PageRenderTime 67ms CodeModel.GetById 21ms RepoModel.GetById 1ms app.codeStats 0ms

/net/socket.c

https://bitbucket.org/zossso/android-kernel-2.6.34-motus
C | 3152 lines | 2260 code | 462 blank | 430 comment | 356 complexity | 02555c78d8719a4950120d217d286e42 MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
  1. /*
  2. * NET An implementation of the SOCKET network access protocol.
  3. *
  4. * Version: @(#)socket.c 1.1.93 18/02/95
  5. *
  6. * Authors: Orest Zborowski, <obz@Kodak.COM>
  7. * Ross Biro
  8. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  9. *
  10. * Fixes:
  11. * Anonymous : NOTSOCK/BADF cleanup. Error fix in
  12. * shutdown()
  13. * Alan Cox : verify_area() fixes
  14. * Alan Cox : Removed DDI
  15. * Jonathan Kamens : SOCK_DGRAM reconnect bug
  16. * Alan Cox : Moved a load of checks to the very
  17. * top level.
  18. * Alan Cox : Move address structures to/from user
  19. * mode above the protocol layers.
  20. * Rob Janssen : Allow 0 length sends.
  21. * Alan Cox : Asynchronous I/O support (cribbed from the
  22. * tty drivers).
  23. * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
  24. * Jeff Uphoff : Made max number of sockets command-line
  25. * configurable.
  26. * Matti Aarnio : Made the number of sockets dynamic,
  27. * to be allocated when needed, and mr.
  28. * Uphoff's max is used as max to be
  29. * allowed to allocate.
  30. * Linus : Argh. removed all the socket allocation
  31. * altogether: it's in the inode now.
  32. * Alan Cox : Made sock_alloc()/sock_release() public
  33. * for NetROM and future kernel nfsd type
  34. * stuff.
  35. * Alan Cox : sendmsg/recvmsg basics.
  36. * Tom Dyas : Export net symbols.
  37. * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
  38. * Alan Cox : Added thread locking to sys_* calls
  39. * for sockets. May have errors at the
  40. * moment.
  41. * Kevin Buhr : Fixed the dumb errors in the above.
  42. * Andi Kleen : Some small cleanups, optimizations,
  43. * and fixed a copy_from_user() bug.
  44. * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
  45. * Tigran Aivazian : Made listen(2) backlog sanity checks
  46. * protocol-independent
  47. *
  48. *
  49. * This program is free software; you can redistribute it and/or
  50. * modify it under the terms of the GNU General Public License
  51. * as published by the Free Software Foundation; either version
  52. * 2 of the License, or (at your option) any later version.
  53. *
  54. *
  55. * This module is effectively the top level interface to the BSD socket
  56. * paradigm.
  57. *
  58. * Based upon Swansea University Computer Society NET3.039
  59. */
  60. #include <linux/mm.h>
  61. #include <linux/socket.h>
  62. #include <linux/file.h>
  63. #include <linux/net.h>
  64. #include <linux/interrupt.h>
  65. #include <linux/thread_info.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/netdevice.h>
  68. #include <linux/proc_fs.h>
  69. #include <linux/seq_file.h>
  70. #include <linux/mutex.h>
  71. #include <linux/wanrouter.h>
  72. #include <linux/if_bridge.h>
  73. #include <linux/if_frad.h>
  74. #include <linux/if_vlan.h>
  75. #include <linux/init.h>
  76. #include <linux/poll.h>
  77. #include <linux/cache.h>
  78. #include <linux/module.h>
  79. #include <linux/highmem.h>
  80. #include <linux/mount.h>
  81. #include <linux/security.h>
  82. #include <linux/syscalls.h>
  83. #include <linux/compat.h>
  84. #include <linux/kmod.h>
  85. #include <linux/audit.h>
  86. #include <linux/wireless.h>
  87. #include <linux/nsproxy.h>
  88. #include <linux/magic.h>
  89. #include <linux/slab.h>
  90. #include <asm/uaccess.h>
  91. #include <asm/unistd.h>
  92. #include <net/compat.h>
  93. #include <net/wext.h>
  94. #include <net/sock.h>
  95. #include <linux/netfilter.h>
  96. #include <linux/if_tun.h>
  97. #include <linux/ipv6_route.h>
  98. #include <linux/route.h>
  99. #include <linux/sockios.h>
  100. #include <linux/atalk.h>
  101. #ifdef CONFIG_UID_STAT
  102. #include <linux/uid_stat.h>
  103. #endif
  104. static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
  105. static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
  106. unsigned long nr_segs, loff_t pos);
  107. static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
  108. unsigned long nr_segs, loff_t pos);
  109. static int sock_mmap(struct file *file, struct vm_area_struct *vma);
  110. static int sock_close(struct inode *inode, struct file *file);
  111. static unsigned int sock_poll(struct file *file,
  112. struct poll_table_struct *wait);
  113. static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
  114. #ifdef CONFIG_COMPAT
  115. static long compat_sock_ioctl(struct file *file,
  116. unsigned int cmd, unsigned long arg);
  117. #endif
  118. static int sock_fasync(int fd, struct file *filp, int on);
  119. static ssize_t sock_sendpage(struct file *file, struct page *page,
  120. int offset, size_t size, loff_t *ppos, int more);
  121. static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
  122. struct pipe_inode_info *pipe, size_t len,
  123. unsigned int flags);
  124. /*
  125. * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
  126. * in the operation structures but are done directly via the socketcall() multiplexor.
  127. */
  128. static const struct file_operations socket_file_ops = {
  129. .owner = THIS_MODULE,
  130. .llseek = no_llseek,
  131. .aio_read = sock_aio_read,
  132. .aio_write = sock_aio_write,
  133. .poll = sock_poll,
  134. .unlocked_ioctl = sock_ioctl,
  135. #ifdef CONFIG_COMPAT
  136. .compat_ioctl = compat_sock_ioctl,
  137. #endif
  138. .mmap = sock_mmap,
  139. .open = sock_no_open, /* special open code to disallow open via /proc */
  140. .release = sock_close,
  141. .fasync = sock_fasync,
  142. .sendpage = sock_sendpage,
  143. .splice_write = generic_splice_sendpage,
  144. .splice_read = sock_splice_read,
  145. };
  146. /*
  147. * The protocol list. Each protocol is registered in here.
  148. */
  149. static DEFINE_SPINLOCK(net_family_lock);
  150. static const struct net_proto_family *net_families[NPROTO] __read_mostly;
  151. /*
  152. * Statistics counters of the socket lists
  153. */
  154. static DEFINE_PER_CPU(int, sockets_in_use) = 0;
  155. /*
  156. * Support routines.
  157. * Move socket addresses back and forth across the kernel/user
  158. * divide and look after the messy bits.
  159. */
  160. #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
  161. 16 for IP, 16 for IPX,
  162. 24 for IPv6,
  163. about 80 for AX.25
  164. must be at least one bigger than
  165. the AF_UNIX size (see net/unix/af_unix.c
  166. :unix_mkname()).
  167. */
  168. /**
  169. * move_addr_to_kernel - copy a socket address into kernel space
  170. * @uaddr: Address in user space
  171. * @kaddr: Address in kernel space
  172. * @ulen: Length in user space
  173. *
  174. * The address is copied into kernel space. If the provided address is
  175. * too long an error code of -EINVAL is returned. If the copy gives
  176. * invalid addresses -EFAULT is returned. On a success 0 is returned.
  177. */
  178. int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
  179. {
  180. if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
  181. return -EINVAL;
  182. if (ulen == 0)
  183. return 0;
  184. if (copy_from_user(kaddr, uaddr, ulen))
  185. return -EFAULT;
  186. return audit_sockaddr(ulen, kaddr);
  187. }
  188. /**
  189. * move_addr_to_user - copy an address to user space
  190. * @kaddr: kernel space address
  191. * @klen: length of address in kernel
  192. * @uaddr: user space address
  193. * @ulen: pointer to user length field
  194. *
  195. * The value pointed to by ulen on entry is the buffer length available.
  196. * This is overwritten with the buffer space used. -EINVAL is returned
  197. * if an overlong buffer is specified or a negative buffer size. -EFAULT
  198. * is returned if either the buffer or the length field are not
  199. * accessible.
  200. * After copying the data up to the limit the user specifies, the true
  201. * length of the data is written over the length limit the user
  202. * specified. Zero is returned for a success.
  203. */
  204. int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
  205. int __user *ulen)
  206. {
  207. int err;
  208. int len;
  209. err = get_user(len, ulen);
  210. if (err)
  211. return err;
  212. if (len > klen)
  213. len = klen;
  214. if (len < 0 || len > sizeof(struct sockaddr_storage))
  215. return -EINVAL;
  216. if (len) {
  217. if (audit_sockaddr(klen, kaddr))
  218. return -ENOMEM;
  219. if (copy_to_user(uaddr, kaddr, len))
  220. return -EFAULT;
  221. }
  222. /*
  223. * "fromlen shall refer to the value before truncation.."
  224. * 1003.1g
  225. */
  226. return __put_user(klen, ulen);
  227. }
  228. static struct kmem_cache *sock_inode_cachep __read_mostly;
  229. static struct inode *sock_alloc_inode(struct super_block *sb)
  230. {
  231. struct socket_alloc *ei;
  232. ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
  233. if (!ei)
  234. return NULL;
  235. init_waitqueue_head(&ei->socket.wait);
  236. ei->socket.fasync_list = NULL;
  237. ei->socket.state = SS_UNCONNECTED;
  238. ei->socket.flags = 0;
  239. ei->socket.ops = NULL;
  240. ei->socket.sk = NULL;
  241. ei->socket.file = NULL;
  242. return &ei->vfs_inode;
  243. }
  244. static void sock_destroy_inode(struct inode *inode)
  245. {
  246. kmem_cache_free(sock_inode_cachep,
  247. container_of(inode, struct socket_alloc, vfs_inode));
  248. }
  249. static void init_once(void *foo)
  250. {
  251. struct socket_alloc *ei = (struct socket_alloc *)foo;
  252. inode_init_once(&ei->vfs_inode);
  253. }
  254. static int init_inodecache(void)
  255. {
  256. sock_inode_cachep = kmem_cache_create("sock_inode_cache",
  257. sizeof(struct socket_alloc),
  258. 0,
  259. (SLAB_HWCACHE_ALIGN |
  260. SLAB_RECLAIM_ACCOUNT |
  261. SLAB_MEM_SPREAD),
  262. init_once);
  263. if (sock_inode_cachep == NULL)
  264. return -ENOMEM;
  265. return 0;
  266. }
  267. static const struct super_operations sockfs_ops = {
  268. .alloc_inode = sock_alloc_inode,
  269. .destroy_inode =sock_destroy_inode,
  270. .statfs = simple_statfs,
  271. };
  272. static int sockfs_get_sb(struct file_system_type *fs_type,
  273. int flags, const char *dev_name, void *data,
  274. struct vfsmount *mnt)
  275. {
  276. return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
  277. mnt);
  278. }
  279. static struct vfsmount *sock_mnt __read_mostly;
  280. static struct file_system_type sock_fs_type = {
  281. .name = "sockfs",
  282. .get_sb = sockfs_get_sb,
  283. .kill_sb = kill_anon_super,
  284. };
  285. /*
  286. * sockfs_dname() is called from d_path().
  287. */
  288. static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
  289. {
  290. return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
  291. dentry->d_inode->i_ino);
  292. }
  293. static const struct dentry_operations sockfs_dentry_operations = {
  294. .d_dname = sockfs_dname,
  295. };
  296. /*
  297. * Obtains the first available file descriptor and sets it up for use.
  298. *
  299. * These functions create file structures and maps them to fd space
  300. * of the current process. On success it returns file descriptor
  301. * and file struct implicitly stored in sock->file.
  302. * Note that another thread may close file descriptor before we return
  303. * from this function. We use the fact that now we do not refer
  304. * to socket after mapping. If one day we will need it, this
  305. * function will increment ref. count on file by 1.
  306. *
  307. * In any case returned fd MAY BE not valid!
  308. * This race condition is unavoidable
  309. * with shared fd spaces, we cannot solve it inside kernel,
  310. * but we take care of internal coherence yet.
  311. */
  312. static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
  313. {
  314. struct qstr name = { .name = "" };
  315. struct path path;
  316. struct file *file;
  317. int fd;
  318. fd = get_unused_fd_flags(flags);
  319. if (unlikely(fd < 0))
  320. return fd;
  321. path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
  322. if (unlikely(!path.dentry)) {
  323. put_unused_fd(fd);
  324. return -ENOMEM;
  325. }
  326. path.mnt = mntget(sock_mnt);
  327. path.dentry->d_op = &sockfs_dentry_operations;
  328. d_instantiate(path.dentry, SOCK_INODE(sock));
  329. SOCK_INODE(sock)->i_fop = &socket_file_ops;
  330. file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
  331. &socket_file_ops);
  332. if (unlikely(!file)) {
  333. /* drop dentry, keep inode */
  334. atomic_inc(&path.dentry->d_inode->i_count);
  335. path_put(&path);
  336. put_unused_fd(fd);
  337. return -ENFILE;
  338. }
  339. sock->file = file;
  340. file->f_flags = O_RDWR | (flags & O_NONBLOCK);
  341. file->f_pos = 0;
  342. file->private_data = sock;
  343. *f = file;
  344. return fd;
  345. }
  346. int sock_map_fd(struct socket *sock, int flags)
  347. {
  348. struct file *newfile;
  349. int fd = sock_alloc_file(sock, &newfile, flags);
  350. if (likely(fd >= 0))
  351. fd_install(fd, newfile);
  352. return fd;
  353. }
  354. static struct socket *sock_from_file(struct file *file, int *err)
  355. {
  356. if (file->f_op == &socket_file_ops)
  357. return file->private_data; /* set in sock_map_fd */
  358. *err = -ENOTSOCK;
  359. return NULL;
  360. }
  361. /**
  362. * sockfd_lookup - Go from a file number to its socket slot
  363. * @fd: file handle
  364. * @err: pointer to an error code return
  365. *
  366. * The file handle passed in is locked and the socket it is bound
  367. * too is returned. If an error occurs the err pointer is overwritten
  368. * with a negative errno code and NULL is returned. The function checks
  369. * for both invalid handles and passing a handle which is not a socket.
  370. *
  371. * On a success the socket object pointer is returned.
  372. */
  373. struct socket *sockfd_lookup(int fd, int *err)
  374. {
  375. struct file *file;
  376. struct socket *sock;
  377. file = fget(fd);
  378. if (!file) {
  379. *err = -EBADF;
  380. return NULL;
  381. }
  382. sock = sock_from_file(file, err);
  383. if (!sock)
  384. fput(file);
  385. return sock;
  386. }
  387. static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
  388. {
  389. struct file *file;
  390. struct socket *sock;
  391. *err = -EBADF;
  392. file = fget_light(fd, fput_needed);
  393. if (file) {
  394. sock = sock_from_file(file, err);
  395. if (sock)
  396. return sock;
  397. fput_light(file, *fput_needed);
  398. }
  399. return NULL;
  400. }
  401. /**
  402. * sock_alloc - allocate a socket
  403. *
  404. * Allocate a new inode and socket object. The two are bound together
  405. * and initialised. The socket is then returned. If we are out of inodes
  406. * NULL is returned.
  407. */
  408. static struct socket *sock_alloc(void)
  409. {
  410. struct inode *inode;
  411. struct socket *sock;
  412. inode = new_inode(sock_mnt->mnt_sb);
  413. if (!inode)
  414. return NULL;
  415. sock = SOCKET_I(inode);
  416. kmemcheck_annotate_bitfield(sock, type);
  417. inode->i_mode = S_IFSOCK | S_IRWXUGO;
  418. inode->i_uid = current_fsuid();
  419. inode->i_gid = current_fsgid();
  420. percpu_add(sockets_in_use, 1);
  421. return sock;
  422. }
  423. /*
  424. * In theory you can't get an open on this inode, but /proc provides
  425. * a back door. Remember to keep it shut otherwise you'll let the
  426. * creepy crawlies in.
  427. */
  428. static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
  429. {
  430. return -ENXIO;
  431. }
  432. const struct file_operations bad_sock_fops = {
  433. .owner = THIS_MODULE,
  434. .open = sock_no_open,
  435. };
  436. /**
  437. * sock_release - close a socket
  438. * @sock: socket to close
  439. *
  440. * The socket is released from the protocol stack if it has a release
  441. * callback, and the inode is then released if the socket is bound to
  442. * an inode not a file.
  443. */
  444. void sock_release(struct socket *sock)
  445. {
  446. if (sock->ops) {
  447. struct module *owner = sock->ops->owner;
  448. sock->ops->release(sock);
  449. sock->ops = NULL;
  450. module_put(owner);
  451. }
  452. if (sock->fasync_list)
  453. printk(KERN_ERR "sock_release: fasync list not empty!\n");
  454. percpu_sub(sockets_in_use, 1);
  455. if (!sock->file) {
  456. iput(SOCK_INODE(sock));
  457. return;
  458. }
  459. sock->file = NULL;
  460. }
  461. int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
  462. union skb_shared_tx *shtx)
  463. {
  464. shtx->flags = 0;
  465. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  466. shtx->hardware = 1;
  467. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  468. shtx->software = 1;
  469. return 0;
  470. }
  471. EXPORT_SYMBOL(sock_tx_timestamp);
  472. static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  473. struct msghdr *msg, size_t size)
  474. {
  475. struct sock_iocb *si = kiocb_to_siocb(iocb);
  476. int err;
  477. si->sock = sock;
  478. si->scm = NULL;
  479. si->msg = msg;
  480. si->size = size;
  481. err = security_socket_sendmsg(sock, msg, size);
  482. if (err)
  483. return err;
  484. err = sock->ops->sendmsg(iocb, sock, msg, size);
  485. return err;
  486. }
  487. int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
  488. {
  489. struct kiocb iocb;
  490. struct sock_iocb siocb;
  491. int ret;
  492. init_sync_kiocb(&iocb, NULL);
  493. iocb.private = &siocb;
  494. ret = __sock_sendmsg(&iocb, sock, msg, size);
  495. if (-EIOCBQUEUED == ret)
  496. ret = wait_on_sync_kiocb(&iocb);
  497. return ret;
  498. }
  499. int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
  500. struct kvec *vec, size_t num, size_t size)
  501. {
  502. mm_segment_t oldfs = get_fs();
  503. int result;
  504. set_fs(KERNEL_DS);
  505. /*
  506. * the following is safe, since for compiler definitions of kvec and
  507. * iovec are identical, yielding the same in-core layout and alignment
  508. */
  509. msg->msg_iov = (struct iovec *)vec;
  510. msg->msg_iovlen = num;
  511. result = sock_sendmsg(sock, msg, size);
  512. set_fs(oldfs);
  513. return result;
  514. }
  515. static int ktime2ts(ktime_t kt, struct timespec *ts)
  516. {
  517. if (kt.tv64) {
  518. *ts = ktime_to_timespec(kt);
  519. return 1;
  520. } else {
  521. return 0;
  522. }
  523. }
  524. /*
  525. * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
  526. */
  527. void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
  528. struct sk_buff *skb)
  529. {
  530. int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
  531. struct timespec ts[3];
  532. int empty = 1;
  533. struct skb_shared_hwtstamps *shhwtstamps =
  534. skb_hwtstamps(skb);
  535. /* Race occurred between timestamp enabling and packet
  536. receiving. Fill in the current time for now. */
  537. if (need_software_tstamp && skb->tstamp.tv64 == 0)
  538. __net_timestamp(skb);
  539. if (need_software_tstamp) {
  540. if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
  541. struct timeval tv;
  542. skb_get_timestamp(skb, &tv);
  543. put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
  544. sizeof(tv), &tv);
  545. } else {
  546. struct timespec ts;
  547. skb_get_timestampns(skb, &ts);
  548. put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
  549. sizeof(ts), &ts);
  550. }
  551. }
  552. memset(ts, 0, sizeof(ts));
  553. if (skb->tstamp.tv64 &&
  554. sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
  555. skb_get_timestampns(skb, ts + 0);
  556. empty = 0;
  557. }
  558. if (shhwtstamps) {
  559. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
  560. ktime2ts(shhwtstamps->syststamp, ts + 1))
  561. empty = 0;
  562. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
  563. ktime2ts(shhwtstamps->hwtstamp, ts + 2))
  564. empty = 0;
  565. }
  566. if (!empty)
  567. put_cmsg(msg, SOL_SOCKET,
  568. SCM_TIMESTAMPING, sizeof(ts), &ts);
  569. }
  570. EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
  571. inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
  572. {
  573. if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
  574. put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
  575. sizeof(__u32), &skb->dropcount);
  576. }
  577. void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
  578. struct sk_buff *skb)
  579. {
  580. sock_recv_timestamp(msg, sk, skb);
  581. sock_recv_drops(msg, sk, skb);
  582. }
  583. EXPORT_SYMBOL_GPL(sock_recv_ts_and_drops);
  584. static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
  585. struct msghdr *msg, size_t size, int flags)
  586. {
  587. int err;
  588. struct sock_iocb *si = kiocb_to_siocb(iocb);
  589. si->sock = sock;
  590. si->scm = NULL;
  591. si->msg = msg;
  592. si->size = size;
  593. si->flags = flags;
  594. err = sock->ops->recvmsg(iocb, sock, msg, size, flags);
  595. return err;
  596. }
  597. static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  598. struct msghdr *msg, size_t size, int flags)
  599. {
  600. int err = security_socket_recvmsg(sock, msg, size, flags);
  601. return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
  602. }
  603. int sock_recvmsg(struct socket *sock, struct msghdr *msg,
  604. size_t size, int flags)
  605. {
  606. struct kiocb iocb;
  607. struct sock_iocb siocb;
  608. int ret;
  609. init_sync_kiocb(&iocb, NULL);
  610. iocb.private = &siocb;
  611. ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
  612. if (-EIOCBQUEUED == ret)
  613. ret = wait_on_sync_kiocb(&iocb);
  614. return ret;
  615. }
  616. static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
  617. size_t size, int flags)
  618. {
  619. struct kiocb iocb;
  620. struct sock_iocb siocb;
  621. int ret;
  622. init_sync_kiocb(&iocb, NULL);
  623. iocb.private = &siocb;
  624. ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
  625. if (-EIOCBQUEUED == ret)
  626. ret = wait_on_sync_kiocb(&iocb);
  627. return ret;
  628. }
  629. int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
  630. struct kvec *vec, size_t num, size_t size, int flags)
  631. {
  632. mm_segment_t oldfs = get_fs();
  633. int result;
  634. set_fs(KERNEL_DS);
  635. /*
  636. * the following is safe, since for compiler definitions of kvec and
  637. * iovec are identical, yielding the same in-core layout and alignment
  638. */
  639. msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
  640. result = sock_recvmsg(sock, msg, size, flags);
  641. set_fs(oldfs);
  642. return result;
  643. }
  644. static void sock_aio_dtor(struct kiocb *iocb)
  645. {
  646. kfree(iocb->private);
  647. }
  648. static ssize_t sock_sendpage(struct file *file, struct page *page,
  649. int offset, size_t size, loff_t *ppos, int more)
  650. {
  651. struct socket *sock;
  652. int flags;
  653. sock = file->private_data;
  654. flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
  655. if (more)
  656. flags |= MSG_MORE;
  657. return kernel_sendpage(sock, page, offset, size, flags);
  658. }
  659. static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
  660. struct pipe_inode_info *pipe, size_t len,
  661. unsigned int flags)
  662. {
  663. struct socket *sock = file->private_data;
  664. if (unlikely(!sock->ops->splice_read))
  665. return -EINVAL;
  666. return sock->ops->splice_read(sock, ppos, pipe, len, flags);
  667. }
  668. static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
  669. struct sock_iocb *siocb)
  670. {
  671. if (!is_sync_kiocb(iocb)) {
  672. siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
  673. if (!siocb)
  674. return NULL;
  675. iocb->ki_dtor = sock_aio_dtor;
  676. }
  677. siocb->kiocb = iocb;
  678. iocb->private = siocb;
  679. return siocb;
  680. }
  681. static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
  682. struct file *file, const struct iovec *iov,
  683. unsigned long nr_segs)
  684. {
  685. struct socket *sock = file->private_data;
  686. size_t size = 0;
  687. int i;
  688. for (i = 0; i < nr_segs; i++)
  689. size += iov[i].iov_len;
  690. msg->msg_name = NULL;
  691. msg->msg_namelen = 0;
  692. msg->msg_control = NULL;
  693. msg->msg_controllen = 0;
  694. msg->msg_iov = (struct iovec *)iov;
  695. msg->msg_iovlen = nr_segs;
  696. msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
  697. return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
  698. }
  699. static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
  700. unsigned long nr_segs, loff_t pos)
  701. {
  702. struct sock_iocb siocb, *x;
  703. if (pos != 0)
  704. return -ESPIPE;
  705. if (iocb->ki_left == 0) /* Match SYS5 behaviour */
  706. return 0;
  707. x = alloc_sock_iocb(iocb, &siocb);
  708. if (!x)
  709. return -ENOMEM;
  710. return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
  711. }
  712. static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
  713. struct file *file, const struct iovec *iov,
  714. unsigned long nr_segs)
  715. {
  716. struct socket *sock = file->private_data;
  717. size_t size = 0;
  718. int i;
  719. for (i = 0; i < nr_segs; i++)
  720. size += iov[i].iov_len;
  721. msg->msg_name = NULL;
  722. msg->msg_namelen = 0;
  723. msg->msg_control = NULL;
  724. msg->msg_controllen = 0;
  725. msg->msg_iov = (struct iovec *)iov;
  726. msg->msg_iovlen = nr_segs;
  727. msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
  728. if (sock->type == SOCK_SEQPACKET)
  729. msg->msg_flags |= MSG_EOR;
  730. return __sock_sendmsg(iocb, sock, msg, size);
  731. }
  732. static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
  733. unsigned long nr_segs, loff_t pos)
  734. {
  735. struct sock_iocb siocb, *x;
  736. if (pos != 0)
  737. return -ESPIPE;
  738. x = alloc_sock_iocb(iocb, &siocb);
  739. if (!x)
  740. return -ENOMEM;
  741. return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
  742. }
  743. /*
  744. * Atomic setting of ioctl hooks to avoid race
  745. * with module unload.
  746. */
  747. static DEFINE_MUTEX(br_ioctl_mutex);
  748. static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
  749. void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
  750. {
  751. mutex_lock(&br_ioctl_mutex);
  752. br_ioctl_hook = hook;
  753. mutex_unlock(&br_ioctl_mutex);
  754. }
  755. EXPORT_SYMBOL(brioctl_set);
  756. static DEFINE_MUTEX(vlan_ioctl_mutex);
  757. static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
  758. void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
  759. {
  760. mutex_lock(&vlan_ioctl_mutex);
  761. vlan_ioctl_hook = hook;
  762. mutex_unlock(&vlan_ioctl_mutex);
  763. }
  764. EXPORT_SYMBOL(vlan_ioctl_set);
  765. static DEFINE_MUTEX(dlci_ioctl_mutex);
  766. static int (*dlci_ioctl_hook) (unsigned int, void __user *);
  767. void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
  768. {
  769. mutex_lock(&dlci_ioctl_mutex);
  770. dlci_ioctl_hook = hook;
  771. mutex_unlock(&dlci_ioctl_mutex);
  772. }
  773. EXPORT_SYMBOL(dlci_ioctl_set);
  774. static long sock_do_ioctl(struct net *net, struct socket *sock,
  775. unsigned int cmd, unsigned long arg)
  776. {
  777. int err;
  778. void __user *argp = (void __user *)arg;
  779. err = sock->ops->ioctl(sock, cmd, arg);
  780. /*
  781. * If this ioctl is unknown try to hand it down
  782. * to the NIC driver.
  783. */
  784. if (err == -ENOIOCTLCMD)
  785. err = dev_ioctl(net, cmd, argp);
  786. return err;
  787. }
  788. /*
  789. * With an ioctl, arg may well be a user mode pointer, but we don't know
  790. * what to do with it - that's up to the protocol still.
  791. */
  792. static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
  793. {
  794. struct socket *sock;
  795. struct sock *sk;
  796. void __user *argp = (void __user *)arg;
  797. int pid, err;
  798. struct net *net;
  799. sock = file->private_data;
  800. sk = sock->sk;
  801. net = sock_net(sk);
  802. if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
  803. err = dev_ioctl(net, cmd, argp);
  804. } else
  805. #ifdef CONFIG_WEXT_CORE
  806. if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
  807. err = dev_ioctl(net, cmd, argp);
  808. } else
  809. #endif
  810. switch (cmd) {
  811. case FIOSETOWN:
  812. case SIOCSPGRP:
  813. err = -EFAULT;
  814. if (get_user(pid, (int __user *)argp))
  815. break;
  816. err = f_setown(sock->file, pid, 1);
  817. break;
  818. case FIOGETOWN:
  819. case SIOCGPGRP:
  820. err = put_user(f_getown(sock->file),
  821. (int __user *)argp);
  822. break;
  823. case SIOCGIFBR:
  824. case SIOCSIFBR:
  825. case SIOCBRADDBR:
  826. case SIOCBRDELBR:
  827. err = -ENOPKG;
  828. if (!br_ioctl_hook)
  829. request_module("bridge");
  830. mutex_lock(&br_ioctl_mutex);
  831. if (br_ioctl_hook)
  832. err = br_ioctl_hook(net, cmd, argp);
  833. mutex_unlock(&br_ioctl_mutex);
  834. break;
  835. case SIOCGIFVLAN:
  836. case SIOCSIFVLAN:
  837. err = -ENOPKG;
  838. if (!vlan_ioctl_hook)
  839. request_module("8021q");
  840. mutex_lock(&vlan_ioctl_mutex);
  841. if (vlan_ioctl_hook)
  842. err = vlan_ioctl_hook(net, argp);
  843. mutex_unlock(&vlan_ioctl_mutex);
  844. break;
  845. case SIOCADDDLCI:
  846. case SIOCDELDLCI:
  847. err = -ENOPKG;
  848. if (!dlci_ioctl_hook)
  849. request_module("dlci");
  850. mutex_lock(&dlci_ioctl_mutex);
  851. if (dlci_ioctl_hook)
  852. err = dlci_ioctl_hook(cmd, argp);
  853. mutex_unlock(&dlci_ioctl_mutex);
  854. break;
  855. default:
  856. err = sock_do_ioctl(net, sock, cmd, arg);
  857. break;
  858. }
  859. return err;
  860. }
  861. int sock_create_lite(int family, int type, int protocol, struct socket **res)
  862. {
  863. int err;
  864. struct socket *sock = NULL;
  865. err = security_socket_create(family, type, protocol, 1);
  866. if (err)
  867. goto out;
  868. sock = sock_alloc();
  869. if (!sock) {
  870. err = -ENOMEM;
  871. goto out;
  872. }
  873. sock->type = type;
  874. err = security_socket_post_create(sock, family, type, protocol, 1);
  875. if (err)
  876. goto out_release;
  877. out:
  878. *res = sock;
  879. return err;
  880. out_release:
  881. sock_release(sock);
  882. sock = NULL;
  883. goto out;
  884. }
  885. /* No kernel lock held - perfect */
  886. static unsigned int sock_poll(struct file *file, poll_table *wait)
  887. {
  888. struct socket *sock;
  889. /*
  890. * We can't return errors to poll, so it's either yes or no.
  891. */
  892. sock = file->private_data;
  893. return sock->ops->poll(file, sock, wait);
  894. }
  895. static int sock_mmap(struct file *file, struct vm_area_struct *vma)
  896. {
  897. struct socket *sock = file->private_data;
  898. return sock->ops->mmap(file, sock, vma);
  899. }
  900. static int sock_close(struct inode *inode, struct file *filp)
  901. {
  902. /*
  903. * It was possible the inode is NULL we were
  904. * closing an unfinished socket.
  905. */
  906. if (!inode) {
  907. printk(KERN_DEBUG "sock_close: NULL inode\n");
  908. return 0;
  909. }
  910. sock_release(SOCKET_I(inode));
  911. return 0;
  912. }
  913. /*
  914. * Update the socket async list
  915. *
  916. * Fasync_list locking strategy.
  917. *
  918. * 1. fasync_list is modified only under process context socket lock
  919. * i.e. under semaphore.
  920. * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
  921. * or under socket lock.
  922. * 3. fasync_list can be used from softirq context, so that
  923. * modification under socket lock have to be enhanced with
  924. * write_lock_bh(&sk->sk_callback_lock).
  925. * --ANK (990710)
  926. */
  927. static int sock_fasync(int fd, struct file *filp, int on)
  928. {
  929. struct fasync_struct *fa, *fna = NULL, **prev;
  930. struct socket *sock;
  931. struct sock *sk;
  932. if (on) {
  933. fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
  934. if (fna == NULL)
  935. return -ENOMEM;
  936. }
  937. sock = filp->private_data;
  938. sk = sock->sk;
  939. if (sk == NULL) {
  940. kfree(fna);
  941. return -EINVAL;
  942. }
  943. lock_sock(sk);
  944. spin_lock(&filp->f_lock);
  945. if (on)
  946. filp->f_flags |= FASYNC;
  947. else
  948. filp->f_flags &= ~FASYNC;
  949. spin_unlock(&filp->f_lock);
  950. prev = &(sock->fasync_list);
  951. for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
  952. if (fa->fa_file == filp)
  953. break;
  954. if (on) {
  955. if (fa != NULL) {
  956. write_lock_bh(&sk->sk_callback_lock);
  957. fa->fa_fd = fd;
  958. write_unlock_bh(&sk->sk_callback_lock);
  959. kfree(fna);
  960. goto out;
  961. }
  962. fna->fa_file = filp;
  963. fna->fa_fd = fd;
  964. fna->magic = FASYNC_MAGIC;
  965. fna->fa_next = sock->fasync_list;
  966. write_lock_bh(&sk->sk_callback_lock);
  967. sock->fasync_list = fna;
  968. sock_set_flag(sk, SOCK_FASYNC);
  969. write_unlock_bh(&sk->sk_callback_lock);
  970. } else {
  971. if (fa != NULL) {
  972. write_lock_bh(&sk->sk_callback_lock);
  973. *prev = fa->fa_next;
  974. if (!sock->fasync_list)
  975. sock_reset_flag(sk, SOCK_FASYNC);
  976. write_unlock_bh(&sk->sk_callback_lock);
  977. kfree(fa);
  978. }
  979. }
  980. out:
  981. release_sock(sock->sk);
  982. return 0;
  983. }
  984. /* This function may be called only under socket lock or callback_lock */
  985. int sock_wake_async(struct socket *sock, int how, int band)
  986. {
  987. if (!sock || !sock->fasync_list)
  988. return -1;
  989. switch (how) {
  990. case SOCK_WAKE_WAITD:
  991. if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
  992. break;
  993. goto call_kill;
  994. case SOCK_WAKE_SPACE:
  995. if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
  996. break;
  997. /* fall through */
  998. case SOCK_WAKE_IO:
  999. call_kill:
  1000. __kill_fasync(sock->fasync_list, SIGIO, band);
  1001. break;
  1002. case SOCK_WAKE_URG:
  1003. __kill_fasync(sock->fasync_list, SIGURG, band);
  1004. }
  1005. return 0;
  1006. }
  1007. static int __sock_create(struct net *net, int family, int type, int protocol,
  1008. struct socket **res, int kern)
  1009. {
  1010. int err;
  1011. struct socket *sock;
  1012. const struct net_proto_family *pf;
  1013. /*
  1014. * Check protocol is in range
  1015. */
  1016. if (family < 0 || family >= NPROTO)
  1017. return -EAFNOSUPPORT;
  1018. if (type < 0 || type >= SOCK_MAX)
  1019. return -EINVAL;
  1020. /* Compatibility.
  1021. This uglymoron is moved from INET layer to here to avoid
  1022. deadlock in module load.
  1023. */
  1024. if (family == PF_INET && type == SOCK_PACKET) {
  1025. static int warned;
  1026. if (!warned) {
  1027. warned = 1;
  1028. printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
  1029. current->comm);
  1030. }
  1031. family = PF_PACKET;
  1032. }
  1033. err = security_socket_create(family, type, protocol, kern);
  1034. if (err)
  1035. return err;
  1036. /*
  1037. * Allocate the socket and allow the family to set things up. if
  1038. * the protocol is 0, the family is instructed to select an appropriate
  1039. * default.
  1040. */
  1041. sock = sock_alloc();
  1042. if (!sock) {
  1043. if (net_ratelimit())
  1044. printk(KERN_WARNING "socket: no more sockets\n");
  1045. return -ENFILE; /* Not exactly a match, but its the
  1046. closest posix thing */
  1047. }
  1048. sock->type = type;
  1049. #ifdef CONFIG_MODULES
  1050. /* Attempt to load a protocol module if the find failed.
  1051. *
  1052. * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
  1053. * requested real, full-featured networking support upon configuration.
  1054. * Otherwise module support will break!
  1055. */
  1056. if (net_families[family] == NULL)
  1057. request_module("net-pf-%d", family);
  1058. #endif
  1059. rcu_read_lock();
  1060. pf = rcu_dereference(net_families[family]);
  1061. err = -EAFNOSUPPORT;
  1062. if (!pf)
  1063. goto out_release;
  1064. /*
  1065. * We will call the ->create function, that possibly is in a loadable
  1066. * module, so we have to bump that loadable module refcnt first.
  1067. */
  1068. if (!try_module_get(pf->owner))
  1069. goto out_release;
  1070. /* Now protected by module ref count */
  1071. rcu_read_unlock();
  1072. err = pf->create(net, sock, protocol, kern);
  1073. if (err < 0)
  1074. goto out_module_put;
  1075. /*
  1076. * Now to bump the refcnt of the [loadable] module that owns this
  1077. * socket at sock_release time we decrement its refcnt.
  1078. */
  1079. if (!try_module_get(sock->ops->owner))
  1080. goto out_module_busy;
  1081. /*
  1082. * Now that we're done with the ->create function, the [loadable]
  1083. * module can have its refcnt decremented
  1084. */
  1085. module_put(pf->owner);
  1086. err = security_socket_post_create(sock, family, type, protocol, kern);
  1087. if (err)
  1088. goto out_sock_release;
  1089. *res = sock;
  1090. return 0;
  1091. out_module_busy:
  1092. err = -EAFNOSUPPORT;
  1093. out_module_put:
  1094. sock->ops = NULL;
  1095. module_put(pf->owner);
  1096. out_sock_release:
  1097. sock_release(sock);
  1098. return err;
  1099. out_release:
  1100. rcu_read_unlock();
  1101. goto out_sock_release;
  1102. }
  1103. int sock_create(int family, int type, int protocol, struct socket **res)
  1104. {
  1105. return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
  1106. }
  1107. int sock_create_kern(int family, int type, int protocol, struct socket **res)
  1108. {
  1109. return __sock_create(&init_net, family, type, protocol, res, 1);
  1110. }
  1111. SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
  1112. {
  1113. int retval;
  1114. struct socket *sock;
  1115. int flags;
  1116. /* Check the SOCK_* constants for consistency. */
  1117. BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
  1118. BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
  1119. BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
  1120. BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
  1121. flags = type & ~SOCK_TYPE_MASK;
  1122. if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
  1123. return -EINVAL;
  1124. type &= SOCK_TYPE_MASK;
  1125. if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
  1126. flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
  1127. retval = sock_create(family, type, protocol, &sock);
  1128. if (retval < 0)
  1129. goto out;
  1130. retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
  1131. if (retval < 0)
  1132. goto out_release;
  1133. out:
  1134. /* It may be already another descriptor 8) Not kernel problem. */
  1135. return retval;
  1136. out_release:
  1137. sock_release(sock);
  1138. return retval;
  1139. }
  1140. /*
  1141. * Create a pair of connected sockets.
  1142. */
  1143. SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
  1144. int __user *, usockvec)
  1145. {
  1146. struct socket *sock1, *sock2;
  1147. int fd1, fd2, err;
  1148. struct file *newfile1, *newfile2;
  1149. int flags;
  1150. flags = type & ~SOCK_TYPE_MASK;
  1151. if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
  1152. return -EINVAL;
  1153. type &= SOCK_TYPE_MASK;
  1154. if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
  1155. flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
  1156. /*
  1157. * Obtain the first socket and check if the underlying protocol
  1158. * supports the socketpair call.
  1159. */
  1160. err = sock_create(family, type, protocol, &sock1);
  1161. if (err < 0)
  1162. goto out;
  1163. err = sock_create(family, type, protocol, &sock2);
  1164. if (err < 0)
  1165. goto out_release_1;
  1166. err = sock1->ops->socketpair(sock1, sock2);
  1167. if (err < 0)
  1168. goto out_release_both;
  1169. fd1 = sock_alloc_file(sock1, &newfile1, flags);
  1170. if (unlikely(fd1 < 0)) {
  1171. err = fd1;
  1172. goto out_release_both;
  1173. }
  1174. fd2 = sock_alloc_file(sock2, &newfile2, flags);
  1175. if (unlikely(fd2 < 0)) {
  1176. err = fd2;
  1177. fput(newfile1);
  1178. put_unused_fd(fd1);
  1179. sock_release(sock2);
  1180. goto out;
  1181. }
  1182. audit_fd_pair(fd1, fd2);
  1183. fd_install(fd1, newfile1);
  1184. fd_install(fd2, newfile2);
  1185. /* fd1 and fd2 may be already another descriptors.
  1186. * Not kernel problem.
  1187. */
  1188. err = put_user(fd1, &usockvec[0]);
  1189. if (!err)
  1190. err = put_user(fd2, &usockvec[1]);
  1191. if (!err)
  1192. return 0;
  1193. sys_close(fd2);
  1194. sys_close(fd1);
  1195. return err;
  1196. out_release_both:
  1197. sock_release(sock2);
  1198. out_release_1:
  1199. sock_release(sock1);
  1200. out:
  1201. return err;
  1202. }
  1203. /*
  1204. * Bind a name to a socket. Nothing much to do here since it's
  1205. * the protocol's responsibility to handle the local address.
  1206. *
  1207. * We move the socket address to kernel space before we call
  1208. * the protocol layer (having also checked the address is ok).
  1209. */
  1210. SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
  1211. {
  1212. struct socket *sock;
  1213. struct sockaddr_storage address;
  1214. int err, fput_needed;
  1215. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1216. if (sock) {
  1217. err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
  1218. if (err >= 0) {
  1219. err = security_socket_bind(sock,
  1220. (struct sockaddr *)&address,
  1221. addrlen);
  1222. if (!err)
  1223. err = sock->ops->bind(sock,
  1224. (struct sockaddr *)
  1225. &address, addrlen);
  1226. }
  1227. fput_light(sock->file, fput_needed);
  1228. }
  1229. return err;
  1230. }
  1231. /*
  1232. * Perform a listen. Basically, we allow the protocol to do anything
  1233. * necessary for a listen, and if that works, we mark the socket as
  1234. * ready for listening.
  1235. */
  1236. SYSCALL_DEFINE2(listen, int, fd, int, backlog)
  1237. {
  1238. struct socket *sock;
  1239. int err, fput_needed;
  1240. int somaxconn;
  1241. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1242. if (sock) {
  1243. somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
  1244. if ((unsigned)backlog > somaxconn)
  1245. backlog = somaxconn;
  1246. err = security_socket_listen(sock, backlog);
  1247. if (!err)
  1248. err = sock->ops->listen(sock, backlog);
  1249. fput_light(sock->file, fput_needed);
  1250. }
  1251. return err;
  1252. }
  1253. /*
  1254. * For accept, we attempt to create a new socket, set up the link
  1255. * with the client, wake up the client, then return the new
  1256. * connected fd. We collect the address of the connector in kernel
  1257. * space and move it to user at the very end. This is unclean because
  1258. * we open the socket then return an error.
  1259. *
  1260. * 1003.1g adds the ability to recvmsg() to query connection pending
  1261. * status to recvmsg. We need to add that support in a way thats
  1262. * clean when we restucture accept also.
  1263. */
  1264. SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
  1265. int __user *, upeer_addrlen, int, flags)
  1266. {
  1267. struct socket *sock, *newsock;
  1268. struct file *newfile;
  1269. int err, len, newfd, fput_needed;
  1270. struct sockaddr_storage address;
  1271. if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
  1272. return -EINVAL;
  1273. if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
  1274. flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
  1275. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1276. if (!sock)
  1277. goto out;
  1278. err = -ENFILE;
  1279. if (!(newsock = sock_alloc()))
  1280. goto out_put;
  1281. newsock->type = sock->type;
  1282. newsock->ops = sock->ops;
  1283. /*
  1284. * We don't need try_module_get here, as the listening socket (sock)
  1285. * has the protocol module (sock->ops->owner) held.
  1286. */
  1287. __module_get(newsock->ops->owner);
  1288. newfd = sock_alloc_file(newsock, &newfile, flags);
  1289. if (unlikely(newfd < 0)) {
  1290. err = newfd;
  1291. sock_release(newsock);
  1292. goto out_put;
  1293. }
  1294. err = security_socket_accept(sock, newsock);
  1295. if (err)
  1296. goto out_fd;
  1297. err = sock->ops->accept(sock, newsock, sock->file->f_flags);
  1298. if (err < 0)
  1299. goto out_fd;
  1300. if (upeer_sockaddr) {
  1301. if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
  1302. &len, 2) < 0) {
  1303. err = -ECONNABORTED;
  1304. goto out_fd;
  1305. }
  1306. err = move_addr_to_user((struct sockaddr *)&address,
  1307. len, upeer_sockaddr, upeer_addrlen);
  1308. if (err < 0)
  1309. goto out_fd;
  1310. }
  1311. /* File flags are not inherited via accept() unlike another OSes. */
  1312. fd_install(newfd, newfile);
  1313. err = newfd;
  1314. out_put:
  1315. fput_light(sock->file, fput_needed);
  1316. out:
  1317. return err;
  1318. out_fd:
  1319. fput(newfile);
  1320. put_unused_fd(newfd);
  1321. goto out_put;
  1322. }
  1323. SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
  1324. int __user *, upeer_addrlen)
  1325. {
  1326. return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
  1327. }
  1328. /*
  1329. * Attempt to connect to a socket with the server address. The address
  1330. * is in user space so we verify it is OK and move it to kernel space.
  1331. *
  1332. * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
  1333. * break bindings
  1334. *
  1335. * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
  1336. * other SEQPACKET protocols that take time to connect() as it doesn't
  1337. * include the -EINPROGRESS status for such sockets.
  1338. */
  1339. SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
  1340. int, addrlen)
  1341. {
  1342. struct socket *sock;
  1343. struct sockaddr_storage address;
  1344. int err, fput_needed;
  1345. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1346. if (!sock)
  1347. goto out;
  1348. err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
  1349. if (err < 0)
  1350. goto out_put;
  1351. err =
  1352. security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
  1353. if (err)
  1354. goto out_put;
  1355. err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
  1356. sock->file->f_flags);
  1357. out_put:
  1358. fput_light(sock->file, fput_needed);
  1359. out:
  1360. return err;
  1361. }
  1362. /*
  1363. * Get the local address ('name') of a socket object. Move the obtained
  1364. * name to user space.
  1365. */
  1366. SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
  1367. int __user *, usockaddr_len)
  1368. {
  1369. struct socket *sock;
  1370. struct sockaddr_storage address;
  1371. int len, err, fput_needed;
  1372. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1373. if (!sock)
  1374. goto out;
  1375. err = security_socket_getsockname(sock);
  1376. if (err)
  1377. goto out_put;
  1378. err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
  1379. if (err)
  1380. goto out_put;
  1381. err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
  1382. out_put:
  1383. fput_light(sock->file, fput_needed);
  1384. out:
  1385. return err;
  1386. }
  1387. /*
  1388. * Get the remote address ('name') of a socket object. Move the obtained
  1389. * name to user space.
  1390. */
  1391. SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
  1392. int __user *, usockaddr_len)
  1393. {
  1394. struct socket *sock;
  1395. struct sockaddr_storage address;
  1396. int len, err, fput_needed;
  1397. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1398. if (sock != NULL) {
  1399. err = security_socket_getpeername(sock);
  1400. if (err) {
  1401. fput_light(sock->file, fput_needed);
  1402. return err;
  1403. }
  1404. err =
  1405. sock->ops->getname(sock, (struct sockaddr *)&address, &len,
  1406. 1);
  1407. if (!err)
  1408. err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
  1409. usockaddr_len);
  1410. fput_light(sock->file, fput_needed);
  1411. }
  1412. return err;
  1413. }
  1414. /*
  1415. * Send a datagram to a given address. We move the address into kernel
  1416. * space and check the user space data area is readable before invoking
  1417. * the protocol.
  1418. */
  1419. SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
  1420. unsigned, flags, struct sockaddr __user *, addr,
  1421. int, addr_len)
  1422. {
  1423. struct socket *sock;
  1424. struct sockaddr_storage address;
  1425. int err;
  1426. struct msghdr msg;
  1427. struct iovec iov;
  1428. int fput_needed;
  1429. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1430. if (!sock)
  1431. goto out;
  1432. iov.iov_base = buff;
  1433. iov.iov_len = len;
  1434. msg.msg_name = NULL;
  1435. msg.msg_iov = &iov;
  1436. msg.msg_iovlen = 1;
  1437. msg.msg_control = NULL;
  1438. msg.msg_controllen = 0;
  1439. msg.msg_namelen = 0;
  1440. if (addr) {
  1441. err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
  1442. if (err < 0)
  1443. goto out_put;
  1444. msg.msg_name = (struct sockaddr *)&address;
  1445. msg.msg_namelen = addr_len;
  1446. }
  1447. if (sock->file->f_flags & O_NONBLOCK)
  1448. flags |= MSG_DONTWAIT;
  1449. msg.msg_flags = flags;
  1450. err = sock_sendmsg(sock, &msg, len);
  1451. out_put:
  1452. fput_light(sock->file, fput_needed);
  1453. out:
  1454. return err;
  1455. }
  1456. /*
  1457. * Send a datagram down a socket.
  1458. */
  1459. SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
  1460. unsigned, flags)
  1461. {
  1462. return sys_sendto(fd, buff, len, flags, NULL, 0);
  1463. }
  1464. /*
  1465. * Receive a frame from the socket and optionally record the address of the
  1466. * sender. We verify the buffers are writable and if needed move the
  1467. * sender address from kernel to user space.
  1468. */
  1469. SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
  1470. unsigned, flags, struct sockaddr __user *, addr,
  1471. int __user *, addr_len)
  1472. {
  1473. struct socket *sock;
  1474. struct iovec iov;
  1475. struct msghdr msg;
  1476. struct sockaddr_storage address;
  1477. int err, err2;
  1478. int fput_needed;
  1479. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1480. if (!sock)
  1481. goto out;
  1482. msg.msg_control = NULL;
  1483. msg.msg_controllen = 0;
  1484. msg.msg_iovlen = 1;
  1485. msg.msg_iov = &iov;
  1486. iov.iov_len = size;
  1487. iov.iov_base = ubuf;
  1488. msg.msg_name = (struct sockaddr *)&address;
  1489. msg.msg_namelen = sizeof(address);
  1490. if (sock->file->f_flags & O_NONBLOCK)
  1491. flags |= MSG_DONTWAIT;
  1492. err = sock_recvmsg(sock, &msg, size, flags);
  1493. if (err >= 0 && addr != NULL) {
  1494. err2 = move_addr_to_user((struct sockaddr *)&address,
  1495. msg.msg_namelen, addr, addr_len);
  1496. if (err2 < 0)
  1497. err = err2;
  1498. }
  1499. fput_light(sock->file, fput_needed);
  1500. out:
  1501. return err;
  1502. }
  1503. /*
  1504. * Receive a datagram from a socket.
  1505. */
  1506. asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
  1507. unsigned flags)
  1508. {
  1509. return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
  1510. }
  1511. /*
  1512. * Set a socket option. Because we don't know the option lengths we have
  1513. * to pass the user mode parameter for the protocols to sort out.
  1514. */
  1515. SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
  1516. char __user *, optval, int, optlen)
  1517. {
  1518. int err, fput_needed;
  1519. struct socket *sock;
  1520. if (optlen < 0)
  1521. return -EINVAL;
  1522. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1523. if (sock != NULL) {
  1524. err = security_socket_setsockopt(sock, level, optname);
  1525. if (err)
  1526. goto out_put;
  1527. if (level == SOL_SOCKET)
  1528. err =
  1529. sock_setsockopt(sock, level, optname, optval,
  1530. optlen);
  1531. else
  1532. err =
  1533. sock->ops->setsockopt(sock, level, optname, optval,
  1534. optlen);
  1535. out_put:
  1536. fput_light(sock->file, fput_needed);
  1537. }
  1538. return err;
  1539. }
  1540. /*
  1541. * Get a socket option. Because we don't know the option lengths we have
  1542. * to pass a user mode parameter for the protocols to sort out.
  1543. */
  1544. SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
  1545. char __user *, optval, int __user *, optlen)
  1546. {
  1547. int err, fput_needed;
  1548. struct socket *sock;
  1549. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1550. if (sock != NULL) {
  1551. err = security_socket_getsockopt(sock, level, optname);
  1552. if (err)
  1553. goto out_put;
  1554. if (level == SOL_SOCKET)
  1555. err =
  1556. sock_getsockopt(sock, level, optname, optval,
  1557. optlen);
  1558. else
  1559. err =
  1560. sock->ops->getsockopt(sock, level, optname, optval,
  1561. optlen);
  1562. out_put:
  1563. fput_light(sock->file, fput_needed);
  1564. }
  1565. return err;
  1566. }
  1567. /*
  1568. * Shutdown a socket.
  1569. */
  1570. SYSCALL_DEFINE2(shutdown, int, fd, int, how)
  1571. {
  1572. int err, fput_needed;
  1573. struct socket *sock;
  1574. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1575. if (sock != NULL) {
  1576. err = security_socket_shutdown(sock, how);
  1577. if (!err)
  1578. err = sock->ops->shutdown(sock, how);
  1579. fput_light(sock->file, fput_needed);
  1580. }
  1581. return err;
  1582. }
  1583. /* A couple of helpful macros for getting the address of the 32/64 bit
  1584. * fields which are the same type (int / unsigned) on our platforms.
  1585. */
  1586. #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
  1587. #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
  1588. #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
  1589. /*
  1590. * BSD sendmsg interface
  1591. */
  1592. SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
  1593. {
  1594. struct compat_msghdr __user *msg_compat =
  1595. (struct compat_msghdr __user *)msg;
  1596. struct socket *sock;
  1597. struct sockaddr_storage address;
  1598. struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
  1599. unsigned char ctl[sizeof(struct cmsghdr) + 20]
  1600. __attribute__ ((aligned(sizeof(__kernel_size_t))));
  1601. /* 20 is size of ipv6_pktinfo */
  1602. unsigned char *ctl_buf = ctl;
  1603. struct msghdr msg_sys;
  1604. int err, ctl_len, iov_size, total_len;
  1605. int fput_needed;
  1606. err = -EFAULT;
  1607. if (MSG_CMSG_COMPAT & flags) {
  1608. if (get_compat_msghdr(&msg_sys, msg_compat))
  1609. return -EFAULT;
  1610. }
  1611. else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
  1612. return -EFAULT;
  1613. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1614. if (!sock)
  1615. goto out;
  1616. /* do not move before msg_sys is valid */
  1617. err = -EMSGSIZE;
  1618. if (msg_sys.msg_iovlen > UIO_MAXIOV)
  1619. goto out_put;
  1620. /* Check whether to allocate the iovec area */
  1621. err = -ENOMEM;
  1622. iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
  1623. if (msg_sys.msg_iovlen > UIO_FASTIOV) {
  1624. iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
  1625. if (!iov)
  1626. goto out_put;
  1627. }
  1628. /* This will also move the address data into kernel space */
  1629. if (MSG_CMSG_COMPAT & flags) {
  1630. err = verify_compat_iovec(&msg_sys, iov,
  1631. (struct sockaddr *)&address,
  1632. VERIFY_READ);
  1633. } else
  1634. err = verify_iovec(&msg_sys, iov,
  1635. (struct sockaddr *)&address,
  1636. VERIFY_READ);
  1637. if (err < 0)
  1638. goto out_freeiov;
  1639. total_len = err;
  1640. err = -ENOBUFS;
  1641. if (msg_sys.msg_controllen > INT_MAX)
  1642. goto out_freeiov;
  1643. ctl_len = msg_sys.msg_controllen;
  1644. if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
  1645. err =
  1646. cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
  1647. sizeof(ctl));
  1648. if (err)
  1649. goto out_freeiov;
  1650. ctl_buf = msg_sys.msg_control;
  1651. ctl_len = msg_sys.msg_controllen;
  1652. } else if (ctl_len) {
  1653. if (ctl_len > sizeof(ctl)) {
  1654. ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
  1655. if (ctl_buf == NULL)
  1656. goto out_freeiov;
  1657. }
  1658. err = -EFAULT;
  1659. /*
  1660. * Careful! Before this, msg_sys.msg_control contains a user pointer.
  1661. * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
  1662. * checking falls down on this.
  1663. */
  1664. if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
  1665. ctl_len))
  1666. goto out_freectl;
  1667. msg_sys.msg_control = ctl_buf;
  1668. }
  1669. msg_sys.msg_flags = flags;
  1670. if (sock->file->f_flags & O_NONBLOCK)
  1671. msg_sys.msg_flags |= MSG_DONTWAIT;
  1672. err = sock_sendmsg(sock, &msg_sys, total_len);
  1673. out_freectl:
  1674. if (ctl_buf != ctl)
  1675. sock_kfree_s(sock->sk, ctl_buf, ctl_len);
  1676. out_freeiov:
  1677. if (iov != iovstack)
  1678. sock_kfree_s(sock->sk, iov, iov_size);
  1679. out_put:
  1680. fput_light(sock->file, fput_needed);
  1681. out:
  1682. return err;
  1683. }
  1684. static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
  1685. struct msghdr *msg_sys, unsigned flags, int nosec)
  1686. {
  1687. struct compat_msghdr __user *msg_compat =
  1688. (struct compat_msghdr __user *)msg;
  1689. struct iovec iovstack[UIO_FASTIOV];
  1690. struct iovec *iov = iovstack;
  1691. unsigned long cmsg_ptr;
  1692. int err, iov_size, total_len, len;
  1693. /* kernel mode address */
  1694. struct sockaddr_storage addr;
  1695. /* user mode address pointers */
  1696. struct sockaddr __user *uaddr;
  1697. int __user *uaddr_len;
  1698. if (MSG_CMSG_COMPAT & flags) {
  1699. if (get_compat_msghdr(msg_sys, msg_compat))
  1700. return -EFAULT;
  1701. }
  1702. else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
  1703. return -EFAULT;
  1704. err = -EMSGSIZE;
  1705. if (msg_sys->msg_iovlen > UIO_MAXIOV)
  1706. goto out;
  1707. /* Check whether to allocate the iovec area */
  1708. err = -ENOMEM;
  1709. iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
  1710. if (msg_sys->msg_iovlen > UIO_FASTIOV) {
  1711. iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
  1712. if (!iov)
  1713. goto out;
  1714. }
  1715. /*
  1716. * Save the user-mode address (verify_iovec will change the
  1717. * kernel msghdr to use the kernel address space)
  1718. */
  1719. uaddr = (__force void __user *)msg_sys->msg_name;
  1720. uaddr_len = COMPAT_NAMELEN(msg);
  1721. if (MSG_CMSG_COMPAT & flags) {
  1722. err = verify_compat_iovec(msg_sys, iov,
  1723. (struct sockaddr *)&addr,
  1724. VERIFY_WRITE);
  1725. } else
  1726. err = verify_iovec(msg_sys, iov,
  1727. (struct sockaddr *)&addr,
  1728. VERIFY_WRITE);
  1729. if (err < 0)
  1730. goto out_freeiov;
  1731. total_len = err;
  1732. cmsg_ptr = (unsigned long)msg_sys->msg_control;
  1733. msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
  1734. if (sock->file->f_flags & O_NONBLOCK)
  1735. flags |= MSG_DONTWAIT;
  1736. err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
  1737. total_len, flags);
  1738. if (err < 0)
  1739. goto out_freeiov;
  1740. len = err;
  1741. if (uaddr != NULL) {
  1742. err = move_addr_to_user((struct sockaddr *)&addr,
  1743. msg_sys->msg_namelen, uaddr,
  1744. uaddr_len);
  1745. if (err < 0)
  1746. goto out_freeiov;
  1747. }
  1748. err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
  1749. COMPAT_FLAGS(msg));
  1750. if (err)
  1751. goto out_freeiov;
  1752. if (MSG_CMSG_COMPAT & flags)
  1753. err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
  1754. &msg_compat->msg_controllen);
  1755. else
  1756. err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
  1757. &msg->msg_controllen);
  1758. if (err)
  1759. goto out_freeiov;
  1760. err = len;
  1761. out_freeiov:
  1762. if (iov != iovstack)
  1763. sock_kfree_s(sock->sk, iov, iov_size);
  1764. out:
  1765. return err;
  1766. }
  1767. /*
  1768. * BSD recvmsg interface
  1769. */
  1770. SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
  1771. unsigned int, flags)
  1772. {
  1773. int fput_needed, err;
  1774. struct msghdr msg_sys;
  1775. struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1776. if (!sock)
  1777. goto out;
  1778. err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
  1779. fput_light(sock->file, fput_needed);
  1780. out:
  1781. return err;
  1782. }
  1783. /*
  1784. * Linux recvmmsg interface
  1785. */
  1786. int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
  1787. unsigned int flags, struct timespec *timeout)
  1788. {
  1789. int fput_needed, err, datagrams;
  1790. struct socket *sock;
  1791. struct mmsghdr __user *entry;
  1792. struct compat_mmsghdr __user *compat_entry;
  1793. struct msghdr msg_sys;
  1794. struct timespec end_time;
  1795. if (timeout &&
  1796. poll_select_set_timeout(&end_time, timeout->tv_sec,
  1797. timeout->tv_nsec))
  1798. return -EINVAL;
  1799. datagrams = 0;
  1800. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1801. if (!sock)
  1802. return err;
  1803. err = sock_error(sock->sk);
  1804. if (err)
  1805. goto out_put;
  1806. entry = mmsg;
  1807. compat_entry = (struct compat_mmsghdr __user *)mmsg;
  1808. while (datagrams < vlen) {
  1809. /*
  1810. * No need to ask LSM for more than the first datagram.
  1811. */
  1812. if (MSG_CMSG_COMPAT & flags) {
  1813. err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
  1814. &msg_sys, flags, datagrams);
  1815. if (err < 0)
  1816. break;
  1817. err = __put_user(err, &compat_entry->msg_len);
  1818. ++compat_entry;
  1819. } else {
  1820. err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
  1821. &msg_sys, flags, datagrams);
  1822. if (err < 0)
  1823. break;
  1824. err = put_user(err, &entry->msg_len);
  1825. ++entry;
  1826. }
  1827. if (err)
  1828. break;
  1829. ++datagrams;
  1830. /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
  1831. if (flags & MSG_WAITFORONE)
  1832. flags |= MSG_DONTWAIT;
  1833. if (timeout) {
  1834. ktime_get_ts(timeout);
  1835. *timeout = timespec_sub(end_time, *timeout);
  1836. if (timeout->tv_sec < 0) {
  1837. timeout->tv_sec = timeout->tv_nsec = 0;
  1838. break;
  1839. }
  1840. /* Timeout, return less than vlen datagrams */
  1841. if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
  1842. break;
  1843. }
  1844. /* Out of band data, return right away */
  1845. if (msg_sys.msg_flags & MSG_OOB)
  1846. break;
  1847. }
  1848. out_put:
  1849. fput_light(sock->file, fput_needed);
  1850. if (err == 0)
  1851. return datagrams;
  1852. if (datagrams != 0) {
  1853. /*
  1854. * We may return less entries than requested (vlen) if the
  1855. * sock is non block and there aren't enough datagrams...
  1856. */
  1857. if (err != -EAGAIN) {
  1858. /*
  1859. * ... or if recvmsg returns an error after we
  1860. * received some datagrams, where we record the
  1861. * error to return on the next call or if the
  1862. * app asks about it using getsockopt(SO_ERROR).
  1863. */
  1864. sock->sk->sk_err = -err;
  1865. }
  1866. return datagrams;
  1867. }
  1868. return err;
  1869. }
  1870. SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
  1871. unsigned int, vlen, unsigned int, flags,
  1872. struct timespec __user *, timeout)
  1873. {
  1874. int datagrams;
  1875. struct timespec timeout_sys;
  1876. if (!timeout)
  1877. return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
  1878. if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
  1879. return -EFAULT;
  1880. datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
  1881. if (datagrams > 0 &&
  1882. copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
  1883. datagrams = -EFAULT;
  1884. return datagrams;
  1885. }
  1886. #ifdef __ARCH_WANT_SYS_SOCKETCALL
  1887. /* Argument list sizes for sys_socketcall */
  1888. #define AL(x) ((x) * sizeof(unsigned long))
  1889. static const unsigned char nargs[20] = {
  1890. AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
  1891. AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
  1892. AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
  1893. AL(4),AL(5)
  1894. };
  1895. #undef AL
  1896. /*
  1897. * System call vectors.
  1898. *
  1899. * Argument checking cleaned up. Saved 20% in size.
  1900. * This function doesn't need to set the kernel lock because
  1901. * it is set by the callees.
  1902. */
  1903. SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
  1904. {
  1905. unsigned long a[6];
  1906. unsigned long a0, a1;
  1907. int err;
  1908. unsigned int len;
  1909. if (call < 1 || call > SYS_RECVMMSG)
  1910. return -EINVAL;
  1911. len = nargs[call];
  1912. if (len > sizeof(a))
  1913. return -EINVAL;
  1914. /* copy_from_user should be SMP safe. */
  1915. if (copy_from_user(a, args, len))
  1916. return -EFAULT;
  1917. audit_socketcall(nargs[call] / sizeof(unsigned long), a);
  1918. a0 = a[0];
  1919. a1 = a[1];
  1920. switch (call) {
  1921. case SYS_SOCKET:
  1922. err = sys_socket(a0, a1, a[2]);
  1923. break;
  1924. case SYS_BIND:
  1925. err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
  1926. break;
  1927. case SYS_CONNECT:
  1928. err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
  1929. break;
  1930. case SYS_LISTEN:
  1931. err = sys_listen(a0, a1);
  1932. break;
  1933. case SYS_ACCEPT:
  1934. err = sys_accept4(a0, (struct sockaddr __user *)a1,
  1935. (int __user *)a[2], 0);
  1936. break;
  1937. case SYS_GETSOCKNAME:
  1938. err =
  1939. sys_getsockname(a0, (struct sockaddr __user *)a1,
  1940. (int __user *)a[2]);
  1941. break;
  1942. case SYS_GETPEERNAME:
  1943. err =
  1944. sys_getpeername(a0, (struct sockaddr __user *)a1,
  1945. (int __user *)a[2]);
  1946. break;
  1947. case SYS_SOCKETPAIR:
  1948. err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
  1949. break;
  1950. case SYS_SEND:
  1951. err = sys_send(a0, (void __user *)a1, a[2], a[3]);
  1952. break;
  1953. case SYS_SENDTO:
  1954. err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
  1955. (struct sockaddr __user *)a[4], a[5]);
  1956. break;
  1957. case SYS_RECV:
  1958. err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
  1959. break;
  1960. case SYS_RECVFROM:
  1961. err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
  1962. (struct sockaddr __user *)a[4],
  1963. (int __user *)a[5]);
  1964. break;
  1965. case SYS_SHUTDOWN:
  1966. err = sys_shutdown(a0, a1);
  1967. break;
  1968. case SYS_SETSOCKOPT:
  1969. err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
  1970. break;
  1971. case SYS_GETSOCKOPT:
  1972. err =
  1973. sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
  1974. (int __user *)a[4]);
  1975. break;
  1976. case SYS_SENDMSG:
  1977. err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
  1978. break;
  1979. case SYS_RECVMSG:
  1980. err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
  1981. break;
  1982. case SYS_RECVMMSG:
  1983. err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
  1984. (struct timespec __user *)a[4]);
  1985. break;
  1986. case SYS_ACCEPT4:
  1987. err = sys_accept4(a0, (struct sockaddr __user *)a1,
  1988. (int __user *)a[2], a[3]);
  1989. break;
  1990. default:
  1991. err = -EINVAL;
  1992. break;
  1993. }
  1994. return err;
  1995. }
  1996. #endif /* __ARCH_WANT_SYS_SOCKETCALL */
  1997. /**
  1998. * sock_register - add a socket protocol handler
  1999. * @ops: description of protocol
  2000. *
  2001. * This function is called by a protocol handler that wants to
  2002. * advertise its address family, and have it linked into the
  2003. * socket interface. The value ops->family coresponds to the
  2004. * socket system call protocol family.
  2005. */
  2006. int sock_register(const struct net_proto_family *ops)
  2007. {
  2008. int err;
  2009. if (ops->family >= NPROTO) {
  2010. printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
  2011. NPROTO);
  2012. return -ENOBUFS;
  2013. }
  2014. spin_lock(&net_family_lock);
  2015. if (net_families[ops->family])
  2016. err = -EEXIST;
  2017. else {
  2018. net_families[ops->family] = ops;
  2019. err = 0;
  2020. }
  2021. spin_unlock(&net_family_lock);
  2022. printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
  2023. return err;
  2024. }
  2025. /**
  2026. * sock_unregister - remove a protocol handler
  2027. * @family: protocol family to remove
  2028. *
  2029. * This function is called by a protocol handler that wants to
  2030. * remove its address family, and have it unlinked from the
  2031. * new socket creation.
  2032. *
  2033. * If protocol handler is a module, then it can use module reference
  2034. * counts to protect against new references. If protocol handler is not
  2035. * a module then it needs to provide its own protection in
  2036. * the ops->create routine.
  2037. */
  2038. void sock_unregister(int family)
  2039. {
  2040. BUG_ON(family < 0 || family >= NPROTO);
  2041. spin_lock(&net_family_lock);
  2042. net_families[family] = NULL;
  2043. spin_unlock(&net_family_lock);
  2044. synchronize_rcu();
  2045. printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
  2046. }
  2047. static int __init sock_init(void)
  2048. {
  2049. /*
  2050. * Initialize sock SLAB cache.
  2051. */
  2052. sk_init();
  2053. /*
  2054. * Initialize skbuff SLAB cache
  2055. */
  2056. skb_init();
  2057. /*
  2058. * Initialize the protocols module.
  2059. */
  2060. init_inodecache();
  2061. register_filesystem(&sock_fs_type);
  2062. sock_mnt = kern_mount(&sock_fs_type);
  2063. /* The real protocol initialization is performed in later initcalls.
  2064. */
  2065. #ifdef CONFIG_NETFILTER
  2066. netfilter_init();
  2067. #endif
  2068. return 0;
  2069. }
  2070. core_initcall(sock_init); /* early initcall */
  2071. #ifdef CONFIG_PROC_FS
  2072. void socket_seq_show(struct seq_file *seq)
  2073. {
  2074. int cpu;
  2075. int counter = 0;
  2076. for_each_possible_cpu(cpu)
  2077. counter += per_cpu(sockets_in_use, cpu);
  2078. /* It can be negative, by the way. 8) */
  2079. if (counter < 0)
  2080. counter = 0;
  2081. seq_printf(seq, "sockets: used %d\n", counter);
  2082. }
  2083. #endif /* CONFIG_PROC_FS */
  2084. #ifdef CONFIG_COMPAT
  2085. static int do_siocgstamp(struct net *net, struct socket *sock,
  2086. unsigned int cmd, struct compat_timeval __user *up)
  2087. {
  2088. mm_segment_t old_fs = get_fs();
  2089. struct timeval ktv;
  2090. int err;
  2091. set_fs(KERNEL_DS);
  2092. err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
  2093. set_fs(old_fs);
  2094. if (!err) {
  2095. err = put_user(ktv.tv_sec, &up->tv_sec);
  2096. err |= __put_user(ktv.tv_usec, &up->tv_usec);
  2097. }
  2098. return err;
  2099. }
  2100. static int do_siocgstampns(struct net *net, struct socket *sock,
  2101. unsigned int cmd, struct compat_timespec __user *up)
  2102. {
  2103. mm_segment_t old_fs = get_fs();
  2104. struct timespec kts;
  2105. int err;
  2106. set_fs(KERNEL_DS);
  2107. err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
  2108. set_fs(old_fs);
  2109. if (!err) {
  2110. err = put_user(kts.tv_sec, &up->tv_sec);
  2111. err |= __put_user(kts.tv_nsec, &up->tv_nsec);
  2112. }
  2113. return err;
  2114. }
  2115. static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
  2116. {
  2117. struct ifreq __user *uifr;
  2118. int err;
  2119. uifr = compat_alloc_user_space(sizeof(struct ifreq));
  2120. if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
  2121. return -EFAULT;
  2122. err = dev_ioctl(net, SIOCGIFNAME, uifr);
  2123. if (err)
  2124. return err;
  2125. if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
  2126. return -EFAULT;
  2127. return 0;
  2128. }
  2129. static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
  2130. {
  2131. struct compat_ifconf ifc32;
  2132. struct ifconf ifc;
  2133. struct ifconf __user *uifc;
  2134. struct compat_ifreq __user *ifr32;
  2135. struct ifreq __user *ifr;
  2136. unsigned int i, j;
  2137. int err;
  2138. if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
  2139. return -EFAULT;
  2140. if (ifc32.ifcbuf == 0) {
  2141. ifc32.ifc_len = 0;
  2142. ifc.ifc_len = 0;
  2143. ifc.ifc_req = NULL;
  2144. uifc = compat_alloc_user_space(sizeof(struct ifconf));
  2145. } else {
  2146. size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
  2147. sizeof (struct ifreq);
  2148. uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
  2149. ifc.ifc_len = len;
  2150. ifr = ifc.ifc_req = (void __user *)(uifc + 1);
  2151. ifr32 = compat_ptr(ifc32.ifcbuf);
  2152. for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
  2153. if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
  2154. return -EFAULT;
  2155. ifr++;
  2156. ifr32++;
  2157. }
  2158. }
  2159. if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
  2160. return -EFAULT;
  2161. err = dev_ioctl(net, SIOCGIFCONF, uifc);
  2162. if (err)
  2163. return err;
  2164. if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
  2165. return -EFAULT;
  2166. ifr = ifc.ifc_req;
  2167. ifr32 = compat_ptr(ifc32.ifcbuf);
  2168. for (i = 0, j = 0;
  2169. i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
  2170. i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
  2171. if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
  2172. return -EFAULT;
  2173. ifr32++;
  2174. ifr++;
  2175. }
  2176. if (ifc32.ifcbuf == 0) {
  2177. /* Translate from 64-bit structure multiple to
  2178. * a 32-bit one.
  2179. */
  2180. i = ifc.ifc_len;
  2181. i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
  2182. ifc32.ifc_len = i;
  2183. } else {
  2184. ifc32.ifc_len = i;
  2185. }
  2186. if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
  2187. return -EFAULT;
  2188. return 0;
  2189. }
  2190. static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
  2191. {
  2192. struct ifreq __user *ifr;
  2193. u32 data;
  2194. void __user *datap;
  2195. ifr = compat_alloc_user_space(sizeof(*ifr));
  2196. if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
  2197. return -EFAULT;
  2198. if (get_user(data, &ifr32->ifr_ifru.ifru_data))
  2199. return -EFAULT;
  2200. datap = compat_ptr(data);
  2201. if (put_user(datap, &ifr->ifr_ifru.ifru_data))
  2202. return -EFAULT;
  2203. return dev_ioctl(net, SIOCETHTOOL, ifr);
  2204. }
  2205. static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
  2206. {
  2207. void __user *uptr;
  2208. compat_uptr_t uptr32;
  2209. struct ifreq __user *uifr;
  2210. uifr = compat_alloc_user_space(sizeof (*uifr));
  2211. if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
  2212. return -EFAULT;
  2213. if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
  2214. return -EFAULT;
  2215. uptr = compat_ptr(uptr32);
  2216. if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
  2217. return -EFAULT;
  2218. return dev_ioctl(net, SIOCWANDEV, uifr);
  2219. }
  2220. static int bond_ioctl(struct net *net, unsigned int cmd,
  2221. struct compat_ifreq __user *ifr32)
  2222. {
  2223. struct ifreq kifr;
  2224. struct ifreq __user *uifr;
  2225. mm_segment_t old_fs;
  2226. int err;
  2227. u32 data;
  2228. void __user *datap;
  2229. switch (cmd) {
  2230. case SIOCBONDENSLAVE:
  2231. case SIOCBONDRELEASE:
  2232. case SIOCBONDSETHWADDR:
  2233. case SIOCBONDCHANGEACTIVE:
  2234. if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
  2235. return -EFAULT;
  2236. old_fs = get_fs();
  2237. set_fs (KERNEL_DS);
  2238. err = dev_ioctl(net, cmd, &kifr);
  2239. set_fs (old_fs);
  2240. return err;
  2241. case SIOCBONDSLAVEINFOQUERY:
  2242. case SIOCBONDINFOQUERY:
  2243. uifr = compat_alloc_user_space(sizeof(*uifr));
  2244. if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
  2245. return -EFAULT;
  2246. if (get_user(data, &ifr32->ifr_ifru.ifru_data))
  2247. return -EFAULT;
  2248. datap = compat_ptr(data);
  2249. if (put_user(datap, &uifr->ifr_ifru.ifru_data))
  2250. return -EFAULT;
  2251. return dev_ioctl(net, cmd, uifr);
  2252. default:
  2253. return -EINVAL;
  2254. };
  2255. }
  2256. static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
  2257. struct compat_ifreq __user *u_ifreq32)
  2258. {
  2259. struct ifreq __user *u_ifreq64;
  2260. char tmp_buf[IFNAMSIZ];
  2261. void __user *data64;
  2262. u32 data32;
  2263. if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
  2264. IFNAMSIZ))
  2265. return -EFAULT;
  2266. if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
  2267. return -EFAULT;
  2268. data64 = compat_ptr(data32);
  2269. u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
  2270. /* Don't check these user accesses, just let that get trapped
  2271. * in the ioctl handler instead.
  2272. */
  2273. if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
  2274. IFNAMSIZ))
  2275. return -EFAULT;
  2276. if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
  2277. return -EFAULT;
  2278. return dev_ioctl(net, cmd, u_ifreq64);
  2279. }
  2280. static int dev_ifsioc(struct net *net, struct socket *sock,
  2281. unsigned int cmd, struct compat_ifreq __user *uifr32)
  2282. {
  2283. struct ifreq __user *uifr;
  2284. int err;
  2285. uifr = compat_alloc_user_space(sizeof(*uifr));
  2286. if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
  2287. return -EFAULT;
  2288. err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
  2289. if (!err) {
  2290. switch (cmd) {
  2291. case SIOCGIFFLAGS:
  2292. case SIOCGIFMETRIC:
  2293. case SIOCGIFMTU:
  2294. case SIOCGIFMEM:
  2295. case SIOCGIFHWADDR:
  2296. case SIOCGIFINDEX:
  2297. case SIOCGIFADDR:
  2298. case SIOCGIFBRDADDR:
  2299. case SIOCGIFDSTADDR:
  2300. case SIOCGIFNETMASK:
  2301. case SIOCGIFPFLAGS:
  2302. case SIOCGIFTXQLEN:
  2303. case SIOCGMIIPHY:
  2304. case SIOCGMIIREG:
  2305. if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
  2306. err = -EFAULT;
  2307. break;
  2308. }
  2309. }
  2310. return err;
  2311. }
  2312. static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
  2313. struct compat_ifreq __user *uifr32)
  2314. {
  2315. struct ifreq ifr;
  2316. struct compat_ifmap __user *uifmap32;
  2317. mm_segment_t old_fs;
  2318. int err;
  2319. uifmap32 = &uifr32->ifr_ifru.ifru_map;
  2320. err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
  2321. err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
  2322. err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
  2323. err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
  2324. err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
  2325. err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
  2326. err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
  2327. if (err)
  2328. return -EFAULT;
  2329. old_fs = get_fs();
  2330. set_fs (KERNEL_DS);
  2331. err = dev_ioctl(net, cmd, (void __user *)&ifr);
  2332. set_fs (old_fs);
  2333. if (cmd == SIOCGIFMAP && !err) {
  2334. err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
  2335. err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
  2336. err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
  2337. err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
  2338. err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
  2339. err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
  2340. err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
  2341. if (err)
  2342. err = -EFAULT;
  2343. }
  2344. return err;
  2345. }
  2346. static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
  2347. {
  2348. void __user *uptr;
  2349. compat_uptr_t uptr32;
  2350. struct ifreq __user *uifr;
  2351. uifr = compat_alloc_user_space(sizeof (*uifr));
  2352. if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
  2353. return -EFAULT;
  2354. if (get_user(uptr32, &uifr32->ifr_data))
  2355. return -EFAULT;
  2356. uptr = compat_ptr(uptr32);
  2357. if (put_user(uptr, &uifr->ifr_data))
  2358. return -EFAULT;
  2359. return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
  2360. }
  2361. struct rtentry32 {
  2362. u32 rt_pad1;
  2363. struct sockaddr rt_dst; /* target address */
  2364. struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
  2365. struct sockaddr rt_genmask; /* target network mask (IP) */
  2366. unsigned short rt_flags;
  2367. short rt_pad2;
  2368. u32 rt_pad3;
  2369. unsigned char rt_tos;
  2370. unsigned char rt_class;
  2371. short rt_pad4;
  2372. short rt_metric; /* +1 for binary compatibility! */
  2373. /* char * */ u32 rt_dev; /* forcing the device at add */
  2374. u32 rt_mtu; /* per route MTU/Window */
  2375. u32 rt_window; /* Window clamping */
  2376. unsigned short rt_irtt; /* Initial RTT */
  2377. };
  2378. struct in6_rtmsg32 {
  2379. struct in6_addr rtmsg_dst;
  2380. struct in6_addr rtmsg_src;
  2381. struct in6_addr rtmsg_gateway;
  2382. u32 rtmsg_type;
  2383. u16 rtmsg_dst_len;
  2384. u16 rtmsg_src_len;
  2385. u32 rtmsg_metric;
  2386. u32 rtmsg_info;
  2387. u32 rtmsg_flags;
  2388. s32 rtmsg_ifindex;
  2389. };
  2390. static int routing_ioctl(struct net *net, struct socket *sock,
  2391. unsigned int cmd, void __user *argp)
  2392. {
  2393. int ret;
  2394. void *r = NULL;
  2395. struct in6_rtmsg r6;
  2396. struct rtentry r4;
  2397. char devname[16];
  2398. u32 rtdev;
  2399. mm_segment_t old_fs = get_fs();
  2400. if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
  2401. struct in6_rtmsg32 __user *ur6 = argp;
  2402. ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
  2403. 3 * sizeof(struct in6_addr));
  2404. ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
  2405. ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
  2406. ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
  2407. ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
  2408. ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
  2409. ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
  2410. ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
  2411. r = (void *) &r6;
  2412. } else { /* ipv4 */
  2413. struct rtentry32 __user *ur4 = argp;
  2414. ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
  2415. 3 * sizeof(struct sockaddr));
  2416. ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
  2417. ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
  2418. ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
  2419. ret |= __get_user (r4.rt_window, &(ur4->rt_window));
  2420. ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
  2421. ret |= __get_user (rtdev, &(ur4->rt_dev));
  2422. if (rtdev) {
  2423. ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
  2424. r4.rt_dev = devname; devname[15] = 0;
  2425. } else
  2426. r4.rt_dev = NULL;
  2427. r = (void *) &r4;
  2428. }
  2429. if (ret) {
  2430. ret = -EFAULT;
  2431. goto out;
  2432. }
  2433. set_fs (KERNEL_DS);
  2434. ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
  2435. set_fs (old_fs);
  2436. out:
  2437. return ret;
  2438. }
  2439. /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
  2440. * for some operations; this forces use of the newer bridge-utils that
  2441. * use compatiable ioctls
  2442. */
  2443. static int old_bridge_ioctl(compat_ulong_t __user *argp)
  2444. {
  2445. compat_ulong_t tmp;
  2446. if (get_user(tmp, argp))
  2447. return -EFAULT;
  2448. if (tmp == BRCTL_GET_VERSION)
  2449. return BRCTL_VERSION + 1;
  2450. return -EINVAL;
  2451. }
  2452. static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
  2453. unsigned int cmd, unsigned long arg)
  2454. {
  2455. void __user *argp = compat_ptr(arg);
  2456. struct sock *sk = sock->sk;
  2457. struct net *net = sock_net(sk);
  2458. if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
  2459. return siocdevprivate_ioctl(net, cmd, argp);
  2460. switch (cmd) {
  2461. case SIOCSIFBR:
  2462. case SIOCGIFBR:
  2463. return old_bridge_ioctl(argp);
  2464. case SIOCGIFNAME:
  2465. return dev_ifname32(net, argp);
  2466. case SIOCGIFCONF:
  2467. return dev_ifconf(net, argp);
  2468. case SIOCETHTOOL:
  2469. return ethtool_ioctl(net, argp);
  2470. case SIOCWANDEV:
  2471. return compat_siocwandev(net, argp);
  2472. case SIOCGIFMAP:
  2473. case SIOCSIFMAP:
  2474. return compat_sioc_ifmap(net, cmd, argp);
  2475. case SIOCBONDENSLAVE:
  2476. case SIOCBONDRELEASE:
  2477. case SIOCBONDSETHWADDR:
  2478. case SIOCBONDSLAVEINFOQUERY:
  2479. case SIOCBONDINFOQUERY:
  2480. case SIOCBONDCHANGEACTIVE:
  2481. return bond_ioctl(net, cmd, argp);
  2482. case SIOCADDRT:
  2483. case SIOCDELRT:
  2484. return routing_ioctl(net, sock, cmd, argp);
  2485. case SIOCGSTAMP:
  2486. return do_siocgstamp(net, sock, cmd, argp);
  2487. case SIOCGSTAMPNS:
  2488. return do_siocgstampns(net, sock, cmd, argp);
  2489. case SIOCSHWTSTAMP:
  2490. return compat_siocshwtstamp(net, argp);
  2491. case FIOSETOWN:
  2492. case SIOCSPGRP:
  2493. case FIOGETOWN:
  2494. case SIOCGPGRP:
  2495. case SIOCBRADDBR:
  2496. case SIOCBRDELBR:
  2497. case SIOCGIFVLAN:
  2498. case SIOCSIFVLAN:
  2499. case SIOCADDDLCI:
  2500. case SIOCDELDLCI:
  2501. return sock_ioctl(file, cmd, arg);
  2502. case SIOCGIFFLAGS:
  2503. case SIOCSIFFLAGS:
  2504. case SIOCGIFMETRIC:
  2505. case SIOCSIFMETRIC:
  2506. case SIOCGIFMTU:
  2507. case SIOCSIFMTU:
  2508. case SIOCGIFMEM:
  2509. case SIOCSIFMEM:
  2510. case SIOCGIFHWADDR:
  2511. case SIOCSIFHWADDR:
  2512. case SIOCADDMULTI:
  2513. case SIOCDELMULTI:
  2514. case SIOCGIFINDEX:
  2515. case SIOCGIFADDR:
  2516. case SIOCSIFADDR:
  2517. case SIOCSIFHWBROADCAST:
  2518. case SIOCDIFADDR:
  2519. case SIOCGIFBRDADDR:
  2520. case SIOCSIFBRDADDR:
  2521. case SIOCGIFDSTADDR:
  2522. case SIOCSIFDSTADDR:
  2523. case SIOCGIFNETMASK:
  2524. case SIOCSIFNETMASK:
  2525. case SIOCSIFPFLAGS:
  2526. case SIOCGIFPFLAGS:
  2527. case SIOCGIFTXQLEN:
  2528. case SIOCSIFTXQLEN:
  2529. case SIOCBRADDIF:
  2530. case SIOCBRDELIF:
  2531. case SIOCSIFNAME:
  2532. case SIOCGMIIPHY:
  2533. case SIOCGMIIREG:
  2534. case SIOCSMIIREG:
  2535. return dev_ifsioc(net, sock, cmd, argp);
  2536. case SIOCSARP:
  2537. case SIOCGARP:
  2538. case SIOCDARP:
  2539. case SIOCATMARK:
  2540. return sock_do_ioctl(net, sock, cmd, arg);
  2541. }
  2542. /* Prevent warning from compat_sys_ioctl, these always
  2543. * result in -EINVAL in the native case anyway. */
  2544. switch (cmd) {
  2545. case SIOCRTMSG:
  2546. case SIOCGIFCOUNT:
  2547. case SIOCSRARP:
  2548. case SIOCGRARP:
  2549. case SIOCDRARP:
  2550. case SIOCSIFLINK:
  2551. case SIOCGIFSLAVE:
  2552. case SIOCSIFSLAVE:
  2553. return -EINVAL;
  2554. }
  2555. return -ENOIOCTLCMD;
  2556. }
  2557. static long compat_sock_ioctl(struct file *file, unsigned cmd,
  2558. unsigned long arg)
  2559. {
  2560. struct socket *sock = file->private_data;
  2561. int ret = -ENOIOCTLCMD;
  2562. struct sock *sk;
  2563. struct net *net;
  2564. sk = sock->sk;
  2565. net = sock_net(sk);
  2566. if (sock->ops->compat_ioctl)
  2567. ret = sock->ops->compat_ioctl(sock, cmd, arg);
  2568. if (ret == -ENOIOCTLCMD &&
  2569. (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
  2570. ret = compat_wext_handle_ioctl(net, cmd, arg);
  2571. if (ret == -ENOIOCTLCMD)
  2572. ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
  2573. return ret;
  2574. }
  2575. #endif
  2576. int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
  2577. {
  2578. return sock->ops->bind(sock, addr, addrlen);
  2579. }
  2580. int kernel_listen(struct socket *sock, int backlog)
  2581. {
  2582. return sock->ops->listen(sock, backlog);
  2583. }
  2584. int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
  2585. {
  2586. struct sock *sk = sock->sk;
  2587. int err;
  2588. err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
  2589. newsock);
  2590. if (err < 0)
  2591. goto done;
  2592. err = sock->ops->accept(sock, *newsock, flags);
  2593. if (err < 0) {
  2594. sock_release(*newsock);
  2595. *newsock = NULL;
  2596. goto done;
  2597. }
  2598. (*newsock)->ops = sock->ops;
  2599. __module_get((*newsock)->ops->owner);
  2600. done:
  2601. return err;
  2602. }
  2603. int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
  2604. int flags)
  2605. {
  2606. return sock->ops->connect(sock, addr, addrlen, flags);
  2607. }
  2608. int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
  2609. int *addrlen)
  2610. {
  2611. return sock->ops->getname(sock, addr, addrlen, 0);
  2612. }
  2613. int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
  2614. int *addrlen)
  2615. {
  2616. return sock->ops->getname(sock, addr, addrlen, 1);
  2617. }
  2618. int kernel_getsockopt(struct socket *sock, int level, int optname,
  2619. char *optval, int *optlen)
  2620. {
  2621. mm_segment_t oldfs = get_fs();
  2622. int err;
  2623. set_fs(KERNEL_DS);
  2624. if (level == SOL_SOCKET)
  2625. err = sock_getsockopt(sock, level, optname, optval, optlen);
  2626. else
  2627. err = sock->ops->getsockopt(sock, level, optname, optval,
  2628. optlen);
  2629. set_fs(oldfs);
  2630. return err;
  2631. }
  2632. int kernel_setsockopt(struct socket *sock, int level, int optname,
  2633. char *optval, unsigned int optlen)
  2634. {
  2635. mm_segment_t oldfs = get_fs();
  2636. int err;
  2637. set_fs(KERNEL_DS);
  2638. if (level == SOL_SOCKET)
  2639. err = sock_setsockopt(sock, level, optname, optval, optlen);
  2640. else
  2641. err = sock->ops->setsockopt(sock, level, optname, optval,
  2642. optlen);
  2643. set_fs(oldfs);
  2644. return err;
  2645. }
  2646. int kernel_sendpage(struct socket *sock, struct page *page, int offset,
  2647. size_t size, int flags)
  2648. {
  2649. if (sock->ops->sendpage)
  2650. return sock->ops->sendpage(sock, page, offset, size, flags);
  2651. return sock_no_sendpage(sock, page, offset, size, flags);
  2652. }
  2653. int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
  2654. {
  2655. mm_segment_t oldfs = get_fs();
  2656. int err;
  2657. set_fs(KERNEL_DS);
  2658. err = sock->ops->ioctl(sock, cmd, arg);
  2659. set_fs(oldfs);
  2660. return err;
  2661. }
  2662. int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
  2663. {
  2664. return sock->ops->shutdown(sock, how);
  2665. }
  2666. EXPORT_SYMBOL(sock_create);
  2667. EXPORT_SYMBOL(sock_create_kern);
  2668. EXPORT_SYMBOL(sock_create_lite);
  2669. EXPORT_SYMBOL(sock_map_fd);
  2670. EXPORT_SYMBOL(sock_recvmsg);
  2671. EXPORT_SYMBOL(sock_register);
  2672. EXPORT_SYMBOL(sock_release);
  2673. EXPORT_SYMBOL(sock_sendmsg);
  2674. EXPORT_SYMBOL(sock_unregister);
  2675. EXPORT_SYMBOL(sock_wake_async);
  2676. EXPORT_SYMBOL(sockfd_lookup);
  2677. EXPORT_SYMBOL(kernel_sendmsg);
  2678. EXPORT_SYMBOL(kernel_recvmsg);
  2679. EXPORT_SYMBOL(kernel_bind);
  2680. EXPORT_SYMBOL(kernel_listen);
  2681. EXPORT_SYMBOL(kernel_accept);
  2682. EXPORT_SYMBOL(kernel_connect);
  2683. EXPORT_SYMBOL(kernel_getsockname);
  2684. EXPORT_SYMBOL(kernel_getpeername);
  2685. EXPORT_SYMBOL(kernel_getsockopt);
  2686. EXPORT_SYMBOL(kernel_setsockopt);
  2687. EXPORT_SYMBOL(kernel_sendpage);
  2688. EXPORT_SYMBOL(kernel_sock_ioctl);
  2689. EXPORT_SYMBOL(kernel_sock_shutdown);