/
5212
5213int __init stli_init(void)
5214{
5215	int i;
5216	printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
5217
5218	stli_initbrds();
5219
5220	stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
5221	if (!stli_serial)
5222		return -ENOMEM;
5223
5224/*
5225 *	Allocate a temporary write buffer.
5226 */
5227	stli_tmpwritebuf = (char *) stli_memalloc(STLI_TXBUFSIZE);
5228	if (stli_tmpwritebuf == (char *) NULL)
5229		printk(KERN_ERR "STALLION: failed to allocate memory "
5230				"(size=%d)\n", STLI_TXBUFSIZE);
5231	stli_txcookbuf = stli_memalloc(STLI_TXBUFSIZE);
5232	if (stli_txcookbuf == (char *) NULL)
5233		printk(KERN_ERR "STALLION: failed to allocate memory "
5234				"(size=%d)\n", STLI_TXBUFSIZE);
5235
5236/*
5237 *	Set up a character driver for the shared memory region. We need this
5238 *	to down load the slave code image. Also it is a useful debugging tool.
5239 */
5240	if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
5241		printk(KERN_ERR "STALLION: failed to register serial memory "
5242				"device\n");
5243
5244	devfs_mk_dir("staliomem");
5245	istallion_class = class_simple_create(THIS_MODULE, "staliomem");
5246	for (i = 0; i < 4; i++) {
5247		devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR, i),
5248			       S_IFCHR | S_IRUSR | S_IWUSR,
5249			       "staliomem/%d", i);
5250		class_simple_device_add(istallion_class, MKDEV(STL_SIOMEMMAJOR, i), 
5251				NULL, "staliomem%d", i);
5252	}
5253
5254/*
5255 *	Set up the tty driver structure and register us as a driver.
5256 */
5257	stli_serial->owner = THIS_MODULE;
5258	stli_serial->driver_name = stli_drvname;
5259	stli_serial->name = stli_serialname;
5260	stli_serial->major = STL_SERIALMAJOR;
5261	stli_serial->minor_start = 0;
5262	stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
5263	stli_serial->subtype = SERIAL_TYPE_NORMAL;
5264	stli_serial->init_termios = stli_deftermios;
5265	stli_serial->flags = TTY_DRIVER_REAL_RAW;
5266	tty_set_operations(stli_serial, &stli_ops);
5267
5268	if (tty_register_driver(stli_serial)) {
5269		put_tty_driver(stli_serial);
5270		printk(KERN_ERR "STALLION: failed to register serial driver\n");
5271		return -EBUSY;
5272	}
5273	return(0);
5274}
5275
5276/*****************************************************************************/