/grlib-gpl-1.1.0-b4113/lib/micron/ddr/ddr3.v
https://github.com/shmele/leon3 · V · 4136 lines · 3967 code · 79 blank · 90 comment · 223 complexity · 45b3fdda80adcde112979602458017ef MD5 · raw file
- /****************************************************************************************
- *
- * File Name: ddr3.v
- * Version: 1.60
- * Model: BUS Functional
- *
- * Dependencies: ddr3_model_parameters.vh
- *
- * Description: Micron SDRAM DDR3 (Double Data Rate 3)
- *
- * Limitation: - doesn't check for average refresh timings
- * - positive ck and ck_n edges are used to form internal clock
- * - positive dqs and dqs_n edges are used to latch data
- * - test mode is not modeled
- * - Duty Cycle Corrector is not modeled
- * - Temperature Compensated Self Refresh is not modeled
- * - DLL off mode is not modeled.
- *
- * Note: - Set simulator resolution to "ps" accuracy
- * - Set DEBUG = 0 to disable $display messages
- *
- * Disclaimer This software code and all associated documentation, comments or other
- * of Warranty: information (collectively "Software") is provided "AS IS" without
- * warranty of any kind. MICRON TECHNOLOGY, INC. ("MTI") EXPRESSLY
- * DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
- * TO, NONINFRINGEMENT OF THIRD PARTY RIGHTS, AND ANY IMPLIED WARRANTIES
- * OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. MTI DOES NOT
- * WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE
- * OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE.
- * FURTHERMORE, MTI DOES NOT MAKE ANY REPRESENTATIONS REGARDING THE USE OR
- * THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS,
- * ACCURACY, RELIABILITY, OR OTHERWISE. THE ENTIRE RISK ARISING OUT OF USE
- * OR PERFORMANCE OF THE SOFTWARE REMAINS WITH YOU. IN NO EVENT SHALL MTI,
- * ITS AFFILIATED COMPANIES OR THEIR SUPPLIERS BE LIABLE FOR ANY DIRECT,
- * INDIRECT, CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING,
- * WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION,
- * OR LOSS OF INFORMATION) ARISING OUT OF YOUR USE OF OR INABILITY TO USE
- * THE SOFTWARE, EVEN IF MTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
- * DAMAGES. Because some jurisdictions prohibit the exclusion or
- * limitation of liability for consequential or incidental damages, the
- * above limitation may not apply to you.
- *
- * Copyright 2003 Micron Technology, Inc. All rights reserved.
- *
- * Rev Author Date Changes
- * ---------------------------------------------------------------------------------------
- * 0.41 JMK 05/12/06 Removed auto-precharge to power down error check.
- * 0.42 JMK 08/25/06 Created internal clock using ck and ck_n.
- * TDQS can only be enabled in EMR for x8 configurations.
- * CAS latency is checked vs frequency when DLL locks.
- * Improved checking of DQS during writes.
- * Added true BL4 operation.
- * 0.43 JMK 08/14/06 Added checking for setting reserved bits in Mode Registers.
- * Added ODTS Readout.
- * Replaced tZQCL with tZQinit and tZQoper
- * Fixed tWRPDEN and tWRAPDEN during BC4MRS and BL4MRS.
- * Added tRFC checking for Refresh to Power-Down Re-Entry.
- * Added tXPDLL checking for Power-Down Exit to Refresh to Power-Down Entry
- * Added Clock Frequency Change during Precharge Power-Down.
- * Added -125x speed grades.
- * Fixed tRCD checking during Write.
- * 1.00 JMK 05/11/07 Initial release
- * 1.10 JMK 06/26/07 Fixed ODTH8 check during BLOTF
- * Removed temp sensor readout from MPR
- * Updated initialization sequence
- * Updated timing parameters
- * 1.20 JMK 09/05/07 Updated clock frequency change
- * Added ddr3_dimm module
- * 1.30 JMK 01/23/08 Updated timing parameters
- * 1.40 JMK 12/02/08 Added support for DDR3-1866 and DDR3-2133
- * renamed ddr3_dimm.v to ddr3_module.v and added SODIMM support.
- * Added multi-chip package model support in ddr3_mcp.v
- * 1.50 JMK 05/04/08 Added 1866 and 2133 speed grades.
- * 1.60 MYY 07/10/09 Merging of 1.50 version and pre-1.0 version changes
- *****************************************************************************************/
- // DO NOT CHANGE THE TIMESCALE
- // MAKE SURE YOUR SIMULATOR USES "PS" RESOLUTION
- `timescale 1ps / 1ps
- // model flags
- // `define MODEL_PASR
- module ddr3 (
- rst_n,
- ck,
- ck_n,
- cke,
- cs_n,
- ras_n,
- cas_n,
- we_n,
- dm_tdqs,
- ba,
- addr,
- dq,
- dqs,
- dqs_n,
- tdqs_n,
- odt
- );
- `define x1Gb
- `define sg187E
- `define x16
- /* `include "ddr3_model_parameters.vh" */
- /****************************************************************************************
- *
- * Disclaimer This software code and all associated documentation, comments or other
- * of Warranty: information (collectively "Software") is provided "AS IS" without
- * warranty of any kind. MICRON TECHNOLOGY, INC. ("MTI") EXPRESSLY
- * DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
- * TO, NONINFRINGEMENT OF THIRD PARTY RIGHTS, AND ANY IMPLIED WARRANTIES
- * OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. MTI DOES NOT
- * WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE
- * OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE.
- * FURTHERMORE, MTI DOES NOT MAKE ANY REPRESENTATIONS REGARDING THE USE OR
- * THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS,
- * ACCURACY, RELIABILITY, OR OTHERWISE. THE ENTIRE RISK ARISING OUT OF USE
- * OR PERFORMANCE OF THE SOFTWARE REMAINS WITH YOU. IN NO EVENT SHALL MTI,
- * ITS AFFILIATED COMPANIES OR THEIR SUPPLIERS BE LIABLE FOR ANY DIRECT,
- * INDIRECT, CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING,
- * WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION,
- * OR LOSS OF INFORMATION) ARISING OUT OF YOUR USE OF OR INABILITY TO USE
- * THE SOFTWARE, EVEN IF MTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
- * DAMAGES. Because some jurisdictions prohibit the exclusion or
- * limitation of liability for consequential or incidental damages, the
- * above limitation may not apply to you.
- *
- * Copyright 2003 Micron Technology, Inc. All rights reserved.
- *
- ****************************************************************************************/
- // Parameters current with 1Gb and 2Gb datasheet rev D
- // Timing parameters based on Speed Grade
- // SYMBOL UNITS DESCRIPTION
- // ------ ----- -----------
- `ifdef x1Gb // 1Gb parameters
- `ifdef sg094E // sg094E is equivalent to the JEDEC DDR3-2133 (13-13-13) speed bin
- parameter TCK_MIN = 937.5; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 50; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 100; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 73; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 85; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 98; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 105; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 111; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 117; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 121; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 125; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 128; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 132; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 134; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 5; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 20; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 70; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.27; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.18; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.18; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 175; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 275; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 455; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 35; // tIS ps Input Setup Time
- parameter TIH = 75; // tIH ps Input Hold Time
- parameter TRAS_MIN = 35000; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 46250; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 12187; // tRCD ps Active to Read/Write command time
- parameter TRP = 12187; // tRP ps Precharge command period
- parameter TXP = 6000; // tXP ps Exit power down to a valid command
- parameter TCKE = 5000; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 180; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 122; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 122; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 7500; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 12187; // TAA ps Internal READ command to first data
- parameter CL_TIME = 12187; // CL ps Minimum CAS Latency
- `else `ifdef sg094 // sg094 is equivalent to the JEDEC DDR3-2133 (14-14-14) speed bin
- parameter TCK_MIN = 937.5; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 50; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 100; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 73; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 85; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 98; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 105; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 111; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 117; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 121; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 125; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 128; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 132; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 134; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 5; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 20; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 70; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.27; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.18; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.18; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 175; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 275; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 455; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 35; // tIS ps Input Setup Time
- parameter TIH = 75; // tIH ps Input Hold Time
- parameter TRAS_MIN = 35000; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 46250; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 13125; // tRCD ps Active to Read/Write command time
- parameter TRP = 13125; // tRP ps Precharge command period
- parameter TXP = 6000; // tXP ps Exit power down to a valid command
- parameter TCKE = 5000; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 180; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 122; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 122; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 7500; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 13125; // TAA ps Internal READ command to first data
- parameter CL_TIME = 13125; // CL ps Minimum CAS Latency
- `else `ifdef sg107F // sg107F is equivalent to the JEDEC DDR3-1866 (12-12-12) speed bin
- parameter TCK_MIN = 15e3/14; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 60; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 120; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 88; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 103; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 117; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 126; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 133; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 140; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 145; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 150; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 154; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 158; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 161; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 10; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 20; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 80; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.27; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.18; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.18; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 200; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 300; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 505; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 50; // tIS ps Input Setup Time
- parameter TIH = 100; // tIH ps Input Hold Time
- parameter TRAS_MIN = 35000; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 46250; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 12857; // tRCD ps Active to Read/Write command time
- parameter TRP = 12857; // tRP ps Precharge command period
- parameter TXP = 6000; // tXP ps Exit power down to a valid command
- parameter TCKE = 5000; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 200; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 140; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 140; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 7500; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 12857; // TAA ps Internal READ command to first data
- parameter CL_TIME = 12857; // CL ps Minimum CAS Latency
- `else `ifdef sg107E // sg107E is equivalent to the JEDEC DDR3-1866 (13-13-13) speed bin
- parameter TCK_MIN = 15e3/14; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 60; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 120; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 88; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 103; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 117; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 126; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 133; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 140; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 145; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 150; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 154; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 158; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 161; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 10; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 20; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 80; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.27; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.18; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.18; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 200; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 300; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 505; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 50; // tIS ps Input Setup Time
- parameter TIH = 100; // tIH ps Input Hold Time
- parameter TRAS_MIN = 35000; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 46250; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 13928; // tRCD ps Active to Read/Write command time
- parameter TRP = 13928; // tRP ps Precharge command period
- parameter TXP = 6000; // tXP ps Exit power down to a valid command
- parameter TCKE = 5000; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 200; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 140; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 140; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 7500; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 13928; // TAA ps Internal READ command to first data
- parameter CL_TIME = 13928; // CL ps Minimum CAS Latency
- `else `ifdef sg107 // sg107 is equivalent to the JEDEC DDR3-1866 (14-14-14) speed bin
- parameter TCK_MIN = 15e3/14; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 60; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 120; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 88; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 103; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 117; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 126; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 133; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 140; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 145; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 150; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 154; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 158; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 161; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 10; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 20; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 80; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.27; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.18; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.18; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 200; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 300; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 505; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 50; // tIS ps Input Setup Time
- parameter TIH = 100; // tIH ps Input Hold Time
- parameter TRAS_MIN = 35000; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 46250; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 15000; // tRCD ps Active to Read/Write command time
- parameter TRP = 15000; // tRP ps Precharge command period
- parameter TXP = 6000; // tXP ps Exit power down to a valid command
- parameter TCKE = 5000; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 200; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 140; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 140; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 7500; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 15000; // TAA ps Internal READ command to first data
- parameter CL_TIME = 15000; // CL ps Minimum CAS Latency
- `else `ifdef sg125F // sg125F is equivalent to the JEDEC DDR3-1600 (9-9-9) speed bin
- parameter TCK_MIN = 1250; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 70; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 140; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 103; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 122; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 136; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 147; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 155; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 163; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 169; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 175; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 180; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 184; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 188; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 10; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 45; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 100; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.27; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.18; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.18; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 225; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 360; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 560; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 170; // tIS ps Input Setup Time
- parameter TIH = 120; // tIH ps Input Hold Time
- parameter TRAS_MIN = 35000; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 46250; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 11250; // tRCD ps Active to Read/Write command time
- parameter TRP = 11250; // tRP ps Precharge command period
- parameter TXP = 6000; // tXP ps Exit power down to a valid command
- parameter TCKE = 5000; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 250; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 165; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 165; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 7500; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 11250; // TAA ps Internal READ command to first data
- parameter CL_TIME = 11250; // CL ps Minimum CAS Latency
- `else `ifdef sg125E // sg125E is equivalent to the JEDEC DDR3-1600 (10-10-10) speed bin
- parameter TCK_MIN = 1250; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 70; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 140; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 103; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 122; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 136; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 147; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 155; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 163; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 169; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 175; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 180; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 184; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 188; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 10; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 45; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 100; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.27; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.18; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.18; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 225; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 360; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 560; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 170; // tIS ps Input Setup Time
- parameter TIH = 120; // tIH ps Input Hold Time
- parameter TRAS_MIN = 35000; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 47500; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 12500; // tRCD ps Active to Read/Write command time
- parameter TRP = 12500; // tRP ps Precharge command period
- parameter TXP = 6000; // tXP ps Exit power down to a valid command
- parameter TCKE = 5000; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 250; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 165; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 165; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 7500; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 12500; // TAA ps Internal READ command to first data
- parameter CL_TIME = 12500; // CL ps Minimum CAS Latency
- `else `ifdef sg125 // sg125 is equivalent to the JEDEC DDR3-1600 (11-11-11) speed bin
- parameter TCK_MIN = 1250; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 70; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 140; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 103; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 122; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 136; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 147; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 155; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 163; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 169; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 175; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 180; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 184; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 188; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 10; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 45; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 100; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.27; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.18; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.18; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 225; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 360; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 560; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 170; // tIS ps Input Setup Time
- parameter TIH = 120; // tIH ps Input Hold Time
- parameter TRAS_MIN = 35000; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 48750; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 13125; // tRCD ps Active to Read/Write command time
- parameter TRP = 13125; // tRP ps Precharge command period
- parameter TXP = 6000; // tXP ps Exit power down to a valid command
- parameter TCKE = 5000; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 250; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 165; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 165; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 7500; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 13125; // TAA ps Internal READ command to first data
- parameter CL_TIME = 13125; // CL ps Minimum CAS Latency
- `else `ifdef sg15E // sg15E is equivalent to the JEDEC DDR3-1333H (9-9-9) speed bin
- parameter TCK_MIN = 1500; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 80; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 160; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 118; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 140; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 155; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 168; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 177; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 186; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 193; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 200; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 205; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 210; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 215; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 30; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 65; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 125; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 255; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 400; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 620; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 190; // tIS ps Input Setup Time
- parameter TIH = 140; // tIH ps Input Hold Time
- parameter TRAS_MIN = 36000; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 49500; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 13125; // tRCD ps Active to Read/Write command time
- parameter TRP = 13125; // tRP ps Precharge command period
- parameter TXP = 6000; // tXP ps Exit power down to a valid command
- parameter TCKE = 5625; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 250; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 195; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 195; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 9000; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 13125; // TAA ps Internal READ command to first data
- parameter CL_TIME = 13125; // CL ps Minimum CAS Latency
- `else `ifdef sg15 // sg15 is equivalent to the JEDEC DDR3-1333J (10-10-10) speed bin
- parameter TCK_MIN = 1500; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 80; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 160; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 118; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 140; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 155; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 168; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 177; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 186; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 193; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 200; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 205; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 210; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 215; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 30; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 65; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 125; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 255; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 400; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 620; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 190; // tIS ps Input Setup Time
- parameter TIH = 140; // tIH ps Input Hold Time
- parameter TRAS_MIN = 36000; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 51000; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 15000; // tRCD ps Active to Read/Write command time
- parameter TRP = 15000; // tRP ps Precharge command period
- parameter TXP = 6000; // tXP ps Exit power down to a valid command
- parameter TCKE = 5625; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 250; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 195; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 195; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 9000; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 15000; // TAA ps Internal READ command to first data
- parameter CL_TIME = 15000; // CL ps Minimum CAS Latency
- `else `ifdef sg187E // sg187E is equivalent to the JEDEC DDR3-1066F (7-7-7) speed bin
- parameter TCK_MIN = 1875; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 90; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 180; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 132; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 157; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 175; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 188; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 200; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 209; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 217; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 224; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 231; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 237; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 242; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 75; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 100; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 150; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 300; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.38; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.38; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 490; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 780; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 275; // tIS ps Input Setup Time
- parameter TIH = 200; // tIH ps Input Hold Time
- parameter TRAS_MIN = 37500; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 50625; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 13125; // tRCD ps Active to Read/Write command time
- parameter TRP = 13125; // tRP ps Precharge command period
- parameter TXP = 7500; // tXP ps Exit power down to a valid command
- parameter TCKE = 5625; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 300; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 245; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 245; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 9000; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 13125; // TAA ps Internal READ command to first data
- parameter CL_TIME = 13125; // CL ps Minimum CAS Latency
- `else `ifdef sg187 // sg187 is equivalent to the JEDEC DDR3-1066G (8-8-8) speed bin
- parameter TCK_MIN = 1875; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 90; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 180; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 132; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 157; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 175; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 188; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 200; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 209; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 217; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 224; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 231; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 237; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 242; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 75; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 100; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 150; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 300; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.38; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.38; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 490; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 780; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 275; // tIS ps Input Setup Time
- parameter TIH = 200; // tIH ps Input Hold Time
- parameter TRAS_MIN = 37500; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 52500; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 15000; // tRCD ps Active to Read/Write command time
- parameter TRP = 15000; // tRP ps Precharge command period
- parameter TXP = 7500; // tXP ps Exit power down to a valid command
- parameter TCKE = 5625; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 300; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 245; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 245; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 9000; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 15000; // TAA ps Internal READ command to first data
- parameter CL_TIME = 15000; // CL ps Minimum CAS Latency
- `else `ifdef sg25E // sg25E is equivalent to the JEDEC DDR3-800D (5-5-5) speed bin
- parameter TCK_MIN = 2500; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 100; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 200; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 147; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 175; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 194; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 209; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 222; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 232; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 241; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 249; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 257; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 263; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 269; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 125; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 150; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 200; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 400; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.38; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.38; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 600; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 900; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 350; // tIS ps Input Setup Time
- parameter TIH = 275; // tIH ps Input Hold Time
- parameter TRAS_MIN = 37500; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 50000; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 12500; // tRCD ps Active to Read/Write command time
- parameter TRP = 12500; // tRP ps Precharge command period
- parameter TXP = 7500; // tXP ps Exit power down to a valid command
- parameter TCKE = 7500; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 400; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 325; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 325; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 9000; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 12500; // TAA ps Internal READ command to first data
- parameter CL_TIME = 12500; // CL ps Minimum CAS Latency
- `else `define sg25 // sg25 is equivalent to the JEDEC DDR3-800E (6-6-6) speed bin
- parameter TCK_MIN = 2500; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 100; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 200; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 147; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 175; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 194; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 209; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 222; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 232; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 241; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 249; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 257; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 263; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 269; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 125; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 150; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 200; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 400; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.38; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.38; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 600; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 900; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 350; // tIS ps Input Setup Time
- parameter TIH = 275; // tIH ps Input Hold Time
- parameter TRAS_MIN = 37500; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 52500; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 15000; // tRCD ps Active to Read/Write command time
- parameter TRP = 15000; // tRP ps Precharge command period
- parameter TXP = 7500; // tXP ps Exit power down to a valid command
- parameter TCKE = 7500; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 400; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 325; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 325; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 9000; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 15000; // TAA ps Internal READ command to first data
- parameter CL_TIME = 15000; // CL ps Minimum CAS Latency
- `endif `endif `endif `endif `endif `endif `endif `endif `endif `endif `endif `endif `endif
- `ifdef x16
- `ifdef sg094E
- parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
- parameter TFAW = 30000; // tFAW ps (2KB page size) Four Bank Activate window
- `else `ifdef sg094
- parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
- parameter TFAW = 30000; // tFAW ps (2KB page size) Four Bank Activate window
- `else `ifdef sg107F
- parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
- parameter TFAW = 35000; // tFAW ps (2KB page size) Four Bank Activate window
- `else `ifdef sg107E
- parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
- parameter TFAW = 35000; // tFAW ps (2KB page size) Four Bank Activate window
- `else `ifdef sg107
- parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
- parameter TFAW = 35000; // tFAW ps (2KB page size) Four Bank Activate window
- `else `ifdef sg125F
- parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
- parameter TFAW = 40000; // tFAW ps (2KB page size) Four Bank Activate window
- `else `ifdef sg125E
- parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
- parameter TFAW = 40000; // tFAW ps (2KB page size) Four Bank Activate window
- `else `ifdef sg125
- parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
- parameter TFAW = 40000; // tFAW ps (2KB page size) Four Bank Activate window
- `else `ifdef sg15E
- parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
- parameter TFAW = 45000; // tFAW ps (2KB page size) Four Bank Activate window
- `else `ifdef sg15
- parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
- parameter TFAW = 45000; // tFAW ps (2KB page size) Four Bank Activate window
- `else // sg187E, sg187, sg25, sg25E
- parameter TRRD = 10000; // tRRD ps (2KB page size) Active bank a to Active bank b command time
- parameter TFAW = 50000; // tFAW ps (2KB page size) Four Bank Activate window
- `endif `endif `endif `endif `endif `endif `endif `endif `endif `endif
- `else // x4, x8
- `ifdef sg094E
- parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 25000; // tFAW ps (1KB page size) Four Bank Activate window
- `else `ifdef sg094
- parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 25000; // tFAW ps (1KB page size) Four Bank Activate window
- `else `ifdef sg107F
- parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 25000; // tFAW ps (1KB page size) Four Bank Activate window
- `else `ifdef sg107E
- parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 25000; // tFAW ps (1KB page size) Four Bank Activate window
- `else `ifdef sg107
- parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 25000; // tFAW ps (1KB page size) Four Bank Activate window
- `else `ifdef sg125F
- parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 30000; // tFAW ps (1KB page size) Four Bank Activate window
- `else `ifdef sg125E
- parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 30000; // tFAW ps (1KB page size) Four Bank Activate window
- `else `ifdef sg125
- parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 30000; // tFAW ps (1KB page size) Four Bank Activate window
- `else `ifdef sg15E
- parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 30000; // tFAW ps (1KB page size) Four Bank Activate window
- `else `ifdef sg15
- parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 30000; // tFAW ps (1KB page size) Four Bank Activate window
- `else `ifdef sg187E
- parameter TRRD = 7500; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 37500; // tFAW ps (1KB page size) Four Bank Activate window
- `else `ifdef sg187
- parameter TRRD = 7500; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 37500; // tFAW ps (1KB page size) Four Bank Activate window
- `else // sg25, sg25E
- parameter TRRD = 10000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 40000; // tFAW ps (1KB page size) Four Bank Activate window
- `endif `endif `endif `endif `endif `endif `endif `endif `endif `endif `endif `endif
- `endif
- // Timing Parameters
- // Mode Register
- parameter CL_MIN = 5; // CL tCK Minimum CAS Latency
- parameter CL_MAX = 14; // CL tCK Maximum CAS Latency
- parameter AL_MIN = 0; // AL tCK Minimum Additive Latency
- parameter AL_MAX = 2; // AL tCK Maximum Additive Latency
- parameter WR_MIN = 5; // WR tCK Minimum Write Recovery
- parameter WR_MAX = 16; // WR tCK Maximum Write Recovery
- parameter BL_MIN = 4; // BL tCK Minimum Burst Length
- parameter BL_MAX = 8; // BL tCK Minimum Burst Length
- parameter CWL_MIN = 5; // CWL tCK Minimum CAS Write Latency
- parameter CWL_MAX = 10; // CWL tCK Maximum CAS Write Latency
- // Clock
- parameter TCK_MAX = 3300; // tCK ps Maximum Clock Cycle Time
- parameter TCH_AVG_MIN = 0.47; // tCH tCK Minimum Clock High-Level Pulse Width
- parameter TCL_AVG_MIN = 0.47; // tCL tCK Minimum Clock Low-Level Pulse Width
- parameter TCH_AVG_MAX = 0.53; // tCH tCK Maximum Clock High-Level Pulse Width
- parameter TCL_AVG_MAX = 0.53; // tCL tCK Maximum Clock Low-Level Pulse Width
- parameter TCH_ABS_MIN = 0.43; // tCH tCK Minimum Clock High-Level Pulse Width
- parameter TCL_ABS_MIN = 0.43; // tCL tCK Maximum Clock Low-Level Pulse Width
- parameter TCKE_TCK = 3; // tCKE tCK CKE minimum high or low pulse width
- parameter TAA_MAX = 20000; // TAA ps Internal READ command to first data
- // Data OUT
- parameter TQH = 0.38; // tQH ps DQ output hold time from DQS, DQS#
- // Data Strobe OUT
- parameter TRPRE = 0.90; // tRPRE tCK DQS Read Preamble
- parameter TRPST = 0.30; // tRPST tCK DQS Read Postamble
- // Data Strobe IN
- parameter TDQSH = 0.45; // tDQSH tCK DQS input High Pulse Width
- parameter TDQSL = 0.45; // tDQSL tCK DQS input Low Pulse Width
- parameter TWPRE = 0.90; // tWPRE tCK DQS Write Preamble
- parameter TWPST = 0.30; // tWPST tCK DQS Write Postamble
- // Command and Address
- parameter TZQCS = 64; // tZQCS tCK ZQ Cal (Short) time
- parameter TZQINIT = 512; // tZQinit tCK ZQ Cal (Long) time
- parameter TZQOPER = 256; // tZQoper tCK ZQ Cal (Long) time
- parameter TCCD = 4; // tCCD tCK Cas to Cas command delay
- parameter TCCD_DG = 2; // tCCD_DG tCK Cas to Cas command delay to different group
- parameter TRAS_MAX = 60e9; // tRAS ps Maximum Active to Precharge command time
- parameter TWR = 15000; // tWR ps Write recovery time
- parameter TMRD = 4; // tMRD tCK Load Mode Register command cycle time
- parameter TMOD = 15000; // tMOD ps LOAD MODE to non-LOAD MODE command cycle time
- parameter TMOD_TCK = 12; // tMOD tCK LOAD MODE to non-LOAD MODE command cycle time
- parameter TRRD_TCK = 4; // tRRD tCK Active bank a to Active bank b command time
- parameter TRRD_DG = 3000; // tRRD_DG ps Active bank a to Active bank b command time to different group
- parameter TRRD_DG_TCK = 2; // tRRD_DG tCK Active bank a to Active bank b command time to different group
- parameter TRTP = 7500; // tRTP ps Read to Precharge command delay
- parameter TRTP_TCK = 4; // tRTP tCK Read to Precharge command delay
- parameter TWTR = 7500; // tWTR ps Write to Read command delay
- parameter TWTR_DG = 3750; // tWTR_DG ps Write to Read command delay to different group
- parameter TWTR_TCK = 4; // tWTR tCK Write to Read command delay
- parameter TWTR_DG_TCK = 2; // tWTR_DG tCK Write to Read command delay to different group
- parameter TDLLK = 512; // tDLLK tCK DLL locking time
- // Refresh - 1Gb
- parameter TRFC_MIN = 110000; // tRFC ps Refresh to Refresh Command interval minimum value
- parameter TRFC_MAX =70312500; // tRFC ps Refresh to Refresh Command Interval maximum value
- // Power Down
- parameter TXP_TCK = 3; // tXP tCK Exit power down to a valid command
- parameter TXPDLL = 24000; // tXPDLL ps Exit precharge power down to READ or WRITE command (DLL-off mode)
- parameter TXPDLL_TCK = 10; // tXPDLL tCK Exit precharge power down to READ or WRITE command (DLL-off mode)
- parameter TACTPDEN = 1; // tACTPDEN tCK Timing of last ACT command to power down entry
- parameter TPRPDEN = 1; // tPREPDEN tCK Timing of last PRE command to power down entry
- parameter TREFPDEN = 1; // tARPDEN tCK Timing of last REFRESH command to power down entry
- parameter TCPDED = 1; // tCPDED tCK Command pass disable/enable delay
- parameter TPD_MAX =TRFC_MAX; // tPD ps Power-down entry-to-exit timing
- parameter TXPR = 120000; // tXPR ps Exit Reset from CKE assertion to a valid command
- parameter TXPR_TCK = 5; // tXPR tCK Exit Reset from CKE assertion to a valid command
- // Self Refresh
- parameter TXS = 120000; // tXS ps Exit self refesh to a non-read or write command
- parameter TXS_TCK = 5; // tXS tCK Exit self refesh to a non-read or write command
- parameter TXSDLL = TDLLK; // tXSRD tCK Exit self refresh to a read or write command
- parameter TISXR = TIS; // tISXR ps CKE setup time during self refresh exit.
- parameter TCKSRE = 10000; // tCKSRE ps Valid Clock requirement after self refresh entry (SRE)
- parameter TCKSRE_TCK = 5; // tCKSRE tCK Valid Clock requirement after self refresh entry (SRE)
- parameter TCKSRX = 10000; // tCKSRX ps Valid Clock requirement prior to self refresh exit (SRX)
- parameter TCKSRX_TCK = 5; // tCKSRX tCK Valid Clock requirement prior to self refresh exit (SRX)
- parameter TCKESR_TCK = 4; // tCKESR tCK Minimum CKE low width for Self Refresh entry to exit timing
- // ODT
- parameter TAOF = 0.7; // tAOF tCK RTT turn-off from ODTLoff reference
- parameter TAONPD = 8500; // tAONPD ps Asynchronous RTT turn-on delay (Power-Down with DLL frozen)
- parameter TAOFPD = 8500; // tAONPD ps Asynchronous RTT turn-off delay (Power-Down with DLL frozen)
- parameter ODTH4 = 4; // ODTH4 tCK ODT minimum HIGH time after ODT assertion or write (BL4)
- parameter ODTH8 = 6; // ODTH8 tCK ODT minimum HIGH time after write (BL8)
- parameter TADC = 0.7; // tADC tCK RTT dynamic change skew
- // Write Levelization
- parameter TWLMRD = 40; // tWLMRD tCK First DQS pulse rising edge after tDQSS margining mode is programmed
- parameter TWLDQSEN = 25; // tWLDQSEN tCK DQS/DQS delay after tDQSS margining mode is programmed
- parameter TWLOE = 2000; // tWLOE ps Write levelization output error
- // Size Parameters based on Part Width
- `ifdef x4
- parameter DM_BITS = 1; // Set this parameter to control how many Data Mask bits are used
- parameter ADDR_BITS = 14; // MAX Address Bits
- parameter ROW_BITS = 14; // Set this parameter to control how many Address bits are used
- parameter COL_BITS = 11; // Set this parameter to control how many Column bits are used
- parameter DQ_BITS = 4; // Set this parameter to control how many Data bits are used **Same as part bit width**
- parameter DQS_BITS = 1; // Set this parameter to control how many Dqs bits are used
- `else `ifdef x8
- parameter DM_BITS = 1; // Set this parameter to control how many Data Mask bits are used
- parameter ADDR_BITS = 14; // MAX Address Bits
- parameter ROW_BITS = 14; // Set this parameter to control how many Address bits are used
- parameter COL_BITS = 10; // Set this parameter to control how many Column bits are used
- parameter DQ_BITS = 8; // Set this parameter to control how many Data bits are used **Same as part bit width**
- parameter DQS_BITS = 1; // Set this parameter to control how many Dqs bits are used
- `else `define x16
- parameter DM_BITS = 2; // Set this parameter to control how many Data Mask bits are used
- parameter ADDR_BITS = 13; // MAX Address Bits
- parameter ROW_BITS = 13; // Set this parameter to control how many Address bits are used
- parameter COL_BITS = 10; // Set this parameter to control how many Column bits are used
- parameter DQ_BITS = 16; // Set this parameter to control how many Data bits are used **Same as part bit width**
- parameter DQS_BITS = 2; // Set this parameter to control how many Dqs bits are used
- `endif `endif
- // Size Parameters
- parameter BA_BITS = 3; // Set this parmaeter to control how many Bank Address bits are used
- parameter MEM_BITS = 15; // Set this parameter to control how many write data bursts can be stored in memory. The default is 2^10=1024.
- parameter AP = 10; // the address bit that controls auto-precharge and precharge-all
- parameter BC = 12; // the address bit that controls burst chop
- parameter BL_BITS = 3; // the number of bits required to count to BL_MAX
- parameter BO_BITS = 2; // the number of Burst Order Bits
- `ifdef QUAD_RANK
- `define DUAL_RANK // also define DUAL_RANK
- parameter CS_BITS = 4; // Number of Chip Select Bits
- parameter RANKS = 4; // Number of Chip Selects
- `else `ifdef DUAL_RANK
- parameter CS_BITS = 2; // Number of Chip Select Bits
- parameter RANKS = 2; // Number of Chip Selects
- `else
- parameter CS_BITS = 2; // Number of Chip Select Bits
- parameter RANKS = 1; // Number of Chip Selects
- `endif `endif
- // Simulation parameters
- parameter RZQ = 240; // termination resistance
- parameter PRE_DEF_PAT = 8'hAA; // value returned during mpr pre-defined pattern readout
- parameter STOP_ON_ERROR = 1; // If set to 1, the model will halt on command sequence/major errors
- parameter DEBUG = 0; // Turn on Debug messages
- parameter BUS_DELAY = 0; // delay in nanoseconds
- parameter RANDOM_OUT_DELAY = 0; // If set to 1, the model will put a random amount of delay on DQ/DQS during reads
- parameter RANDOM_SEED = 711689044; //seed value for random generator.
- parameter RDQSEN_PRE = 2; // DQS driving time prior to first read strobe
- parameter RDQSEN_PST = 1; // DQS driving time after last read strobe
- parameter RDQS_PRE = 2; // DQS low time prior to first read strobe
- parameter RDQS_PST = 1; // DQS low time after last read strobe
- parameter RDQEN_PRE = 0; // DQ/DM driving time prior to first read data
- parameter RDQEN_PST = 0; // DQ/DM driving time after last read data
- parameter WDQS_PRE = 2; // DQS half clock periods prior to first write strobe
- parameter WDQS_PST = 1; // DQS half clock periods after last write strobe
- // check for legal cas latency based on the cas write latency
- function valid_cl;
- input [3:0] cl;
- input [3:0] cwl;
- case ({cwl, cl})
- `ifdef sg094E
- {4'd5, 4'd5 },
- {4'd5, 4'd6 },
- {4'd6, 4'd7 },
- {4'd6, 4'd8 },
- {4'd7, 4'd9 },
- {4'd7, 4'd10},
- {4'd8, 4'd10},
- {4'd8, 4'd11},
- {4'd8, 4'd12},
- {4'd9, 4'd12},
- {4'd9, 4'd13},
- {4'd9, 4'd14},
- {4'd10, 4'd13},
- {4'd10, 4'd14}: valid_cl = 1;
- `else `ifdef sg094
- {4'd5, 4'd6 },
- {4'd6, 4'd7 },
- {4'd6, 4'd8 },
- {4'd7, 4'd10},
- {4'd8, 4'd11},
- {4'd8, 4'd12},
- {4'd9, 4'd13},
- {4'd9, 4'd14},
- {4'd10, 4'd14}: valid_cl = 1;
- `else `ifdef sg107F
- {4'd5, 4'd6 },
- {4'd6, 4'd7 },
- {4'd6, 4'd8 },
- {4'd7, 4'd9 },
- {4'd7, 4'd10},
- {4'd8, 4'd11},
- {4'd8, 4'd12},
- {4'd9, 4'd12},
- {4'd9, 4'd13},
- {4'd9, 4'd14}: valid_cl = 1;
- `else `ifdef sg107E
- {4'd5, 4'd6 },
- {4'd6, 4'd8 },
- {4'd7, 4'd10},
- {4'd8, 4'd12},
- {4'd9, 4'd13},
- {4'd9, 4'd14}: valid_cl = 1;
- `else `ifdef sg107
- {4'd5, 4'd6 },
- {4'd6, 4'd8 },
- {4'd7, 4'd10},
- {4'd8, 4'd12},
- {4'd9, 4'd14}: valid_cl = 1;
- `else `ifdef sg125F
- {4'd5, 4'd5 },
- {4'd5, 4'd6 },
- {4'd6, 4'd7 },
- {4'd6, 4'd8 },
- {4'd7, 4'd8 },
- {4'd7, 4'd9 },
- {4'd7, 4'd10},
- {4'd8, 4'd9 },
- {4'd8, 4'd10},
- {4'd8, 4'd11}: valid_cl = 1;
- `else `ifdef sg125E
- {4'd5, 4'd5 },
- {4'd5, 4'd6 },
- {4'd6, 4'd7 },
- {4'd6, 4'd8 },
- {4'd7, 4'd9 },
- {4'd7, 4'd10},
- {4'd8, 4'd10},
- {4'd8, 4'd11}: valid_cl = 1;
- `else `ifdef sg125
- {4'd5, 4'd6 },
- {4'd6, 4'd7 },
- {4'd6, 4'd8 },
- {4'd7, 4'd9 },
- {4'd7, 4'd10},
- {4'd8, 4'd11}: valid_cl = 1;
- `else `ifdef sg15E
- {4'd5, 4'd6 },
- {4'd6, 4'd7 },
- {4'd6, 4'd8 },
- {4'd7, 4'd9 },
- {4'd7, 4'd10}: valid_cl = 1;
- `else `ifdef sg15
- {4'd5, 4'd6 },
- {4'd6, 4'd8 },
- {4'd7, 4'd10}: valid_cl = 1;
- `else `ifdef sg187E
- {4'd5, 4'd6 },
- {4'd6, 4'd7 },
- {4'd6, 4'd8 }: valid_cl = 1;
- `else `ifdef sg187
- {4'd5, 4'd6 },
- {4'd6, 4'd8 }: valid_cl = 1;
- `else `ifdef sg25E
- {4'd5, 4'd5 },
- {4'd5, 4'd6 }: valid_cl = 1;
- `else `ifdef sg25
- {4'd5, 4'd6 }: valid_cl = 1;
- `endif `endif `endif `endif `endif `endif `endif `endif `endif `endif `endif `endif `endif `endif
- default : valid_cl = 0;
- endcase
- endfunction
- // find the minimum valid cas write latency
- function [3:0] min_cwl;
- input period;
- real period;
- min_cwl = (period >= 2500.0) ? 5:
- (period >= 1875.0) ? 6:
- (period >= 1500.0) ? 7:
- (period >= 1250.0) ? 8:
- (period >= 15e3/14) ? 9:
- 10; // (period >= 937.5)
- endfunction
- // find the minimum valid cas latency
- function [3:0] min_cl;
- input period;
- real period;
- reg [3:0] cwl;
- reg [3:0] cl;
- begin
- cwl = min_cwl(period);
- for (cl=CL_MAX; cl>=CL_MIN; cl=cl-1) begin
- if (valid_cl(cl, cwl)) begin
- min_cl = cl;
- end
- end
- end
- endfunction
- `elsif x2Gb // 2Gb parts
- // SYMBOL UNITS DESCRIPTION
- // ------ ----- -----------
- `ifdef sg15E // sg15E is equivelant to the JEDEC DDR3-1333H (9-9-9) speed bin
- parameter TCK_MIN = 1500; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 80; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 160; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 118; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 140; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 155; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 168; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 177; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 186; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 193; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 200; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 205; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 210; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 215; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 30; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 65; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 125; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 255; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 400; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 620; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 190; // tIS ps Input Setup Time
- parameter TIH = 140; // tIH ps Input Hold Time
- parameter TRAS_MIN = 36000; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 49500; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 13500; // tRCD ps Active to Read/Write command time
- parameter TRP = 13500; // tRP ps Precharge command period
- parameter TXP = 6000; // tXP ps Exit power down to a valid command
- parameter TCKE = 5625; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 250; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 195; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 195; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 9000; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 13500; // TAA ps Internal READ command to first data
- parameter CL_TIME = 13500; // CL ps Minimum CAS Latency
- `else `ifdef sg15 // sg15 is equivelant to the JEDEC DDR3-1333J (10-10-10) speed bin
- parameter TCK_MIN = 1500; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 80; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 160; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 118; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 140; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 155; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 168; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 177; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 186; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 193; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 200; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 205; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 210; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 215; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 30; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 65; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 125; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 255; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 400; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 620; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 190; // tIS ps Input Setup Time
- parameter TIH = 140; // tIH ps Input Hold Time
- parameter TRAS_MIN = 36000; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 51000; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 15000; // tRCD ps Active to Read/Write command time
- parameter TRP = 15000; // tRP ps Precharge command period
- parameter TXP = 6000; // tXP ps Exit power down to a valid command
- parameter TCKE = 5625; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 250; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 195; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 195; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 9000; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 15000; // TAA ps Internal READ command to first data
- parameter CL_TIME = 15000; // CL ps Minimum CAS Latency
- `else `ifdef sg187E // sg187E is equivelant to the JEDEC DDR3-1066F (7-7-7) speed bin
- parameter TCK_MIN = 1875; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 90; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 180; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 132; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 157; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 175; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 188; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 200; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 209; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 217; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 224; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 231; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 237; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 242; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 25; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 100; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 150; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 300; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.38; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.38; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 490; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 780; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 125; // tIS ps Input Setup Time
- parameter TIH = 200; // tIH ps Input Hold Time
- parameter TRAS_MIN = 37500; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 50625; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 13125; // tRCD ps Active to Read/Write command time
- parameter TRP = 13125; // tRP ps Precharge command period
- parameter TXP = 7500; // tXP ps Exit power down to a valid command
- parameter TCKE = 5625; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 300; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 245; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 245; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 9000; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 13125; // TAA ps Internal READ command to first data
- parameter CL_TIME = 13125; // CL ps Minimum CAS Latency
- `else `ifdef sg187 // sg187 is equivelant to the JEDEC DDR3-1066G (8-8-8) speed bin
- parameter TCK_MIN = 1875; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 90; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 180; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 132; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 157; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 175; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 188; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 200; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 209; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 217; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 224; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 231; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 237; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 242; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 25; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 100; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 150; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 300; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.38; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.38; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 490; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 780; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 125; // tIS ps Input Setup Time
- parameter TIH = 200; // tIH ps Input Hold Time
- parameter TRAS_MIN = 37500; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 52500; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 15000; // tRCD ps Active to Read/Write command time
- parameter TRP = 15000; // tRP ps Precharge command period
- parameter TXP = 7500; // tXP ps Exit power down to a valid command
- parameter TCKE = 5625; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 300; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 245; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 245; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 9000; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 15000; // TAA ps Internal READ command to first data
- parameter CL_TIME = 15000; // CL ps Minimum CAS Latency
- `else `ifdef sg25E // sg25E is equivelant to the JEDEC DDR3-800D (5-5-5) speed bin
- parameter TCK_MIN = 2500; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 100; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 200; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 147; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 175; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 194; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 209; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 222; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 232; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 241; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 249; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 257; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 263; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 269; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 75; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 150; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 200; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 400; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.38; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.38; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 600; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 900; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 200; // tIS ps Input Setup Time
- parameter TIH = 275; // tIH ps Input Hold Time
- parameter TRAS_MIN = 37500; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 50000; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 12500; // tRCD ps Active to Read/Write command time
- parameter TRP = 12500; // tRP ps Precharge command period
- parameter TXP = 7500; // tXP ps Exit power down to a valid command
- parameter TCKE = 7500; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 400; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 325; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 325; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 9000; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 12500; // TAA ps Internal READ command to first data
- parameter CL_TIME = 12500; // CL ps Minimum CAS Latency
- `else `define sg25 // sg25 is equivelant to the JEDEC DDR3-800E (6-6-6) speed bin
- parameter TCK_MIN = 2500; // tCK ps Minimum Clock Cycle Time
- parameter TJIT_PER = 100; // tJIT(per) ps Period JItter
- parameter TJIT_CC = 200; // tJIT(cc) ps Cycle to Cycle jitter
- parameter TERR_2PER = 147; // tERR(2per) ps Accumulated Error (2-cycle)
- parameter TERR_3PER = 175; // tERR(3per) ps Accumulated Error (3-cycle)
- parameter TERR_4PER = 194; // tERR(4per) ps Accumulated Error (4-cycle)
- parameter TERR_5PER = 209; // tERR(5per) ps Accumulated Error (5-cycle)
- parameter TERR_6PER = 222; // tERR(6per) ps Accumulated Error (6-cycle)
- parameter TERR_7PER = 232; // tERR(7per) ps Accumulated Error (7-cycle)
- parameter TERR_8PER = 241; // tERR(8per) ps Accumulated Error (8-cycle)
- parameter TERR_9PER = 249; // tERR(9per) ps Accumulated Error (9-cycle)
- parameter TERR_10PER = 257; // tERR(10per)ps Accumulated Error (10-cycle)
- parameter TERR_11PER = 263; // tERR(11per)ps Accumulated Error (11-cycle)
- parameter TERR_12PER = 269; // tERR(12per)ps Accumulated Error (12-cycle)
- parameter TDS = 75; // tDS ps DQ and DM input setup time relative to DQS
- parameter TDH = 150; // tDH ps DQ and DM input hold time relative to DQS
- parameter TDQSQ = 200; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
- parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
- parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
- parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
- parameter TDQSCK = 400; // tDQSCK ps DQS output access time from CK/CK#
- parameter TQSH = 0.38; // tQSH tCK DQS Output High Pulse Width
- parameter TQSL = 0.38; // tQSL tCK DQS Output Low Pulse Width
- parameter TDIPW = 600; // tDIPW ps DQ and DM input Pulse Width
- parameter TIPW = 900; // tIPW ps Control and Address input Pulse Width
- parameter TIS = 200; // tIS ps Input Setup Time
- parameter TIH = 275; // tIH ps Input Hold Time
- parameter TRAS_MIN = 37500; // tRAS ps Minimum Active to Precharge command time
- parameter TRC = 52500; // tRC ps Active to Active/Auto Refresh command time
- parameter TRCD = 15000; // tRCD ps Active to Read/Write command time
- parameter TRP = 15000; // tRP ps Precharge command period
- parameter TXP = 7500; // tXP ps Exit power down to a valid command
- parameter TCKE = 7500; // tCKE ps CKE minimum high or low pulse width
- parameter TAON = 400; // tAON ps RTT turn-on from ODTLon reference
- parameter TWLS = 325; // tWLS ps Setup time for tDQS flop
- parameter TWLH = 325; // tWLH ps Hold time of tDQS flop
- parameter TWLO = 9000; // tWLO ps Write levelization output delay
- parameter TAA_MIN = 15000; // TAA ps Internal READ command to first data
- parameter CL_TIME = 15000; // CL ps Minimum CAS Latency
- `endif `endif `endif `endif `endif
- `ifdef x16
- `ifdef sg15E
- parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
- parameter TFAW = 45000; // tFAW ps (2KB page size) Four Bank Activate window
- `else `ifdef sg15
- parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
- parameter TFAW = 45000; // tFAW ps (2KB page size) Four Bank Activate window
- `else // sg187E, sg187, sg25, sg25E
- parameter TRRD = 10000; // tRRD ps (2KB page size) Active bank a to Active bank b command time
- parameter TFAW = 50000; // tFAW ps (2KB page size) Four Bank Activate window
- `endif `endif
- `else // x4, x8
- `ifdef sg15E
- parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 30000; // tFAW ps (1KB page size) Four Bank Activate window
- `else `ifdef sg15
- parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 30000; // tFAW ps (1KB page size) Four Bank Activate window
- `else `ifdef sg187E
- parameter TRRD = 7500; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 37500; // tFAW ps (1KB page size) Four Bank Activate window
- `else `ifdef sg187
- parameter TRRD = 7500; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 37500; // tFAW ps (1KB page size) Four Bank Activate window
- `else // sg25, sg25E
- parameter TRRD = 10000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
- parameter TFAW = 40000; // tFAW ps (1KB page size) Four Bank Activate window
- `endif `endif `endif `endif
- `endif
- // Timing Parameters
- // Mode Register
- parameter CL_MIN = 5; // CL tCK Minimum CAS Latency
- parameter CL_MAX = 11; // CL tCK Maximum CAS Latency
- parameter AL_MIN = 0; // AL tCK Minimum Additive Latency
- parameter AL_MAX = 2; // AL tCK Maximum Additive Latency
- parameter WR_MIN = 5; // WR tCK Minimum Write Recovery
- parameter WR_MAX = 12; // WR tCK Maximum Write Recovery
- parameter BL_MIN = 4; // BL tCK Minimum Burst Length
- parameter BL_MAX = 8; // BL tCK Minimum Burst Length
- parameter CWL_MIN = 5; // CWL tCK Minimum CAS Write Latency
- parameter CWL_MAX = 8; // CWL tCK Maximum CAS Write Latency
- // Clock
- parameter TCK_MAX = 3300; // tCK ps Maximum Clock Cycle Time
- parameter TCH_AVG_MIN = 0.47; // tCH tCK Minimum Clock High-Level Pulse Width
- parameter TCL_AVG_MIN = 0.47; // tCL tCK Minimum Clock Low-Level Pulse Width
- parameter TCH_AVG_MAX = 0.53; // tCH tCK Maximum Clock High-Level Pulse Width
- parameter TCL_AVG_MAX = 0.53; // tCL tCK Maximum Clock Low-Level Pulse Width
- parameter TCH_ABS_MIN = 0.43; // tCH tCK Minimum Clock High-Level Pulse Width
- parameter TCL_ABS_MIN = 0.43; // tCL tCK Maximum Clock Low-Level Pulse Width
- parameter TCKE_TCK = 3; // tCKE tCK CKE minimum high or low pulse width
- parameter TAA_MAX = 20000; // TAA ps Internal READ command to first data
- // Data OUT
- parameter TQH = 0.38; // tQH ps DQ output hold time from DQS, DQS#
- // Data Strobe OUT
- parameter TRPRE = 0.90; // tRPRE tCK DQS Read Preamble
- parameter TRPST = 0.30; // tRPST tCK DQS Read Postamble
- // Data Strobe IN
- parameter TDQSH = 0.45; // tDQSH tCK DQS input High Pulse Width
- parameter TDQSL = 0.45; // tDQSL tCK DQS input Low Pulse Width
- parameter TWPRE = 0.90; // tWPRE tCK DQS Write Preamble
- parameter TWPST = 0.30; // tWPST tCK DQS Write Postamble
- // Command and Address
- parameter TZQCS = 64; // tZQCS tCK ZQ Cal (Short) time
- parameter TZQINIT = 512; // tZQinit tCK ZQ Cal (Long) time
- parameter TZQOPER = 256; // tZQoper tCK ZQ Cal (Long) time
- parameter TCCD = 4; // tCCD tCK Cas to Cas command delay
- parameter TCCD_DG = 2; // tCCD_DG tCK Cas to Cas command delay to different group
- parameter TRAS_MAX =70312500; // tRAS ps Maximum Active to Precharge command time
- parameter TWR = 15000; // tWR ps Write recovery time
- parameter TMRD = 4; // tMRD tCK Load Mode Register command cycle time
- parameter TMOD = 15000; // tMOD ps LOAD MODE to non-LOAD MODE command cycle time
- parameter TMOD_TCK = 12; // tMOD tCK LOAD MODE to non-LOAD MODE command cycle time
- parameter TRRD_TCK = 4; // tRRD tCK Active bank a to Active bank b command time
- parameter TRRD_DG = 3000; // tRRD_DG ps Active bank a to Active bank b command time to different group
- parameter TRRD_DG_TCK = 2; // tRRD_DG tCK Active bank a to Active bank b command time to different group
- parameter TRTP = 7500; // tRTP ps Read to Precharge command delay
- parameter TRTP_TCK = 4; // tRTP tCK Read to Precharge command delay
- parameter TWTR = 7500; // tWTR ps Write to Read command delay
- parameter TWTR_DG = 3750; // tWTR_DG ps Write to Read command delay to different group
- parameter TWTR_TCK = 4; // tWTR tCK Write to Read command delay
- parameter TWTR_DG_TCK = 2; // tWTR_DG tCK Write to Read command delay to different group
- parameter TDLLK = 512; // tDLLK tCK DLL locking time
- // Refresh - 2Gb
- parameter TRFC_MIN = 160000; // tRFC ps Refresh to Refresh Command interval minimum value
- parameter TRFC_MAX =70312500; // tRFC ps Refresh to Refresh Command Interval maximum value
- // Power Down
- parameter TXP_TCK = 3; // tXP tCK Exit power down to a valid command
- parameter TXPDLL = 24000; // tXPDLL ps Exit precharge power down to READ or WRITE command (DLL-off mode)
- parameter TXPDLL_TCK = 10; // tXPDLL tCK Exit precharge power down to READ or WRITE command (DLL-off mode)
- parameter TACTPDEN = 1; // tACTPDEN tCK Timing of last ACT command to power down entry
- parameter TPRPDEN = 1; // tPREPDEN tCK Timing of last PRE command to power down entry
- parameter TREFPDEN = 1; // tARPDEN tCK Timing of last REFRESH command to power down entry
- parameter TCPDED = 1; // tCPDED tCK Command pass disable/enable delay
- parameter TPD_MAX =TRFC_MAX; // tPD ps Power-down entry-to-exit timing
- parameter TXPR = 170000; // tXPR ps Exit Reset from CKE assertion to a valid command
- parameter TXPR_TCK = 5; // tXPR tCK Exit Reset from CKE assertion to a valid command
- // Self Refresh
- parameter TXS = 170000; // tXS ps Exit self refesh to a non-read or write command
- parameter TXS_TCK = 5; // tXS tCK Exit self refesh to a non-read or write command
- parameter TXSDLL = TDLLK; // tXSRD tCK Exit self refresh to a read or write command
- parameter TISXR = TIS; // tISXR ps CKE setup time during self refresh exit.
- parameter TCKSRE = 10000; // tCKSRE ps Valid Clock requirement after self refresh entry (SRE)
- parameter TCKSRE_TCK = 5; // tCKSRE tCK Valid Clock requirement after self refresh entry (SRE)
- parameter TCKSRX = 10000; // tCKSRX ps Valid Clock requirement prior to self refresh exit (SRX)
- parameter TCKSRX_TCK = 5; // tCKSRX tCK Valid Clock requirement prior to self refresh exit (SRX)
- parameter TCKESR_TCK = 4; // tCKESR tCK Minimum CKE low width for Self Refresh entry to exit timing
- // ODT
- parameter TAOF = 0.7; // tAOF tCK RTT turn-off from ODTLoff reference
- parameter TAONPD = 9000; // tAONPD ps Asynchronous RTT turn-on delay (Power-Down with DLL frozen)
- parameter TAOFPD = 9000; // tAONPD ps Asynchronous RTT turn-off delay (Power-Down with DLL frozen)
- parameter ODTH4 = 4; // ODTH4 tCK ODT minimum HIGH time after ODT assertion or write (BL4)
- parameter ODTH8 = 6; // ODTH8 tCK ODT minimum HIGH time after write (BL8)
- parameter TADC = 0.7; // tADC tCK RTT dynamic change skew
- // Write Levelization
- parameter TWLMRD = 40; // tWLMRD tCK First DQS pulse rising edge after tDQSS margining mode is programmed
- parameter TWLDQSEN = 25; // tWLDQSEN tCK DQS/DQS delay after tDQSS margining mode is programmed
- parameter TWLOE = 2000; // tWLOE ps Write levelization output error
- // Size Parameters based on Part Width
- `ifdef x4
- parameter DM_BITS = 1; // Set this parameter to control how many Data Mask bits are used
- parameter ADDR_BITS = 15; // MAX Address Bits
- parameter ROW_BITS = 15; // Set this parameter to control how many Address bits are used
- parameter COL_BITS = 11; // Set this parameter to control how many Column bits are used
- parameter DQ_BITS = 4; // Set this parameter to control how many Data bits are used **Same as part bit width**
- parameter DQS_BITS = 1; // Set this parameter to control how many Dqs bits are used
- `else `ifdef x8
- parameter DM_BITS = 1; // Set this parameter to control how many Data Mask bits are used
- parameter ADDR_BITS = 15; // MAX Address Bits
- parameter ROW_BITS = 15; // Set this parameter to control how many Address bits are used
- parameter COL_BITS = 10; // Set this parameter to control how many Column bits are used
- parameter DQ_BITS = 8; // Set this parameter to control how many Data bits are used **Same as part bit width**
- parameter DQS_BITS = 1; // Set this parameter to control how many Dqs bits are used
- `else `define x16
- parameter DM_BITS = 2; // Set this parameter to control how many Data Mask bits are used
- parameter ADDR_BITS = 14; // MAX Address Bits
- parameter ROW_BITS = 14; // Set this parameter to control how many Address bits are used
- parameter COL_BITS = 10; // Set this parameter to control how many Column bits are used
- parameter DQ_BITS = 16; // Set this parameter to control how many Data bits are used **Same as part bit width**
- parameter DQS_BITS = 2; // Set this parameter to control how many Dqs bits are used
- `endif `endif
- // Size Parameters
- parameter BA_BITS = 3; // Set this parmaeter to control how many Bank Address bits are used
- parameter MEM_BITS = 15; // Set this parameter to control how many write data bursts can be stored in memory. The default is 2^10=1024.
- parameter AP = 10; // the address bit that controls auto-precharge and precharge-all
- parameter BC = 12; // the address bit that controls burst chop
- parameter BL_BITS = 3; // the number of bits required to count to BL_MAX
- parameter BO_BITS = 2; // the number of Burst Order Bits
- `ifdef QUAD_RANK
- `define DUAL_RANK // also define DUAL_RANK
- parameter CS_BITS = 4; // Number of Chip Select Bits
- parameter RANKS = 4; // Number of Chip Selects
- `else `ifdef DUAL_RANK
- parameter CS_BITS = 2; // Number of Chip Select Bits
- parameter RANKS = 2; // Number of Chip Selects
- `else
- parameter CS_BITS = 2; // Number of Chip Select Bits
- parameter RANKS = 1; // Number of Chip Selects
- `endif `endif
- // Simulation parameters
- parameter RZQ = 240; // termination resistance
- parameter PRE_DEF_PAT = 8'hAA; // value returned during mpr pre-defined pattern readout
- parameter STOP_ON_ERROR = 1; // If set to 1, the model will halt on command sequence/major errors
- parameter DEBUG = 0; // Turn on Debug messages
- parameter BUS_DELAY = 0; // delay in nanoseconds
- parameter RANDOM_OUT_DELAY = 0; // If set to 1, the model will put a random amount of delay on DQ/DQS during reads
- parameter RANDOM_SEED = 711689044; //seed value for random generator.
- parameter RDQSEN_PRE = 2; // DQS driving time prior to first read strobe
- parameter RDQSEN_PST = 1; // DQS driving time after last read strobe
- parameter RDQS_PRE = 2; // DQS low time prior to first read strobe
- parameter RDQS_PST = 1; // DQS low time after last read strobe
- parameter RDQEN_PRE = 0; // DQ/DM driving time prior to first read data
- parameter RDQEN_PST = 0; // DQ/DM driving time after last read data
- parameter WDQS_PRE = 2; // DQS half clock periods prior to first write strobe
- parameter WDQS_PST = 1; // DQS half clock periods after last write strobe
- // check for legal cas latency based on the cas write latency
- function valid_cl;
- input [3:0] cl;
- input [3:0] cwl;
- case ({cwl, cl})
- `ifdef sg15E
- {4'd5, 4'd6 },
- {4'd6, 4'd8 },
- {4'd7, 4'd9 },
- {4'd7, 4'd10}: valid_cl = 1;
- `else `ifdef sg15
- {4'd5, 4'd6 },
- {4'd6, 4'd8 },
- {4'd7, 4'd10}: valid_cl = 1;
- `else `ifdef sg187E
- {4'd5, 4'd6 },
- {4'd6, 4'd7 },
- {4'd6, 4'd8 }: valid_cl = 1;
- `else `ifdef sg187
- {4'd5, 4'd6 },
- {4'd6, 4'd8 }: valid_cl = 1;
- `else `ifdef sg25E
- {4'd5, 4'd5 },
- {4'd5, 4'd6 }: valid_cl = 1;
- `else `ifdef sg25
- {4'd5, 4'd6 }: valid_cl = 1;
- `endif `endif `endif `endif `endif `endif
- default : valid_cl = 0;
- endcase
- endfunction
- // find the minimum valid cas write latency
- function [3:0] min_cwl;
- input period;
- real period;
- min_cwl = (period >= 2500.0) ? 5:
- (period >= 1875.0) ? 6:
- (period >= 1500.0) ? 7:
- 8; //(period >= 1250.0)
- endfunction
- // find the minimum valid cas latency
- function [3:0] min_cl;
- input period;
- real period;
- reg [3:0] cwl;
- reg [3:0] cl;
- begin
- cwl = min_cwl(period);
- for (cl=CL_MAX; cl>=CL_MIN; cl=cl-1) begin
- if (valid_cl(cl, cwl)) begin
- min_cl = cl;
- end
- end
- end
- endfunction
- `endif
- parameter check_strict_mrbits = 1;
- parameter check_strict_timing = 1;
- parameter feature_pasr = 1;
- parameter feature_truebl4 = 0;
-
- // text macros
- `define DQ_PER_DQS DQ_BITS/DQS_BITS
- `define BANKS (1<<BA_BITS)
- `define MAX_BITS (BA_BITS+ROW_BITS+COL_BITS-BL_BITS)
- `define MAX_SIZE (1<<(BA_BITS+ROW_BITS+COL_BITS-BL_BITS))
- `define MEM_SIZE (1<<MEM_BITS)
- `define MAX_PIPE 4*CL_MAX
- // Declare Ports
- input rst_n;
- input ck;
- input ck_n;
- input cke;
- input cs_n;
- input ras_n;
- input cas_n;
- input we_n;
- inout [DM_BITS-1:0] dm_tdqs;
- input [BA_BITS-1:0] ba;
- input [ADDR_BITS-1:0] addr;
- inout [DQ_BITS-1:0] dq;
- inout [DQS_BITS-1:0] dqs;
- inout [DQS_BITS-1:0] dqs_n;
- output [DQS_BITS-1:0] tdqs_n;
- input odt;
- // clock jitter
- real tck_avg;
- time tck_sample [TDLLK-1:0];
- time tch_sample [TDLLK-1:0];
- time tcl_sample [TDLLK-1:0];
- time tck_i;
- time tch_i;
- time tcl_i;
- real tch_avg;
- real tcl_avg;
- time tm_ck_pos;
- time tm_ck_neg;
- real tjit_per_rtime;
- integer tjit_cc_time;
- real terr_nper_rtime;
- //DDR3 clock jitter variables
- real tjit_ch_rtime;
- real duty_cycle;
- // clock skew
- real out_delay;
- integer dqsck [DQS_BITS-1:0];
- integer dqsck_min;
- integer dqsck_max;
- integer dqsq_min;
- integer dqsq_max;
- integer seed;
- // Mode Registers
- reg [ADDR_BITS-1:0] mode_reg [`BANKS-1:0];
- reg burst_order;
- reg [BL_BITS:0] burst_length;
- reg blotf;
- reg truebl4;
- integer cas_latency;
- reg dll_reset;
- reg dll_locked;
- integer write_recovery;
- reg low_power;
- reg dll_en;
- reg [2:0] odt_rtt_nom;
- reg [1:0] odt_rtt_wr;
- reg odt_en;
- reg dyn_odt_en;
- reg [1:0] al;
- integer additive_latency;
- reg write_levelization;
- reg duty_cycle_corrector;
- reg tdqs_en;
- reg out_en;
- reg [2:0] pasr;
- integer cas_write_latency;
- reg asr; // auto self refresh
- reg srt; // self refresh temperature range
- reg [1:0] mpr_select;
- reg mpr_en;
- reg odts_readout;
- integer read_latency;
- integer write_latency;
- // cmd encoding
- parameter // {cs, ras, cas, we}
- LOAD_MODE = 4'b0000,
- REFRESH = 4'b0001,
- PRECHARGE = 4'b0010,
- ACTIVATE = 4'b0011,
- WRITE = 4'b0100,
- READ = 4'b0101,
- ZQ = 4'b0110,
- NOP = 4'b0111,
- // DESEL = 4'b1xxx,
- PWR_DOWN = 4'b1000,
- SELF_REF = 4'b1001
- ;
- reg [8*9-1:0] cmd_string [9:0];
- initial begin
- cmd_string[LOAD_MODE] = "Load Mode";
- cmd_string[REFRESH ] = "Refresh ";
- cmd_string[PRECHARGE] = "Precharge";
- cmd_string[ACTIVATE ] = "Activate ";
- cmd_string[WRITE ] = "Write ";
- cmd_string[READ ] = "Read ";
- cmd_string[ZQ ] = "ZQ ";
- cmd_string[NOP ] = "No Op ";
- cmd_string[PWR_DOWN ] = "Pwr Down ";
- cmd_string[SELF_REF ] = "Self Ref ";
- end
- // command state
- reg [`BANKS-1:0] active_bank;
- reg [`BANKS-1:0] auto_precharge_bank;
- reg [`BANKS-1:0] write_precharge_bank;
- reg [`BANKS-1:0] read_precharge_bank;
- reg [ROW_BITS-1:0] active_row [`BANKS-1:0];
- reg in_power_down;
- reg in_self_refresh;
- reg [3:0] init_mode_reg;
- reg init_dll_reset;
- reg init_done;
- integer init_step;
- reg zq_set;
- reg er_trfc_max;
- reg odt_state;
- reg odt_state_dly;
- reg dyn_odt_state;
- reg dyn_odt_state_dly;
- reg prev_odt;
- wire [7:0] calibration_pattern = 8'b10101010; // value returned during mpr pre-defined pattern readout
- wire [7:0] temp_sensor = 8'h01; // value returned during mpr temp sensor readout
- reg [1:0] mr_chk;
- reg rd_bc;
- integer banki;
- // cmd timers/counters
- integer ref_cntr;
- integer odt_cntr;
- integer ck_cntr;
- integer ck_txpr;
- integer ck_load_mode;
- integer ck_refresh;
- integer ck_precharge;
- integer ck_activate;
- integer ck_write;
- integer ck_read;
- integer ck_zqinit;
- integer ck_zqoper;
- integer ck_zqcs;
- integer ck_power_down;
- integer ck_slow_exit_pd;
- integer ck_self_refresh;
- integer ck_freq_change;
- integer ck_odt;
- integer ck_odth8;
- integer ck_dll_reset;
- integer ck_cke_cmd;
- integer ck_bank_write [`BANKS-1:0];
- integer ck_bank_read [`BANKS-1:0];
- integer ck_group_activate [1:0];
- integer ck_group_write [1:0];
- integer ck_group_read [1:0];
- time tm_txpr;
- time tm_load_mode;
- time tm_refresh;
- time tm_precharge;
- time tm_activate;
- time tm_write_end;
- time tm_power_down;
- time tm_slow_exit_pd;
- time tm_self_refresh;
- time tm_freq_change;
- time tm_cke_cmd;
- time tm_ttsinit;
- time tm_bank_precharge [`BANKS-1:0];
- time tm_bank_activate [`BANKS-1:0];
- time tm_bank_write_end [`BANKS-1:0];
- time tm_bank_read_end [`BANKS-1:0];
- time tm_group_activate [1:0];
- time tm_group_write_end [1:0];
- // pipelines
- reg [`MAX_PIPE:0] al_pipeline;
- reg [`MAX_PIPE:0] wr_pipeline;
- reg [`MAX_PIPE:0] rd_pipeline;
- reg [`MAX_PIPE:0] odt_pipeline;
- reg [`MAX_PIPE:0] dyn_odt_pipeline;
- reg [BL_BITS:0] bl_pipeline [`MAX_PIPE:0];
- reg [BA_BITS-1:0] ba_pipeline [`MAX_PIPE:0];
- reg [ROW_BITS-1:0] row_pipeline [`MAX_PIPE:0];
- reg [COL_BITS-1:0] col_pipeline [`MAX_PIPE:0];
- reg prev_cke;
- // data state
- reg [BL_MAX*DQ_BITS-1:0] memory_data;
- reg [BL_MAX*DQ_BITS-1:0] bit_mask;
- reg [BL_BITS-1:0] burst_position;
- reg [BL_BITS:0] burst_cntr;
- reg [DQ_BITS-1:0] dq_temp;
- reg [31:0] check_write_postamble;
- reg [31:0] check_write_preamble;
- reg [31:0] check_write_dqs_high;
- reg [31:0] check_write_dqs_low;
- reg [15:0] check_dm_tdipw;
- reg [63:0] check_dq_tdipw;
- // data timers/counters
- time tm_rst_n;
- time tm_cke;
- time tm_odt;
- time tm_tdqss;
- time tm_dm [15:0];
- time tm_dqs [15:0];
- time tm_dqs_pos [31:0];
- time tm_dqss_pos [31:0];
- time tm_dqs_neg [31:0];
- time tm_dq [63:0];
- time tm_cmd_addr [22:0];
- reg [8*7-1:0] cmd_addr_string [22:0];
- initial begin
- cmd_addr_string[ 0] = "CS_N ";
- cmd_addr_string[ 1] = "RAS_N ";
- cmd_addr_string[ 2] = "CAS_N ";
- cmd_addr_string[ 3] = "WE_N ";
- cmd_addr_string[ 4] = "BA 0 ";
- cmd_addr_string[ 5] = "BA 1 ";
- cmd_addr_string[ 6] = "BA 2 ";
- cmd_addr_string[ 7] = "ADDR 0";
- cmd_addr_string[ 8] = "ADDR 1";
- cmd_addr_string[ 9] = "ADDR 2";
- cmd_addr_string[10] = "ADDR 3";
- cmd_addr_string[11] = "ADDR 4";
- cmd_addr_string[12] = "ADDR 5";
- cmd_addr_string[13] = "ADDR 6";
- cmd_addr_string[14] = "ADDR 7";
- cmd_addr_string[15] = "ADDR 8";
- cmd_addr_string[16] = "ADDR 9";
- cmd_addr_string[17] = "ADDR 10";
- cmd_addr_string[18] = "ADDR 11";
- cmd_addr_string[19] = "ADDR 12";
- cmd_addr_string[20] = "ADDR 13";
- cmd_addr_string[21] = "ADDR 14";
- cmd_addr_string[22] = "ADDR 15";
- end
- reg [8*5-1:0] dqs_string [1:0];
- initial begin
- dqs_string[0] = "DQS ";
- dqs_string[1] = "DQS_N";
- end
- // Memory Storage
- `ifdef MAX_MEM
- parameter RFF_BITS = DQ_BITS*BL_MAX;
- // %z format uses 8 bytes for every 32 bits or less.
- parameter RFF_CHUNK = 8 * (RFF_BITS/32 + (RFF_BITS%32 ? 1 : 0));
- reg [1024:1] tmp_model_dir;
- integer memfd[`BANKS-1:0];
- initial
- begin : file_io_open
- integer bank;
- if (!$value$plusargs("model_data+%s", tmp_model_dir))
- begin
- tmp_model_dir = "/tmp";
- $display(
- "%m: at time %t WARNING: no +model_data option specified, using /tmp.",
- $time
- );
- end
- for (bank = 0; bank < `BANKS; bank = bank + 1)
- memfd[bank] = open_bank_file(bank);
- end
- `else
- reg [BL_MAX*DQ_BITS-1:0] memory [0:`MEM_SIZE-1];
- reg [`MAX_BITS-1:0] address [0:`MEM_SIZE-1];
- reg [MEM_BITS:0] memory_index;
- reg [MEM_BITS:0] memory_used = 0;
- `endif
- // receive
- reg rst_n_in;
- reg ck_in;
- reg ck_n_in;
- reg cke_in;
- reg cs_n_in;
- reg ras_n_in;
- reg cas_n_in;
- reg we_n_in;
- reg [15:0] dm_in;
- reg [2:0] ba_in;
- reg [15:0] addr_in;
- reg [63:0] dq_in;
- reg [31:0] dqs_in;
- reg odt_in;
- reg [15:0] dm_in_pos;
- reg [15:0] dm_in_neg;
- reg [63:0] dq_in_pos;
- reg [63:0] dq_in_neg;
- reg dq_in_valid;
- reg dqs_in_valid;
- integer wdqs_cntr;
- integer wdq_cntr;
- integer wdqs_pos_cntr [31:0];
- reg b2b_write;
- reg [BL_BITS:0] wr_burst_length;
- reg [31:0] prev_dqs_in;
- reg diff_ck;
- always @(rst_n ) rst_n_in <= #BUS_DELAY rst_n;
- always @(ck ) ck_in <= #BUS_DELAY ck;
- always @(ck_n ) ck_n_in <= #BUS_DELAY ck_n;
- always @(cke ) cke_in <= #BUS_DELAY cke;
- always @(cs_n ) cs_n_in <= #BUS_DELAY cs_n;
- always @(ras_n ) ras_n_in <= #BUS_DELAY ras_n;
- always @(cas_n ) cas_n_in <= #BUS_DELAY cas_n;
- always @(we_n ) we_n_in <= #BUS_DELAY we_n;
- always @(dm_tdqs) dm_in <= #BUS_DELAY dm_tdqs;
- always @(ba ) ba_in <= #BUS_DELAY ba;
- always @(addr ) addr_in <= #BUS_DELAY addr;
- always @(dq ) dq_in <= #BUS_DELAY dq;
- always @(dqs or dqs_n) dqs_in <= #BUS_DELAY (dqs_n<<16) | dqs;
- always @(odt ) odt_in <= #BUS_DELAY odt;
- // create internal clock
- always @(posedge ck_in) diff_ck <= ck_in;
- always @(posedge ck_n_in) diff_ck <= ~ck_n_in;
-
- wire [15:0] dqs_even = dqs_in[15:0];
- wire [15:0] dqs_odd = dqs_in[31:16];
- wire [3:0] cmd_n_in = !cs_n_in ? {ras_n_in, cas_n_in, we_n_in} : NOP; //deselect = nop
- // transmit
- reg dqs_out_en;
- reg [DQS_BITS-1:0] dqs_out_en_dly;
- reg dqs_out;
- reg [DQS_BITS-1:0] dqs_out_dly;
- reg dq_out_en;
- reg [DQ_BITS-1:0] dq_out_en_dly;
- reg [DQ_BITS-1:0] dq_out;
- reg [DQ_BITS-1:0] dq_out_dly;
- integer rdqsen_cntr;
- integer rdqs_cntr;
- integer rdqen_cntr;
- integer rdq_cntr;
- bufif1 buf_dqs [DQS_BITS-1:0] (dqs, dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en}});
- bufif1 buf_dqs_n [DQS_BITS-1:0] (dqs_n, ~dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en}});
- bufif1 buf_dq [DQ_BITS-1:0] (dq, dq_out_dly, dq_out_en_dly & {DQ_BITS {out_en}});
- assign tdqs_n = {DQS_BITS{1'bz}};
- initial begin
- if (BL_MAX < 2)
- $display("%m ERROR: BL_MAX parameter must be >= 2. \nBL_MAX = %d", BL_MAX);
- if ((1<<BO_BITS) > BL_MAX)
- $display("%m ERROR: 2^BO_BITS cannot be greater than BL_MAX parameter.");
- $timeformat (-12, 1, " ps", 1);
- seed = RANDOM_SEED;
- ck_cntr = 0;
- end
- function integer get_rtt_wr;
- input [1:0] rtt;
- begin
- get_rtt_wr = RZQ/{rtt[0], rtt[1], 1'b0};
- end
- endfunction
- function integer get_rtt_nom;
- input [2:0] rtt;
- begin
- case (rtt)
- 1: get_rtt_nom = RZQ/4;
- 2: get_rtt_nom = RZQ/2;
- 3: get_rtt_nom = RZQ/6;
- 4: get_rtt_nom = RZQ/12;
- 5: get_rtt_nom = RZQ/8;
- default : get_rtt_nom = 0;
- endcase
- end
- endfunction
- // calculate the absolute value of a real number
- function real abs_value;
- input arg;
- real arg;
- begin
- if (arg < 0.0)
- abs_value = -1.0 * arg;
- else
- abs_value = arg;
- end
- endfunction
- function integer ceil;
- input number;
- real number;
- // LMR 4.1.7
- // When either operand of a relational expression is a real operand then the other operand shall be converted
- // to an equivalent real value, and the expression shall be interpreted as a comparison between two real values.
- if (number > $rtoi(number))
- ceil = $rtoi(number) + 1;
- else
- ceil = number;
- endfunction
- function integer floor;
- input number;
- real number;
- // LMR 4.1.7
- // When either operand of a relational expression is a real operand then the other operand shall be converted
- // to an equivalent real value, and the expression shall be interpreted as a comparison between two real values.
- if (number < $rtoi(number))
- floor = $rtoi(number) - 1;
- else
- floor = number;
- endfunction
- `ifdef MAX_MEM
- function integer open_bank_file( input integer bank );
- integer fd;
- reg [2048:1] filename;
- begin
- $sformat( filename, "%0s/%m.%0d", tmp_model_dir, bank );
- fd = $fopen(filename, "w+");
- if (fd == 0)
- begin
- $display("%m: at time %0t ERROR: failed to open %0s.", $time, filename);
- $finish;
- end
- else
- begin
- if (DEBUG) $display("%m: at time %0t INFO: opening %0s.", $time, filename);
- open_bank_file = fd;
- end
- end
- endfunction
- function [RFF_BITS:1] read_from_file(
- input integer fd,
- input integer index
- );
- integer code;
- integer offset;
- reg [1024:1] msg;
- reg [RFF_BITS:1] read_value;
-
- begin
- offset = index * RFF_CHUNK;
- code = $fseek( fd, offset, 0 );
- // $fseek returns 0 on success, -1 on failure
- if (code != 0)
- begin
- $display("%m: at time %t ERROR: fseek to %d failed", $time, offset);
- $finish;
- end
-
- code = $fscanf(fd, "%z", read_value);
- // $fscanf returns number of items read
- if (code != 1)
- begin
- if ($ferror(fd,msg) != 0)
- begin
- $display("%m: at time %t ERROR: fscanf failed at %d", $time, index);
- $display(msg);
- $finish;
- end
- else
- read_value = 'hx;
- end
-
- /* when reading from unwritten portions of the file, 0 will be returned.
- * Use 0 in bit 1 as indicator that invalid data has been read.
- * A true 0 is encoded as Z.
- */
- if (read_value[1] === 1'bz)
- // true 0 encoded as Z, data is valid
- read_value[1] = 1'b0;
- else if (read_value[1] === 1'b0)
- // read from file section that has not been written
- read_value = 'hx;
- read_from_file = read_value;
- end
- endfunction
-
- task write_to_file(
- input integer fd,
- input integer index,
- input [RFF_BITS:1] data
- );
- integer code;
- integer offset;
-
- begin
- offset = index * RFF_CHUNK;
- code = $fseek( fd, offset, 0 );
- if (code != 0)
- begin
- $display("%m: at time %t ERROR: fseek to %d failed", $time, offset);
- $finish;
- end
-
- // encode a valid data
- if (data[1] === 1'bz)
- data[1] = 1'bx;
- else if (data[1] === 1'b0)
- data[1] = 1'bz;
- $fwrite( fd, "%z", data );
- end
- endtask
- `else
- function get_index;
- input [`MAX_BITS-1:0] addr;
- begin : index
- get_index = 0;
- for (memory_index=0; memory_index<memory_used; memory_index=memory_index+1) begin
- if (address[memory_index] == addr) begin
- get_index = 1;
- disable index;
- end
- end
- end
- endfunction
- `endif
- task memory_write;
- input [BA_BITS-1:0] bank;
- input [ROW_BITS-1:0] row;
- input [COL_BITS-1:0] col;
- input [BL_MAX*DQ_BITS-1:0] data;
- reg [`MAX_BITS-1:0] addr;
- begin
- `ifdef MAX_MEM
- addr = {row, col}/BL_MAX;
- write_to_file( memfd[bank], addr, data );
- `else
- // chop off the lowest address bits
- addr = {bank, row, col}/BL_MAX;
- if (get_index(addr)) begin
- address[memory_index] = addr;
- memory[memory_index] = data;
- end else if (memory_used == `MEM_SIZE) begin
- $display ("%m: at time %t ERROR: Memory overflow. Write to Address %h with Data %h will be lost.\nYou must increase the MEM_BITS parameter or define MAX_MEM.", $time, addr, data);
- if (STOP_ON_ERROR) $stop(0);
- end else begin
- address[memory_used] = addr;
- memory[memory_used] = data;
- memory_used = memory_used + 1;
- end
- `endif
- end
- endtask
- task memory_read;
- input [BA_BITS-1:0] bank;
- input [ROW_BITS-1:0] row;
- input [COL_BITS-1:0] col;
- output [BL_MAX*DQ_BITS-1:0] data;
- reg [`MAX_BITS-1:0] addr;
- begin
- `ifdef MAX_MEM
- addr = {row, col}/BL_MAX;
- data = read_from_file( memfd[bank], addr );
- `else
- // chop off the lowest address bits
- addr = {bank, row, col}/BL_MAX;
- if (get_index(addr)) begin
- data = memory[memory_index];
- end else begin
- data = {BL_MAX*DQ_BITS{1'bx}};
- end
- `endif
- end
- endtask
- task set_latency;
- begin
- if (al == 0) begin
- additive_latency = 0;
- end else begin
- additive_latency = cas_latency - al;
- end
- read_latency = cas_latency + additive_latency;
- write_latency = cas_write_latency + additive_latency;
- end
- endtask
- // this task will erase the contents of 0 or more banks
- task erase_banks;
- input [`BANKS-1:0] banks; //one select bit per bank
- reg [BA_BITS-1:0] ba;
- reg [`MAX_BITS-1:0] i;
- integer bank;
- begin
- `ifdef MAX_MEM
- for (bank = 0; bank < `BANKS; bank = bank + 1)
- if (banks[bank] === 1'b1) begin
- $fclose(memfd[bank]);
- memfd[bank] = open_bank_file(bank);
- end
- `else
- memory_index = 0;
- i = 0;
- // remove the selected banks
- for (memory_index=0; memory_index<memory_used; memory_index=memory_index+1) begin
- ba = (address[memory_index]>>(ROW_BITS+COL_BITS-BL_BITS));
- if (!banks[ba]) begin //bank is selected to keep
- address[i] = address[memory_index];
- memory[i] = memory[memory_index];
- i = i + 1;
- end
- end
- // clean up the unused banks
- for (memory_index=i; memory_index<memory_used; memory_index=memory_index+1) begin
- address[memory_index] = 'bx;
- memory[memory_index] = {8*DQ_BITS{1'bx}};
- end
- memory_used = i;
- `endif
- end
- endtask
- // Before this task runs, the model must be in a valid state for precharge power down and out of reset.
- // After this task runs, NOP commands must be issued until TZQINIT has been met
- task initialize;
- input [ADDR_BITS-1:0] mode_reg0;
- input [ADDR_BITS-1:0] mode_reg1;
- input [ADDR_BITS-1:0] mode_reg2;
- input [ADDR_BITS-1:0] mode_reg3;
- begin
- if (DEBUG) $display ("%m: at time %t INFO: Performing Initialization Sequence", $time);
- cmd_task(1, NOP, 'bx, 'bx);
- cmd_task(1, ZQ, 'bx, 'h400); //ZQCL
- cmd_task(1, LOAD_MODE, 3, mode_reg3);
- cmd_task(1, LOAD_MODE, 2, mode_reg2);
- cmd_task(1, LOAD_MODE, 1, mode_reg1);
- cmd_task(1, LOAD_MODE, 0, mode_reg0 | 'h100); // DLL Reset
- cmd_task(0, NOP, 'bx, 'bx);
- end
- endtask
-
- task reset_task;
- integer i;
- begin
- // disable inputs
- dq_in_valid = 0;
- dqs_in_valid <= 0;
- wdqs_cntr = 0;
- wdq_cntr = 0;
- for (i=0; i<31; i=i+1) begin
- wdqs_pos_cntr[i] <= 0;
- end
- b2b_write <= 0;
- // disable outputs
- out_en = 0;
- dq_out_en = 0;
- rdq_cntr = 0;
- dqs_out_en = 0;
- rdqs_cntr = 0;
- // disable ODT
- odt_en = 0;
- dyn_odt_en = 0;
- odt_state = 0;
- dyn_odt_state = 0;
- // reset bank state
- active_bank = 0;
- auto_precharge_bank = 0;
- read_precharge_bank = 0;
- write_precharge_bank = 0;
- // require initialization sequence
- init_done = 0;
- mpr_en = 0;
- init_step = 0;
- init_mode_reg = 0;
- init_dll_reset = 0;
- zq_set = 0;
- // reset DLL
- dll_en = 0;
- dll_reset = 0;
- dll_locked = 0;
- // exit power down and self refresh
- prev_cke = 1'bx;
- in_power_down = 0;
- in_self_refresh = 0;
- // clear pipelines
- al_pipeline = 0;
- wr_pipeline = 0;
- rd_pipeline = 0;
- odt_pipeline = 0;
- dyn_odt_pipeline = 0;
- end
- endtask
- parameter SAME_BANK = 2'd0; // same bank, same group
- parameter DIFF_BANK = 2'd1; // different bank, same group
- parameter DIFF_GROUP = 2'd2; // different bank, different group
- task chk_err;
- input [1:0] relationship;
- input [BA_BITS-1:0] bank;
- input [3:0] fromcmd;
- input [3:0] cmd;
- reg err;
- begin
- // $display ("truebl4 = %d, relationship = %d, fromcmd = %h, cmd = %h", truebl4, relationship, fromcmd, cmd);
- casex ({truebl4, relationship, fromcmd, cmd})
- // load mode
- {1'bx, DIFF_BANK , LOAD_MODE, LOAD_MODE} : begin if (ck_cntr - ck_load_mode < TMRD) $display ("%m: at time %t ERROR: tMRD violation during %s", $time, cmd_string[cmd]); end
- {1'bx, DIFF_BANK , LOAD_MODE, READ } : begin if (($time - tm_load_mode < TMOD) || (ck_cntr - ck_load_mode < TMOD_TCK)) $display ("%m: at time %t ERROR: tMOD violation during %s", $time, cmd_string[cmd]); end
- {1'bx, DIFF_BANK , LOAD_MODE, REFRESH } ,
- {1'bx, DIFF_BANK , LOAD_MODE, PRECHARGE} ,
- {1'bx, DIFF_BANK , LOAD_MODE, ACTIVATE } ,
- {1'bx, DIFF_BANK , LOAD_MODE, ZQ } ,
- {1'bx, DIFF_BANK , LOAD_MODE, PWR_DOWN } ,
- {1'bx, DIFF_BANK , LOAD_MODE, SELF_REF } : begin if (($time - tm_load_mode < TMOD) || (ck_cntr - ck_load_mode < TMOD_TCK)) $display ("%m: at time %t ERROR: tMOD violation during %s", $time, cmd_string[cmd]); end
- // refresh
- {1'bx, DIFF_BANK , REFRESH , LOAD_MODE} ,
- {1'bx, DIFF_BANK , REFRESH , REFRESH } ,
- {1'bx, DIFF_BANK , REFRESH , PRECHARGE} ,
- {1'bx, DIFF_BANK , REFRESH , ACTIVATE } ,
- {1'bx, DIFF_BANK , REFRESH , ZQ } ,
- {1'bx, DIFF_BANK , REFRESH , SELF_REF } : begin if ($time - tm_refresh < TRFC_MIN) $display ("%m: at time %t ERROR: tRFC violation during %s", $time, cmd_string[cmd]); end
- {1'bx, DIFF_BANK , REFRESH , PWR_DOWN } : begin if (ck_cntr - ck_refresh < TREFPDEN) $display ("%m: at time %t ERROR: tREFPDEN violation during %s", $time, cmd_string[cmd]); end
- // precharge
- {1'bx, SAME_BANK , PRECHARGE, ACTIVATE } : begin if ($time - tm_bank_precharge[bank] < TRP) $display ("%m: at time %t ERROR: tRP violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'bx, DIFF_BANK , PRECHARGE, LOAD_MODE} ,
- {1'bx, DIFF_BANK , PRECHARGE, REFRESH } ,
- {1'bx, DIFF_BANK , PRECHARGE, ZQ } ,
- {1'bx, DIFF_BANK , PRECHARGE, SELF_REF } : begin if ($time - tm_precharge < TRP) $display ("%m: at time %t ERROR: tRP violation during %s", $time, cmd_string[cmd]); end
- {1'bx, DIFF_BANK , PRECHARGE, PWR_DOWN } : ; //tPREPDEN = 1 tCK, can be concurrent with auto precharge
- // activate
- {1'bx, SAME_BANK , ACTIVATE , PRECHARGE} : begin if ($time - tm_bank_activate[bank] > TRAS_MAX) $display ("%m: at time %t ERROR: tRAS maximum violation during %s to bank %d", $time, cmd_string[cmd], bank);
- if ($time - tm_bank_activate[bank] < TRAS_MIN) $display ("%m: at time %t ERROR: tRAS minimum violation during %s to bank %d", $time, cmd_string[cmd], bank);end
- {1'bx, SAME_BANK , ACTIVATE , ACTIVATE } : begin if ($time - tm_bank_activate[bank] < TRC) $display ("%m: at time %t ERROR: tRC violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'bx, SAME_BANK , ACTIVATE , WRITE } ,
- {1'bx, SAME_BANK , ACTIVATE , READ } : ; // tRCD is checked outside this task
- {1'b0, DIFF_BANK , ACTIVATE , ACTIVATE } : begin if (($time - tm_activate < TRRD) || (ck_cntr - ck_activate < TRRD_TCK)) $display ("%m: at time %t ERROR: tRRD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'b1, DIFF_BANK , ACTIVATE , ACTIVATE } : begin if (($time - tm_group_activate[bank[1]] < TRRD) || (ck_cntr - ck_group_activate[bank[1]] < TRRD_TCK)) $display ("%m: at time %t ERROR: tRRD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'b1, DIFF_GROUP, ACTIVATE , ACTIVATE } : begin if (($time - tm_activate < TRRD_DG) || (ck_cntr - ck_activate < TRRD_DG_TCK)) $display ("%m: at time %t ERROR: tRRD_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'bx, DIFF_BANK , ACTIVATE , REFRESH } : begin if ($time - tm_activate < TRC) $display ("%m: at time %t ERROR: tRC violation during %s", $time, cmd_string[cmd]); end
- {1'bx, DIFF_BANK , ACTIVATE , PWR_DOWN } : begin if (ck_cntr - ck_activate < TACTPDEN) $display ("%m: at time %t ERROR: tACTPDEN violation during %s", $time, cmd_string[cmd]); end
- // write
- {1'bx, SAME_BANK , WRITE , PRECHARGE} : begin if (($time - tm_bank_write_end[bank] < TWR) || (ck_cntr - ck_bank_write[bank] <= write_latency + burst_length/2)) $display ("%m: at time %t ERROR: tWR violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'b0, DIFF_BANK , WRITE , WRITE } : begin if (ck_cntr - ck_write < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'b1, DIFF_BANK , WRITE , WRITE } : begin if (ck_cntr - ck_group_write[bank[1]] < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'b0, DIFF_BANK , WRITE , READ } : begin if (ck_cntr - ck_write < write_latency + burst_length/2 + TWTR_TCK - additive_latency) $display ("%m: at time %t ERROR: tWTR violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'b1, DIFF_BANK , WRITE , READ } : begin if (ck_cntr - ck_group_write[bank[1]] < write_latency + burst_length/2 + TWTR_TCK - additive_latency) $display ("%m: at time %t ERROR: tWTR violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'b1, DIFF_GROUP, WRITE , WRITE } : begin if (ck_cntr - ck_write < TCCD_DG) $display ("%m: at time %t ERROR: tCCD_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'b1, DIFF_GROUP, WRITE , READ } : begin if (ck_cntr - ck_write < write_latency + burst_length/2 + TWTR_DG_TCK - additive_latency) $display ("%m: at time %t ERROR: tWTR_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'bx, DIFF_BANK , WRITE , PWR_DOWN } : begin if (($time - tm_write_end < TWR) || (ck_cntr - ck_write < write_latency + burst_length/2)) $display ("%m: at time %t ERROR: tWRPDEN violation during %s", $time, cmd_string[cmd]); end
- // read
- {1'bx, SAME_BANK , READ , PRECHARGE} : begin if (($time - tm_bank_read_end[bank] < TRTP) || (ck_cntr - ck_bank_read[bank] < additive_latency + TRTP_TCK)) $display ("%m: at time %t ERROR: tRTP violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'b0, DIFF_BANK , READ , WRITE } : ; // tRTW is checked outside this task
- {1'b1, DIFF_BANK , READ , WRITE } : ; // tRTW is checked outside this task
- {1'b0, DIFF_BANK , READ , READ } : begin if (ck_cntr - ck_read < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'b1, DIFF_BANK , READ , READ } : begin if (ck_cntr - ck_group_read[bank[1]] < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'b1, DIFF_GROUP, READ , WRITE } : ; // tRTW is checked outside this task
- {1'b1, DIFF_GROUP, READ , READ } : begin if (ck_cntr - ck_read < TCCD_DG) $display ("%m: at time %t ERROR: tCCD_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end
- {1'bx, DIFF_BANK , READ , PWR_DOWN } : begin if (ck_cntr - ck_read < read_latency + 5) $display ("%m: at time %t ERROR: tRDPDEN violation during %s", $time, cmd_string[cmd]); end
- // zq
- {1'bx, DIFF_BANK , ZQ , LOAD_MODE} : ; // 1 tCK
- {1'bx, DIFF_BANK , ZQ , REFRESH } ,
- {1'bx, DIFF_BANK , ZQ , PRECHARGE} ,
- {1'bx, DIFF_BANK , ZQ , ACTIVATE } ,
- {1'bx, DIFF_BANK , ZQ , ZQ } ,
- {1'bx, DIFF_BANK , ZQ , PWR_DOWN } ,
- {1'bx, DIFF_BANK , ZQ , SELF_REF } : begin if (ck_cntr - ck_zqinit < TZQINIT) $display ("%m: at time %t ERROR: tZQinit violation during %s", $time, cmd_string[cmd]);
- if (ck_cntr - ck_zqoper < TZQOPER) $display ("%m: at time %t ERROR: tZQoper violation during %s", $time, cmd_string[cmd]);
- if (ck_cntr - ck_zqcs < TZQCS) $display ("%m: at time %t ERROR: tZQCS violation during %s", $time, cmd_string[cmd]); end
- // power down
- {1'bx, DIFF_BANK , PWR_DOWN , LOAD_MODE} ,
- {1'bx, DIFF_BANK , PWR_DOWN , REFRESH } ,
- {1'bx, DIFF_BANK , PWR_DOWN , PRECHARGE} ,
- {1'bx, DIFF_BANK , PWR_DOWN , ACTIVATE } ,
- {1'bx, DIFF_BANK , PWR_DOWN , WRITE } ,
- {1'bx, DIFF_BANK , PWR_DOWN , ZQ } : begin if (($time - tm_power_down < TXP) || (ck_cntr - ck_power_down < TXP_TCK)) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]); end
- {1'bx, DIFF_BANK , PWR_DOWN , READ } : begin if (($time - tm_power_down < TXP) || (ck_cntr - ck_power_down < TXP_TCK)) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]);
- else if (($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK)) $display ("%m: at time %t ERROR: tXPDLL violation during %s", $time, cmd_string[cmd]); end
- {1'bx, DIFF_BANK , PWR_DOWN , PWR_DOWN } ,
- {1'bx, DIFF_BANK , PWR_DOWN , SELF_REF } : begin if (($time - tm_power_down < TXP) || (ck_cntr - ck_power_down < TXP_TCK)) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]);
- if ((tm_power_down > tm_refresh) && ($time - tm_refresh < TRFC_MIN)) $display ("%m: at time %t ERROR: tRFC violation during %s", $time, cmd_string[cmd]);
- if ((tm_refresh > tm_power_down) && (($time - tm_power_down < TXPDLL) || (ck_cntr - ck_power_down < TXPDLL_TCK))) $display ("%m: at time %t ERROR: tXPDLL violation during %s", $time, cmd_string[cmd]);
- if (($time - tm_cke_cmd < TCKE) || (ck_cntr - ck_cke_cmd < TCKE_TCK)) $display ("%m: at time %t ERROR: tCKE violation on CKE", $time); end
- // self refresh
- {1'bx, DIFF_BANK , SELF_REF , LOAD_MODE} ,
- {1'bx, DIFF_BANK , SELF_REF , REFRESH } ,
- {1'bx, DIFF_BANK , SELF_REF , PRECHARGE} ,
- {1'bx, DIFF_BANK , SELF_REF , ACTIVATE } ,
- {1'bx, DIFF_BANK , SELF_REF , WRITE } ,
- {1'bx, DIFF_BANK , SELF_REF , ZQ } : begin if (($time - tm_self_refresh < TXS) || (ck_cntr - ck_self_refresh < TXS_TCK)) $display ("%m: at time %t ERROR: tXS violation during %s", $time, cmd_string[cmd]); end
- {1'bx, DIFF_BANK , SELF_REF , READ } : begin if (ck_cntr - ck_self_refresh < TXSDLL) $display ("%m: at time %t ERROR: tXSDLL violation during %s", $time, cmd_string[cmd]); end
- {1'bx, DIFF_BANK , SELF_REF , PWR_DOWN } ,
- {1'bx, DIFF_BANK , SELF_REF , SELF_REF } : begin if (($time - tm_self_refresh < TXS) || (ck_cntr - ck_self_refresh < TXS_TCK)) $display ("%m: at time %t ERROR: tXS violation during %s", $time, cmd_string[cmd]);
- if (($time - tm_cke_cmd < TCKE) || (ck_cntr - ck_cke_cmd < TCKE_TCK)) $display ("%m: at time %t ERROR: tCKE violation on CKE", $time); end
- endcase
- end
- endtask
- task cmd_task;
- input cke;
- input [2:0] cmd;
- input [BA_BITS-1:0] bank;
- input [ADDR_BITS-1:0] addr;
- reg [`BANKS:0] i;
- integer j;
- reg [`BANKS:0] tfaw_cntr;
- reg [COL_BITS-1:0] col;
- reg group;
- begin
- // tRFC max check
- if (!er_trfc_max && !in_self_refresh) begin
- if ($time - tm_refresh > TRFC_MAX && check_strict_timing) begin
- $display ("%m: at time %t ERROR: tRFC maximum violation during %s", $time, cmd_string[cmd]);
- er_trfc_max = 1;
- end
- end
- if (cke) begin
- if ((cmd < NOP) && (cmd != PRECHARGE)) begin
- if (($time - tm_txpr < TXPR) || (ck_cntr - ck_txpr < TXPR_TCK))
- $display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[cmd]);
- for (j=0; j<=SELF_REF; j=j+1) begin
- chk_err(SAME_BANK , bank, j, cmd);
- chk_err(DIFF_BANK , bank, j, cmd);
- chk_err(DIFF_GROUP, bank, j, cmd);
- end
- end
- case (cmd)
- LOAD_MODE : begin
- if (|odt_pipeline)
- $display ("%m: at time %t ERROR: ODTL violation during %s", $time, cmd_string[cmd]);
- if (odt_state)
- $display ("%m: at time %t ERROR: ODT must be off prior to %s", $time, cmd_string[cmd]);
- if (|active_bank) begin
- $display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]);
- if (STOP_ON_ERROR) $stop(0);
- end else begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d", $time, cmd_string[cmd], bank);
- if (bank>>2) begin
- $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved bank bits must be programmed to zero", $time, cmd_string[cmd], bank);
- end
- case (bank)
- 0 : begin
- // Burst Length
- if (addr[1:0] == 2'b00) begin
- burst_length = 8;
- blotf = 0;
- truebl4 = 0;
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = %d", $time, cmd_string[cmd], bank, burst_length);
- end else if (addr[1:0] == 2'b01) begin
- burst_length = 8;
- blotf = 1;
- truebl4 = 0;
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = Select via A12", $time, cmd_string[cmd], bank);
- end else if (addr[1:0] == 2'b10) begin
- burst_length = 4;
- blotf = 0;
- truebl4 = 0;
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = Fixed %d (chop)", $time, cmd_string[cmd], bank, burst_length);
- end else if (feature_truebl4 && (addr[1:0] == 2'b11)) begin
- burst_length = 4;
- blotf = 0;
- truebl4 = 1;
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = True %d", $time, cmd_string[cmd], bank, burst_length);
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal Burst Length = %d", $time, cmd_string[cmd], bank, addr[1:0]);
- end
- // Burst Order
- burst_order = addr[3];
- if (!burst_order) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Order = Sequential", $time, cmd_string[cmd], bank);
- end else if (burst_order) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Order = Interleaved", $time, cmd_string[cmd], bank);
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal Burst Order = %d", $time, cmd_string[cmd], bank, burst_order);
- end
- // CAS Latency
- cas_latency = {addr[2],addr[6:4]} + 4;
- set_latency;
- if ((cas_latency >= CL_MIN) && (cas_latency <= CL_MAX)) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d CAS Latency = %d", $time, cmd_string[cmd], bank, cas_latency);
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal CAS Latency = %d", $time, cmd_string[cmd], bank, cas_latency);
- end
- // Reserved
- if (addr[7] !== 0 && check_strict_mrbits) begin
- $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
- end
- // DLL Reset
- dll_reset = addr[8];
- if (!dll_reset) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Reset = Normal", $time, cmd_string[cmd], bank);
- end else if (dll_reset) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Reset = Reset DLL", $time, cmd_string[cmd], bank);
- dll_locked = 0;
- init_dll_reset = 1;
- ck_dll_reset <= ck_cntr;
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal DLL Reset = %d", $time, cmd_string[cmd], bank, dll_reset);
- end
- // Write Recovery
- if (addr[11:9] == 0) begin
- write_recovery = 16;
- end else if (addr[11:9] < 4) begin
- write_recovery = addr[11:9] + 4;
- end else begin
- write_recovery = 2*addr[11:9];
- end
- if ((write_recovery >= WR_MIN) && (write_recovery <= WR_MAX)) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Recovery = %d", $time, cmd_string[cmd], bank, write_recovery);
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal Write Recovery = %d", $time, cmd_string[cmd], bank, write_recovery);
- end
- // Power Down Mode
- low_power = !addr[12];
- if (!low_power) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Power Down Mode = DLL on", $time, cmd_string[cmd], bank);
- end else if (low_power) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Power Down Mode = DLL off", $time, cmd_string[cmd], bank);
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal Power Down Mode = %d", $time, cmd_string[cmd], bank, low_power);
- end
- // Reserved
- if (ADDR_BITS>13 && addr[13] !== 0 && check_strict_mrbits) begin
- $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
- end
- end
- 1 : begin
- // DLL Enable
- dll_en = !addr[0];
- if (!dll_en) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Enable = Disabled", $time, cmd_string[cmd], bank);
- if (check_strict_mrbits) $display ("%m: at time %t WARNING: %s %d DLL off mode is not modeled", $time, cmd_string[cmd], bank);
- end else if (dll_en) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Enable = Enabled", $time, cmd_string[cmd], bank);
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal DLL Enable = %d", $time, cmd_string[cmd], bank, dll_en);
- end
- // Output Drive Strength
- if ({addr[5], addr[1]} == 2'b00) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = %d Ohm", $time, cmd_string[cmd], bank, RZQ/6);
- end else if ({addr[5], addr[1]} == 2'b01) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = %d Ohm", $time, cmd_string[cmd], bank, RZQ/7);
- end else if ({addr[5], addr[1]} == 2'b11) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = %d Ohm", $time, cmd_string[cmd], bank, RZQ/5);
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal Output Drive Strength = %d", $time, cmd_string[cmd], bank, {addr[5], addr[1]});
- end
- // ODT Rtt (Rtt_NOM)
- odt_rtt_nom = {addr[9], addr[6], addr[2]};
- if (odt_rtt_nom == 3'b000) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = Disabled", $time, cmd_string[cmd], bank);
- odt_en = 0;
- end else if ((odt_rtt_nom < 4) || ((!addr[7] || (addr[7] && addr[12])) && (odt_rtt_nom < 6))) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = %d Ohm", $time, cmd_string[cmd], bank, get_rtt_nom(odt_rtt_nom));
- odt_en = 1;
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal ODT Rtt = %d", $time, cmd_string[cmd], bank, odt_rtt_nom);
- odt_en = 0;
- end
- // Report the additive latency value
- al = addr[4:3];
- set_latency;
- if (al == 0) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Additive Latency = %d", $time, cmd_string[cmd], bank, al);
- end else if ((al >= AL_MIN) && (al <= AL_MAX)) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Additive Latency = CL - %d", $time, cmd_string[cmd], bank, al);
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal Additive Latency = %d", $time, cmd_string[cmd], bank, al);
- end
- // Write Levelization
- write_levelization = addr[7];
- if (!write_levelization) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Levelization = Disabled", $time, cmd_string[cmd], bank);
- end else if (write_levelization) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Levelization = Enabled", $time, cmd_string[cmd], bank);
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal Write Levelization = %d", $time, cmd_string[cmd], bank, write_levelization);
- end
- // Reserved
- if (addr[8] !== 0 && check_strict_mrbits) begin
- $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
- end
- // Reserved
- if (addr[10] !== 0 && check_strict_mrbits) begin
- $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
- end
- // TDQS Enable
- tdqs_en = addr[11];
- if (!tdqs_en) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d TDQS Enable = Disabled", $time, cmd_string[cmd], bank);
- end else if (tdqs_en) begin
- if (8 == DQ_BITS) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d TDQS Enable = Enabled", $time, cmd_string[cmd], bank);
- end
- else begin
- $display ("%m: at time %t WARNING: %s %d Illegal TDQS Enable. TDQS only exists on a x8 part", $time, cmd_string[cmd], bank);
- tdqs_en = 0;
- end
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal TDQS Enable = %d", $time, cmd_string[cmd], bank, tdqs_en);
- end
- // Output Enable
- out_en = !addr[12];
- if (!out_en) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Qoff = Disabled", $time, cmd_string[cmd], bank);
- end else if (out_en) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Qoff = Enabled", $time, cmd_string[cmd], bank);
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal Qoff = %d", $time, cmd_string[cmd], bank, out_en);
- end
- // Reserved
- if (ADDR_BITS>13 && addr[13] !== 0 && check_strict_mrbits) begin
- $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
- end
- end
- 2 : begin
- if (feature_pasr) begin
- // Partial Array Self Refresh
- pasr = addr[2:0];
- case (pasr)
- 3'b000 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0-7", $time, cmd_string[cmd], bank);
- 3'b001 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0-3", $time, cmd_string[cmd], bank);
- 3'b010 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0-1", $time, cmd_string[cmd], bank);
- 3'b011 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0", $time, cmd_string[cmd], bank);
- 3'b100 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 2-7", $time, cmd_string[cmd], bank);
- 3'b101 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 4-7", $time, cmd_string[cmd], bank);
- 3'b110 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 6-7", $time, cmd_string[cmd], bank);
- 3'b111 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 7", $time, cmd_string[cmd], bank);
- default : $display ("%m: at time %t ERROR: %s %d Illegal Partial Array Self Refresh = %d", $time, cmd_string[cmd], bank, pasr);
- endcase
- end
- else
- if (addr[2:0] !== 0 && check_strict_mrbits) begin
- $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
- end
- // CAS Write Latency
- cas_write_latency = addr[5:3]+5;
- set_latency;
- if ((cas_write_latency >= CWL_MIN) && (cas_write_latency <= CWL_MAX)) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d CAS Write Latency = %d", $time, cmd_string[cmd], bank, cas_write_latency);
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal CAS Write Latency = %d", $time, cmd_string[cmd], bank, cas_write_latency);
- end
- // Auto Self Refresh Method
- asr = addr[6];
- if (!asr) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Auto Self Refresh = Disabled", $time, cmd_string[cmd], bank);
- end else if (asr) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Auto Self Refresh = Enabled", $time, cmd_string[cmd], bank);
- if (check_strict_mrbits) $display ("%m: at time %t WARNING: %s %d Auto Self Refresh is not modeled", $time, cmd_string[cmd], bank);
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal Auto Self Refresh = %d", $time, cmd_string[cmd], bank, asr);
- end
- // Self Refresh Temperature
- srt = addr[7];
- if (!srt) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Self Refresh Temperature = Normal", $time, cmd_string[cmd], bank);
- end else if (srt) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Self Refresh Temperature = Extended", $time, cmd_string[cmd], bank);
- if (check_strict_mrbits) $display ("%m: at time %t WARNING: %s %d Self Refresh Temperature is not modeled", $time, cmd_string[cmd], bank);
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal Self Refresh Temperature = %d", $time, cmd_string[cmd], bank, srt);
- end
- if (asr && srt)
- $display ("%m: at time %t ERROR: %s %d SRT must be set to 0 when ASR is enabled.", $time, cmd_string[cmd], bank);
- // Reserved
- if (addr[8] !== 0 && check_strict_mrbits) begin
- $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
- end
- // Dynamic ODT (Rtt_WR)
- odt_rtt_wr = addr[10:9];
- if (odt_rtt_wr == 2'b00) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Dynamic ODT = Disabled", $time, cmd_string[cmd], bank);
- dyn_odt_en = 0;
- end else if ((odt_rtt_wr > 0) && (odt_rtt_wr < 3)) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d Dynamic ODT Rtt = %d Ohm", $time, cmd_string[cmd], bank, get_rtt_wr(odt_rtt_wr));
- dyn_odt_en = 1;
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal Dynamic ODT = %d", $time, cmd_string[cmd], bank, odt_rtt_wr);
- dyn_odt_en = 0;
- end
- // Reserved
- if (ADDR_BITS>13 && addr[13:11] !== 0 && check_strict_mrbits) begin
- $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
- end
- end
- 3 : begin
- mpr_select = addr[1:0];
- // MultiPurpose Register Select
- if (mpr_select == 2'b00) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d MultiPurpose Register Select = Pre-defined pattern", $time, cmd_string[cmd], bank);
- end else begin
- if (check_strict_mrbits) $display ("%m: at time %t ERROR: %s %d Illegal MultiPurpose Register Select = %d", $time, cmd_string[cmd], bank, mpr_select);
- end
- // MultiPurpose Register Enable
- mpr_en = addr[2];
- if (!mpr_en) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d MultiPurpose Register Enable = Disabled", $time, cmd_string[cmd], bank);
- end else if (mpr_en) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s %d MultiPurpose Register Enable = Enabled", $time, cmd_string[cmd], bank);
- end else begin
- $display ("%m: at time %t ERROR: %s %d Illegal MultiPurpose Register Enable = %d", $time, cmd_string[cmd], bank, mpr_en);
- end
- // Reserved
- if (ADDR_BITS>13 && addr[13:3] !== 0 && check_strict_mrbits) begin
- $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
- end
- end
- endcase
- if (dyn_odt_en && write_levelization)
- $display ("%m: at time %t ERROR: Dynamic ODT is not available during Write Leveling mode.", $time);
- init_mode_reg[bank] = 1;
- mode_reg[bank] = addr;
- tm_load_mode <= $time;
- ck_load_mode <= ck_cntr;
- end
- end
- REFRESH : begin
- if (mpr_en) begin
- $display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
- if (STOP_ON_ERROR) $stop(0);
- end else if (|active_bank) begin
- $display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]);
- if (STOP_ON_ERROR) $stop(0);
- end else begin
- if (DEBUG) $display ("%m: at time %t INFO: %s", $time, cmd_string[cmd]);
- er_trfc_max = 0;
- ref_cntr = ref_cntr + 1;
- tm_refresh <= $time;
- ck_refresh <= ck_cntr;
- end
- end
- PRECHARGE : begin
- if (addr[AP]) begin
- if (DEBUG) $display ("%m: at time %t INFO: %s All", $time, cmd_string[cmd]);
- end
- // PRECHARGE command will be treated as a NOP if there is no open row in that bank (idle state),
- // or if the previously open row is already in the process of precharging
- if (|active_bank) begin
- if (($time - tm_txpr < TXPR) || (ck_cntr - ck_txpr < TXPR_TCK))
- $display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[cmd]);
- if (mpr_en) begin
- $display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
- if (STOP_ON_ERROR) $stop(0);
- end else begin
- for (i=0; i<`BANKS; i=i+1) begin
- if (active_bank[i]) begin
- if (addr[AP] || (i == bank)) begin
- for (j=0; j<=SELF_REF; j=j+1) begin
- chk_err(SAME_BANK, i, j, cmd);
- chk_err(DIFF_BANK, i, j, cmd);
- end
- if (auto_precharge_bank[i]) begin
- $display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], i);
- if (STOP_ON_ERROR) $stop(0);
- end else begin
- if (DEBUG) $display ("%m: at time %t INFO: %s bank %d", $time, cmd_string[cmd], i);
- active_bank[i] = 1'b0;
- tm_bank_precharge[i] <= $time;
- tm_precharge <= $time;
- ck_precharge <= ck_cntr;
- end
- end
- end
- end
- end
- end
- end
- ACTIVATE : begin
- tfaw_cntr = 0;
- for (i=0; i<`BANKS; i=i+1) begin
- if ($time - tm_bank_activate[i] < TFAW) begin
- tfaw_cntr = tfaw_cntr + 1;
- end
- end
- if (tfaw_cntr > 3) begin
- $display ("%m: at time %t ERROR: tFAW violation during %s to bank %d", $time, cmd_string[cmd], bank);
- end
- if (mpr_en) begin
- $display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
- if (STOP_ON_ERROR) $stop(0);
- end else if (!init_done) begin
- $display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]);
- if (STOP_ON_ERROR) $stop(0);
- end else if (active_bank[bank]) begin
- $display ("%m: at time %t ERROR: %s Failure. Bank %d must be Precharged.", $time, cmd_string[cmd], bank);
- if (STOP_ON_ERROR) $stop(0);
- end else begin
- if (addr >= 1<<ROW_BITS) begin
- $display ("%m: at time %t WARNING: row = %h does not exist. Maximum row = %h", $time, addr, (1<<ROW_BITS)-1);
- end
- if (DEBUG) $display ("%m: at time %t INFO: %s bank %d row %h", $time, cmd_string[cmd], bank, addr);
- active_bank[bank] = 1'b1;
- active_row[bank] = addr;
- tm_group_activate[bank[1]] <= $time;
- tm_activate <= $time;
- tm_bank_activate[bank] <= $time;
- ck_group_activate[bank[1]] <= ck_cntr;
- ck_activate <= ck_cntr;
- end
- end
- WRITE : begin
- if ((!rd_bc && blotf) || (burst_length == 4)) begin // BL=4
- if (truebl4) begin
- if (ck_cntr - ck_group_read[bank[1]] < read_latency + TCCD/2 + 2 - write_latency)
- $display ("%m: at time %t ERROR: tRTW violation during %s to bank %d", $time, cmd_string[cmd], bank);
- if (ck_cntr - ck_read < read_latency + TCCD_DG/2 + 2 - write_latency)
- $display ("%m: at time %t ERROR: tRTW_DG violation during %s to bank %d", $time, cmd_string[cmd], bank);
- end else begin
- if (ck_cntr - ck_read < read_latency + TCCD/2 + 2 - write_latency)
- $display ("%m: at time %t ERROR: tRTW violation during %s to bank %d", $time, cmd_string[cmd], bank);
- end
- end else begin // BL=8
- if (ck_cntr - ck_read < read_latency + TCCD + 2 - write_latency)
- $display ("%m: at time %t ERROR: tRTW violation during %s to bank %d", $time, cmd_string[cmd], bank);
- end
- if (mpr_en) begin
- $display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
- if (STOP_ON_ERROR) $stop(0);
- end else if (!init_done) begin
- $display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]);
- if (STOP_ON_ERROR) $stop(0);
- end else if (!active_bank[bank]) begin
- if (check_strict_timing) $display ("%m: at time %t ERROR: %s Failure. Bank %d must be Activated.", $time, cmd_string[cmd], bank);
- if (STOP_ON_ERROR) $stop(0);
- end else if (auto_precharge_bank[bank]) begin
- $display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank);
- if (STOP_ON_ERROR) $stop(0);
- end else if (ck_cntr - ck_write < burst_length/2) begin
- $display ("%m: at time %t ERROR: %s Failure. Illegal burst interruption.", $time, cmd_string[cmd]);
- if (STOP_ON_ERROR) $stop(0);
- end else begin
- if (addr[AP]) begin
- auto_precharge_bank[bank] = 1'b1;
- write_precharge_bank[bank] = 1'b1;
- end
- col = {addr[BC-1:AP+1], addr[AP-1:0]}; // assume BC > AP
- if (col >= 1<<COL_BITS) begin
- $display ("%m: at time %t WARNING: col = %h does not exist. Maximum col = %h", $time, col, (1<<COL_BITS)-1);
- end
- if ((!addr[BC] && blotf) || (burst_length == 4)) begin // BL=4
- col = col & -4;
- end else begin // BL=8
- col = col & -8;
- end
- if (DEBUG) $display ("%m: at time %t INFO: %s bank %d col %h, auto precharge %d", $time, cmd_string[cmd], bank, col, addr[AP]);
- wr_pipeline[2*write_latency + 1] = 1;
- ba_pipeline[2*write_latency + 1] = bank;
- row_pipeline[2*write_latency + 1] = active_row[bank];
- col_pipeline[2*write_latency + 1] = col;
- if ((!addr[BC] && blotf) || (burst_length == 4)) begin // BL=4
- bl_pipeline[2*write_latency + 1] = 4;
- if (mpr_en && col%4) begin
- $display ("%m: at time %t WARNING: col[1:0] must be set to 2'b00 during a BL4 Multipurpose Register read", $time);
- end
- end else begin // BL=8
- bl_pipeline[2*write_latency + 1] = 8;
- if (odt_in) begin
- ck_odth8 <= ck_cntr;
- end
- end
- for (j=0; j<(burst_length + 4); j=j+1) begin
- dyn_odt_pipeline[2*(write_latency - 2) + j] = 1'b1; // ODTLcnw = WL - 2, ODTLcwn = BL/2 + 2
- end
- ck_bank_write[bank] <= ck_cntr;
- ck_group_write[bank[1]] <= ck_cntr;
- ck_write <= ck_cntr;
- end
- end
- READ : begin
- if (!dll_locked)
- $display ("%m: at time %t WARNING: tDLLK violation during %s.", $time, cmd_string[cmd]);
- if (mpr_en && (addr[1:0] != 2'b00)) begin
- $display ("%m: at time %t ERROR: %s Failure. addr[1:0] must be zero during Multipurpose Register Read.", $time, cmd_string[cmd]);
- if (STOP_ON_ERROR) $stop(0);
- end else if (!init_done) begin
- $display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]);
- if (STOP_ON_ERROR) $stop(0);
- end else if (!active_bank[bank] && !mpr_en) begin
- if (check_strict_timing) $display ("%m: at time %t ERROR: %s Failure. Bank %d must be Activated.", $time, cmd_string[cmd], bank);
- if (STOP_ON_ERROR) $stop(0);
- end else if (auto_precharge_bank[bank]) begin
- $display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank);
- if (STOP_ON_ERROR) $stop(0);
- end else if (ck_cntr - ck_read < burst_length/2) begin
- $display ("%m: at time %t ERROR: %s Failure. Illegal burst interruption.", $time, cmd_string[cmd]);
- if (STOP_ON_ERROR) $stop(0);
- end else begin
- if (addr[AP] && !mpr_en) begin
- auto_precharge_bank[bank] = 1'b1;
- read_precharge_bank[bank] = 1'b1;
- end
- col = {addr[BC-1:AP+1], addr[AP-1:0]}; // assume BC > AP
- if (col >= 1<<COL_BITS) begin
- $display ("%m: at time %t WARNING: col = %h does not exist. Maximum col = %h", $time, col, (1<<COL_BITS)-1);
- end
- if (DEBUG) $display ("%m: at time %t INFO: %s bank %d col %h, auto precharge %d", $time, cmd_string[cmd], bank, col, addr[AP]);
- rd_pipeline[2*read_latency - 1] = 1;
- ba_pipeline[2*read_latency - 1] = bank;
- row_pipeline[2*read_latency - 1] = active_row[bank];
- col_pipeline[2*read_latency - 1] = col;
- if ((!addr[BC] && blotf) || (burst_length == 4)) begin // BL=4
- bl_pipeline[2*read_latency - 1] = 4;
- if (mpr_en && col%4) begin
- $display ("%m: at time %t WARNING: col[1:0] must be set to 2'b00 during a BL4 Multipurpose Register read", $time);
- end
- end else begin // BL=8
- bl_pipeline[2*read_latency - 1] = 8;
- if (mpr_en && col%8) begin
- $display ("%m: at time %t WARNING: col[2:0] must be set to 3'b000 during a BL8 Multipurpose Register read", $time);
- end
- end
- rd_bc = addr[BC];
- ck_bank_read[bank] <= ck_cntr;
- ck_group_read[bank[1]] <= ck_cntr;
- ck_read <= ck_cntr;
- end
- end
- ZQ : begin
- if (mpr_en) begin
- $display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
- if (STOP_ON_ERROR) $stop(0);
- end else if (|active_bank) begin
- $display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]);
- if (STOP_ON_ERROR) $stop(0);
- end else begin
- if (DEBUG) $display ("%m: at time %t INFO: %s long = %d", $time, cmd_string[cmd], addr[AP]);
- if (addr[AP]) begin
- zq_set = 1;
- if (init_done) begin
- ck_zqoper <= ck_cntr;
- end else begin
- ck_zqinit <= ck_cntr;
- end
- end else begin
- ck_zqcs <= ck_cntr;
- end
- end
- end
- NOP: begin
- if (in_power_down) begin
- if (($time - tm_freq_change < TCKSRX) || (ck_cntr - ck_freq_change < TCKSRX_TCK))
- $display ("%m: at time %t ERROR: tCKSRX violation during Power Down Exit", $time);
- if ($time - tm_cke_cmd > TPD_MAX)
- $display ("%m: at time %t ERROR: tPD maximum violation during Power Down Exit", $time);
- if (DEBUG) $display ("%m: at time %t INFO: Power Down Exit", $time);
- in_power_down = 0;
- if ((active_bank == 0) && low_power) begin // precharge power down with dll off
- if (ck_cntr - ck_odt < write_latency - 1)
- $display ("%m: at time %t WARNING: tANPD violation during Power Down Exit. Synchronous or asynchronous change in termination resistance is possible.", $time);
- tm_slow_exit_pd <= $time;
- ck_slow_exit_pd <= ck_cntr;
- end
- tm_power_down <= $time;
- ck_power_down <= ck_cntr;
- end
- if (in_self_refresh) begin
- if (($time - tm_freq_change < TCKSRX) || (ck_cntr - ck_freq_change < TCKSRX_TCK))
- $display ("%m: at time %t ERROR: tCKSRX violation during Self Refresh Exit", $time);
- if (ck_cntr - ck_cke_cmd < TCKESR_TCK)
- $display ("%m: at time %t ERROR: tCKESR violation during Self Refresh Exit", $time);
- if ($time - tm_cke < TISXR)
- $display ("%m: at time %t ERROR: tISXR violation during Self Refresh Exit", $time);
- if (DEBUG) $display ("%m: at time %t INFO: Self Refresh Exit", $time);
- in_self_refresh = 0;
- ck_dll_reset <= ck_cntr;
- ck_self_refresh <= ck_cntr;
- tm_self_refresh <= $time;
- tm_refresh <= $time;
- end
- end
- endcase
- if ((prev_cke !== 1) && (cmd !== NOP)) begin
- $display ("%m: at time %t ERROR: NOP or Deselect is required when CKE goes active.", $time);
- end
- if (!init_done) begin
- case (init_step)
- 0 : begin
- if ($time - tm_rst_n < 500000000 && check_strict_timing)
- $display ("%m at time %t WARNING: 500 us is required after RST_N goes inactive before CKE goes active.", $time);
- tm_txpr <= $time;
- ck_txpr <= ck_cntr;
- init_step = init_step + 1;
- end
- 1 : if (dll_en) init_step = init_step + 1;
- 2 : begin
- if (&init_mode_reg && init_dll_reset && zq_set) begin
- if (DEBUG) $display ("%m: at time %t INFO: Initialization Sequence is complete", $time);
- init_done = 1;
- end
- end
- endcase
- end
- end else if (prev_cke) begin
- if ((!init_done) && (init_step > 1)) begin
- $display ("%m: at time %t ERROR: CKE must remain active until the initialization sequence is complete.", $time);
- if (STOP_ON_ERROR) $stop(0);
- end
- case (cmd)
- REFRESH : begin
- if ($time - tm_txpr < TXPR)
- $display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[SELF_REF]);
- for (j=0; j<=SELF_REF; j=j+1) begin
- chk_err(DIFF_BANK, bank, j, SELF_REF);
- end
- if (mpr_en) begin
- $display ("%m: at time %t ERROR: Self Refresh Failure. Multipurpose Register must be disabled.", $time);
- if (STOP_ON_ERROR) $stop(0);
- end else if (|active_bank) begin
- $display ("%m: at time %t ERROR: Self Refresh Failure. All banks must be Precharged.", $time);
- if (STOP_ON_ERROR) $stop(0);
- end else if (odt_state) begin
- $display ("%m: at time %t ERROR: Self Refresh Failure. ODT must be off prior to entering Self Refresh", $time);
- if (STOP_ON_ERROR) $stop(0);
- end else if (!init_done) begin
- $display ("%m: at time %t ERROR: Self Refresh Failure. Initialization sequence is not complete.", $time);
- if (STOP_ON_ERROR) $stop(0);
- end else begin
- if (DEBUG) $display ("%m: at time %t INFO: Self Refresh Enter", $time);
- if (feature_pasr)
- // Partial Array Self Refresh
- case (pasr)
- 3'b000 : ;//keep Bank 0-7
- 3'b001 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 4-7 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'hF0); end
- 3'b010 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 2-7 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'hFC); end
- 3'b011 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 1-7 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'hFE); end
- 3'b100 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-1 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h03); end
- 3'b101 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-3 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h0F); end
- 3'b110 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-5 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h3F); end
- 3'b111 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-6 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h7F); end
- endcase
- in_self_refresh = 1;
- dll_locked = 0;
- end
- end
- NOP : begin
- // entering precharge power down with dll off and tANPD has not been satisfied
- if (low_power && (active_bank == 0) && |odt_pipeline)
- $display ("%m: at time %t WARNING: tANPD violation during %s. Synchronous or asynchronous change in termination resistance is possible.", $time, cmd_string[PWR_DOWN]);
- if ($time - tm_txpr < TXPR)
- $display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[PWR_DOWN]);
- for (j=0; j<=SELF_REF; j=j+1) begin
- chk_err(DIFF_BANK, bank, j, PWR_DOWN);
- end
- if (mpr_en) begin
- $display ("%m: at time %t ERROR: Power Down Failure. Multipurpose Register must be disabled.", $time);
- if (STOP_ON_ERROR) $stop(0);
- end else if (!init_done) begin
- $display ("%m: at time %t ERROR: Power Down Failure. Initialization sequence is not complete.", $time);
- if (STOP_ON_ERROR) $stop(0);
- end else begin
- if (DEBUG) begin
- if (|active_bank) begin
- $display ("%m: at time %t INFO: Active Power Down Enter", $time);
- end else begin
- $display ("%m: at time %t INFO: Precharge Power Down Enter", $time);
- end
- end
- in_power_down = 1;
- end
- end
- default : begin
- $display ("%m: at time %t ERROR: NOP, Deselect, or Refresh is required when CKE goes inactive.", $time);
- end
- endcase
- end else if (in_self_refresh || in_power_down) begin
- if ((ck_cntr - ck_cke_cmd <= TCPDED) && (cmd !== NOP))
- $display ("%m: at time %t ERROR: tCPDED violation during Power Down or Self Refresh Entry. NOP or Deselect is required.", $time);
- end
- prev_cke = cke;
- end
- endtask
- task data_task;
- reg [BA_BITS-1:0] bank;
- reg [ROW_BITS-1:0] row;
- reg [COL_BITS-1:0] col;
- integer i;
- integer j;
- begin
- if (diff_ck) begin
- for (i=0; i<32; i=i+1) begin
- if (dq_in_valid && dll_locked && ($time - tm_dqs_neg[i] < $rtoi(TDSS*tck_avg)))
- $display ("%m: at time %t ERROR: tDSS violation on %s bit %d", $time, dqs_string[i/16], i%16);
- if (check_write_dqs_high[i])
- $display ("%m: at time %t ERROR: %s bit %d latching edge required during the preceding clock period.", $time, dqs_string[i/16], i%16);
- end
- check_write_dqs_high <= 0;
- end else begin
- for (i=0; i<32; i=i+1) begin
- if (dll_locked && dq_in_valid) begin
- tm_tdqss = abs_value(1.0*tm_ck_pos - tm_dqss_pos[i]);
- if ((tm_tdqss < tck_avg/2.0) && (tm_tdqss > TDQSS*tck_avg))
- $display ("%m: at time %t ERROR: tDQSS violation on %s bit %d", $time, dqs_string[i/16], i%16);
- end
- if (check_write_dqs_low[i])
- $display ("%m: at time %t ERROR: %s bit %d latching edge required during the preceding clock period", $time, dqs_string[i/16], i%16);
- end
- check_write_preamble <= 0;
- check_write_postamble <= 0;
- check_write_dqs_low <= 0;
- end
- if (wr_pipeline[0] || rd_pipeline[0]) begin
- bank = ba_pipeline[0];
- row = row_pipeline[0];
- col = col_pipeline[0];
- burst_cntr = 0;
- memory_read(bank, row, col, memory_data);
- end
- // burst counter
- if (burst_cntr < burst_length) begin
- burst_position = col ^ burst_cntr;
- if (!burst_order) begin
- burst_position[BO_BITS-1:0] = col + burst_cntr;
- end
- burst_cntr = burst_cntr + 1;
- end
- // write dqs counter
- if (wr_pipeline[WDQS_PRE + 1]) begin
- wdqs_cntr = WDQS_PRE + bl_pipeline[WDQS_PRE + 1] + WDQS_PST - 1;
- end
- // write dqs
- if ((wr_pipeline[2]) && (wdq_cntr == 0)) begin //write preamble
- check_write_preamble <= ({DQS_BITS{1'b1}}<<16) | {DQS_BITS{1'b1}};
- end
- if (wdqs_cntr > 1) begin // write data
- if ((wdqs_cntr - WDQS_PST)%2) begin
- check_write_dqs_high <= ({DQS_BITS{1'b1}}<<16) | {DQS_BITS{1'b1}};
- end else begin
- check_write_dqs_low <= ({DQS_BITS{1'b1}}<<16) | {DQS_BITS{1'b1}};
- end
- end
- if (wdqs_cntr == WDQS_PST) begin // write postamble
- check_write_postamble <= ({DQS_BITS{1'b1}}<<16) | {DQS_BITS{1'b1}};
- end
- if (wdqs_cntr > 0) begin
- wdqs_cntr = wdqs_cntr - 1;
- end
- // write dq
- if (dq_in_valid) begin // write data
- bit_mask = 0;
- if (diff_ck) begin
- for (i=0; i<DM_BITS; i=i+1) begin
- bit_mask = bit_mask | ({`DQ_PER_DQS{~dm_in_neg[i]}}<<(burst_position*DQ_BITS + i*`DQ_PER_DQS));
- end
- memory_data = (dq_in_neg<<(burst_position*DQ_BITS) & bit_mask) | (memory_data & ~bit_mask);
- end else begin
- for (i=0; i<DM_BITS; i=i+1) begin
- bit_mask = bit_mask | ({`DQ_PER_DQS{~dm_in_pos[i]}}<<(burst_position*DQ_BITS + i*`DQ_PER_DQS));
- end
- memory_data = (dq_in_pos<<(burst_position*DQ_BITS) & bit_mask) | (memory_data & ~bit_mask);
- end
- dq_temp = memory_data>>(burst_position*DQ_BITS);
- if (DEBUG) $display ("%m: at time %t INFO: WRITE @ DQS= bank = %h row = %h col = %h data = %h",$time, bank, row, (-1*BL_MAX & col) + burst_position, dq_temp);
- if (burst_cntr%BL_MIN == 0) begin
- memory_write(bank, row, col, memory_data);
- end
- end
- if (wr_pipeline[1]) begin
- wdq_cntr = bl_pipeline[1];
- end
- if (wdq_cntr > 0) begin
- wdq_cntr = wdq_cntr - 1;
- dq_in_valid = 1'b1;
- end else begin
- dq_in_valid = 1'b0;
- dqs_in_valid <= 1'b0;
- for (i=0; i<31; i=i+1) begin
- wdqs_pos_cntr[i] <= 0;
- end
- end
- if (wr_pipeline[0]) begin
- b2b_write <= 1'b0;
- end
- if (wr_pipeline[2]) begin
- if (dqs_in_valid) begin
- b2b_write <= 1'b1;
- end
- dqs_in_valid <= 1'b1;
- wr_burst_length = bl_pipeline[2];
- end
- // read dqs enable counter
- if (rd_pipeline[RDQSEN_PRE]) begin
- rdqsen_cntr = RDQSEN_PRE + bl_pipeline[RDQSEN_PRE] + RDQSEN_PST - 1;
- end
- if (rdqsen_cntr > 0) begin
- rdqsen_cntr = rdqsen_cntr - 1;
- dqs_out_en = 1'b1;
- end else begin
- dqs_out_en = 1'b0;
- end
-
- // read dqs counter
- if (rd_pipeline[RDQS_PRE]) begin
- rdqs_cntr = RDQS_PRE + bl_pipeline[RDQS_PRE] + RDQS_PST - 1;
- end
- // read dqs
- if (((rd_pipeline>>1 & {RDQS_PRE{1'b1}}) > 0) && (rdq_cntr == 0)) begin //read preamble
- dqs_out = 1'b0;
- end else if (rdqs_cntr > RDQS_PST) begin // read data
- dqs_out = rdqs_cntr - RDQS_PST;
- end else if (rdqs_cntr > 0) begin // read postamble
- dqs_out = 1'b0;
- end else begin
- dqs_out = 1'b1;
- end
- if (rdqs_cntr > 0) begin
- rdqs_cntr = rdqs_cntr - 1;
- end
- // read dq enable counter
- if (rd_pipeline[RDQEN_PRE]) begin
- rdqen_cntr = RDQEN_PRE + bl_pipeline[RDQEN_PRE] + RDQEN_PST;
- end
- if (rdqen_cntr > 0) begin
- rdqen_cntr = rdqen_cntr - 1;
- dq_out_en = 1'b1;
- end else begin
- dq_out_en = 1'b0;
- end
- // read dq
- if (rd_pipeline[0]) begin
- rdq_cntr = bl_pipeline[0];
- end
- if (rdq_cntr > 0) begin // read data
- if (mpr_en) begin
- `ifdef MPR_DQ0 // DQ0 output MPR data, other DQ low
- if (mpr_select == 2'b00) begin // Calibration Pattern
- dq_temp = {DQS_BITS{{`DQ_PER_DQS-1{1'b0}}, calibration_pattern[burst_position]}};
- end else if (odts_readout && (mpr_select == 2'b11)) begin // Temp Sensor (ODTS)
- dq_temp = {DQS_BITS{{`DQ_PER_DQS-1{1'b0}}, temp_sensor[burst_position]}};
- end else begin // Reserved
- dq_temp = {DQS_BITS{{`DQ_PER_DQS-1{1'b0}}, 1'bx}};
- end
- `else // all DQ output MPR data
- if (mpr_select == 2'b00) begin // Calibration Pattern
- dq_temp = {DQS_BITS{{`DQ_PER_DQS{calibration_pattern[burst_position]}}}};
- end else if (odts_readout && (mpr_select == 2'b11)) begin // Temp Sensor (ODTS)
- dq_temp = {DQS_BITS{{`DQ_PER_DQS{temp_sensor[burst_position]}}}};
- end else begin // Reserved
- dq_temp = {DQS_BITS{{`DQ_PER_DQS{1'bx}}}};
- end
- `endif
- if (DEBUG) $display ("%m: at time %t READ @ DQS MultiPurpose Register %d, col = %d, data = %b", $time, mpr_select, burst_position, dq_temp[0]);
- end else begin
- dq_temp = memory_data>>(burst_position*DQ_BITS);
- if (DEBUG) $display ("%m: at time %t INFO: READ @ DQS= bank = %h row = %h col = %h data = %h",$time, bank, row, (-1*BL_MAX & col) + burst_position, dq_temp);
- end
- dq_out = dq_temp;
- rdq_cntr = rdq_cntr - 1;
- end else begin
- dq_out = {DQ_BITS{1'b1}};
- end
- // delay signals prior to output
- if (RANDOM_OUT_DELAY && (dqs_out_en || (|dqs_out_en_dly) || dq_out_en || (|dq_out_en_dly))) begin
- for (i=0; i<DQS_BITS; i=i+1) begin
- // DQSCK requirements
- // 1.) less than tDQSCK
- // 2.) greater than -tDQSCK
- // 3.) cannot change more than tQH + tDQSQ from previous DQS edge
- dqsck_max = TDQSCK;
- if (dqsck_max > dqsck[i] + TQH*tck_avg + TDQSQ) begin
- dqsck_max = dqsck[i] + TQH*tck_avg + TDQSQ;
- end
- dqsck_min = -1*TDQSCK;
- if (dqsck_min < dqsck[i] - TQH*tck_avg - TDQSQ) begin
- dqsck_min = dqsck[i] - TQH*tck_avg - TDQSQ;
- end
- // DQSQ requirements
- // 1.) less than tDQSQ
- // 2.) greater than 0
- // 3.) greater than tQH from the previous DQS edge
- dqsq_min = 0;
- if (dqsq_min < dqsck[i] - TQH*tck_avg) begin
- dqsq_min = dqsck[i] - TQH*tck_avg;
- end
- if (dqsck_min == dqsck_max) begin
- dqsck[i] = dqsck_min;
- end else begin
- dqsck[i] = $dist_uniform(seed, dqsck_min, dqsck_max);
- end
- dqsq_max = TDQSQ + dqsck[i];
- dqs_out_en_dly[i] <= #(tck_avg/2) dqs_out_en;
- dqs_out_dly[i] <= #(tck_avg/2 + dqsck[i]) dqs_out;
- if (!write_levelization) begin
- for (j=0; j<`DQ_PER_DQS; j=j+1) begin
- dq_out_en_dly[i*`DQ_PER_DQS + j] <= #(tck_avg/2) dq_out_en;
- if (dqsq_min == dqsq_max) begin
- dq_out_dly [i*`DQ_PER_DQS + j] <= #(tck_avg/2 + dqsq_min) dq_out[i*`DQ_PER_DQS + j];
- end else begin
- dq_out_dly [i*`DQ_PER_DQS + j] <= #(tck_avg/2 + $dist_uniform(seed, dqsq_min, dqsq_max)) dq_out[i*`DQ_PER_DQS + j];
- end
- end
- end
- end
- end else begin
- out_delay = tck_avg/2;
- dqs_out_en_dly <= #(out_delay) {DQS_BITS{dqs_out_en}};
- dqs_out_dly <= #(out_delay) {DQS_BITS{dqs_out }};
- if (write_levelization !== 1'b1) begin
- dq_out_en_dly <= #(out_delay) {DQ_BITS {dq_out_en }};
- dq_out_dly <= #(out_delay) {DQ_BITS {dq_out }};
- end
- end
- end
- endtask
- always @ (posedge rst_n_in) begin : reset
- integer i;
- if (rst_n_in) begin
- if ($time < 200000000 && check_strict_timing)
- $display ("%m at time %t WARNING: 200 us is required before RST_N goes inactive.", $time);
- if (cke_in !== 1'b0)
- $display ("%m: at time %t ERROR: CKE must be inactive when RST_N goes inactive.", $time);
- if ($time - tm_cke < 10000)
- $display ("%m: at time %t ERROR: CKE must be maintained inactive for 10 ns before RST_N goes inactive.", $time);
- // clear memory
- `ifdef MAX_MEM
- // verification group does not erase memory
- // for (banki = 0; banki < `BANKS; banki = banki + 1) begin
- // $fclose(memfd[banki]);
- // memfd[banki] = open_bank_file(banki);
- // end
- `else
- memory_used <= 0; //erase memory
- `endif
- end
- end
- always @(negedge rst_n_in or posedge diff_ck or negedge diff_ck) begin : main
- integer i;
- if (!rst_n_in) begin
- reset_task;
- end else begin
- if (!in_self_refresh && (diff_ck !== 1'b0) && (diff_ck !== 1'b1))
- $display ("%m: at time %t ERROR: CK and CK_N are not allowed to go to an unknown state.", $time);
- data_task;
- // Clock Frequency Change is legal:
- // 1.) During Self Refresh
- // 2.) During Precharge Power Down (DLL on or off)
- if (in_self_refresh || (in_power_down && (active_bank == 0))) begin
- if (diff_ck) begin
- tjit_per_rtime = $time - tm_ck_pos - tck_avg;
- end else begin
- tjit_per_rtime = $time - tm_ck_neg - tck_avg;
- end
- if (dll_locked && (abs_value(tjit_per_rtime) > TJIT_PER)) begin
- if ((tm_ck_pos - tm_cke_cmd < TCKSRE) || (ck_cntr - ck_cke_cmd < TCKSRE_TCK))
- $display ("%m: at time %t ERROR: tCKSRE violation during Self Refresh or Precharge Power Down Entry", $time);
- if (odt_state) begin
- $display ("%m: at time %t ERROR: Clock Frequency Change Failure. ODT must be off prior to Clock Frequency Change.", $time);
- if (STOP_ON_ERROR) $stop(0);
- end else begin
- if (DEBUG) $display ("%m: at time %t INFO: Clock Frequency Change detected. DLL Reset is Required.", $time);
- tm_freq_change <= $time;
- ck_freq_change <= ck_cntr;
- dll_locked = 0;
- end
- end
- end
- if (diff_ck) begin
- // check setup of command signals
- if ($time > TIS) begin
- if ($time - tm_cke < TIS)
- $display ("%m: at time %t ERROR: tIS violation on CKE by %t", $time, tm_cke + TIS - $time);
- if (cke_in) begin
- for (i=0; i<22; i=i+1) begin
- if ($time - tm_cmd_addr[i] < TIS)
- $display ("%m: at time %t ERROR: tIS violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIS - $time);
- end
- end
- end
- // update current state
- if (dll_locked) begin
- if (mr_chk == 0) begin
- mr_chk = 1;
- end else if (init_mode_reg[0] && (mr_chk == 1)) begin
- // check CL value against the clock frequency
- if (cas_latency*tck_avg < CL_TIME && check_strict_timing)
- $display ("%m: at time %t ERROR: CAS Latency = %d is illegal @tCK(avg) = %f", $time, cas_latency, tck_avg);
- // check WR value against the clock frequency
- if (ceil(write_recovery*tck_avg) < TWR)
- $display ("%m: at time %t ERROR: Write Recovery = %d is illegal @tCK(avg) = %f", $time, write_recovery, tck_avg);
- // check the CWL value against the clock frequency
- if (check_strict_timing) begin
- case (cas_write_latency)
- 5 : if (tck_avg < 2500.0) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
- 6 : if ((tck_avg < 1875.0) || (tck_avg >= 2500.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
- 7 : if ((tck_avg < 1500.0) || (tck_avg >= 1875.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
- 8 : if ((tck_avg < 1250.0) || (tck_avg >= 1500.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
- 9 : if ((tck_avg < 15e3/14) || (tck_avg >= 1250.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
- 10: if ((tck_avg < 937.5) || (tck_avg >= 15e3/14)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
- default : $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
- endcase
- // check the CL value against the clock frequency
- if (!valid_cl(cas_latency, cas_write_latency))
- $display ("%m: at time %t ERROR: CAS Latency = %d is not valid when CAS Write Latency = %d", $time, cas_latency, cas_write_latency);
- end
- mr_chk = 2;
- end
- end else if (!in_self_refresh) begin
- mr_chk = 0;
- if (ck_cntr - ck_dll_reset == TDLLK) begin
- dll_locked = 1;
- end
- end
- if (|auto_precharge_bank) begin
- for (i=0; i<`BANKS; i=i+1) begin
- // Write with Auto Precharge Calculation
- // 1. Meet minimum tRAS requirement
- // 2. Write Latency PLUS BL/2 cycles PLUS WR after Write command
- if (write_precharge_bank[i]) begin
- if ($time - tm_bank_activate[i] >= TRAS_MIN) begin
- if (ck_cntr - ck_bank_write[i] >= write_latency + burst_length/2 + write_recovery) begin
- if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", $time, i);
- write_precharge_bank[i] = 0;
- active_bank[i] = 0;
- auto_precharge_bank[i] = 0;
- tm_bank_precharge[i] = $time;
- tm_precharge = $time;
- ck_precharge = ck_cntr;
- end
- end
- end
- // Read with Auto Precharge Calculation
- // 1. Meet minimum tRAS requirement
- // 2. Additive Latency plus 4 cycles after Read command
- // 3. tRTP after the last 8-bit prefetch
- if (read_precharge_bank[i]) begin
- if (($time - tm_bank_activate[i] >= TRAS_MIN) && (ck_cntr - ck_bank_read[i] >= additive_latency + TRTP_TCK)) begin
- read_precharge_bank[i] = 0;
- // In case the internal precharge is pushed out by tRTP, tRP starts at the point where
- // the internal precharge happens (not at the next rising clock edge after this event).
- if ($time - tm_bank_read_end[i] < TRTP) begin
- if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", tm_bank_read_end[i] + TRTP, i);
- active_bank[i] <= #(tm_bank_read_end[i] + TRTP - $time) 0;
- auto_precharge_bank[i] <= #(tm_bank_read_end[i] + TRTP - $time) 0;
- tm_bank_precharge[i] <= #(tm_bank_read_end[i] + TRTP - $time) tm_bank_read_end[i] + TRTP;
- tm_precharge <= #(tm_bank_read_end[i] + TRTP - $time) tm_bank_read_end[i] + TRTP;
- ck_precharge = ck_cntr;
- end else begin
- if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", $time, i);
- active_bank[i] = 0;
- auto_precharge_bank[i] = 0;
- tm_bank_precharge[i] = $time;
- tm_precharge = $time;
- ck_precharge = ck_cntr;
- end
- end
- end
- end
- end
- // respond to incoming command
- if (cke_in ^ prev_cke) begin
- tm_cke_cmd <= $time;
- ck_cke_cmd <= ck_cntr;
- end
- cmd_task(cke_in, cmd_n_in, ba_in, addr_in);
- if ((cmd_n_in == WRITE) || (cmd_n_in == READ)) begin
- al_pipeline[2*additive_latency] = 1'b1;
- end
- if (al_pipeline[0]) begin
- // check tRCD after additive latency
- if ((rd_pipeline[2*cas_latency - 1]) && ($time - tm_bank_activate[ba_pipeline[2*cas_latency - 1]] < TRCD))
- $display ("%m: at time %t ERROR: tRCD violation during %s", $time, cmd_string[READ]);
- if ((wr_pipeline[2*cas_write_latency + 1]) && ($time - tm_bank_activate[ba_pipeline[2*cas_write_latency + 1]] < TRCD))
- $display ("%m: at time %t ERROR: tRCD violation during %s", $time, cmd_string[WRITE]);
- // check tWTR after additive latency
- if (rd_pipeline[2*cas_latency - 1]) begin //{
- if (truebl4) begin //{
- i = ba_pipeline[2*cas_latency - 1];
- if ($time - tm_group_write_end[i[1]] < TWTR)
- $display ("%m: at time %t ERROR: tWTR violation during %s", $time, cmd_string[READ]);
- if ($time - tm_write_end < TWTR_DG)
- $display ("%m: at time %t ERROR: tWTR_DG violation during %s", $time, cmd_string[READ]);
- end else begin
- if ($time - tm_write_end < TWTR)
- $display ("%m: at time %t ERROR: tWTR violation during %s", $time, cmd_string[READ]);
- end
- end
- end
- if (rd_pipeline) begin
- if (rd_pipeline[2*cas_latency - 1]) begin
- tm_bank_read_end[ba_pipeline[2*cas_latency - 1]] <= $time;
- end
- end
- for (i=0; i<`BANKS; i=i+1) begin
- if ((ck_cntr - ck_bank_write[i] > write_latency) && (ck_cntr - ck_bank_write[i] <= write_latency + burst_length/2)) begin
- tm_bank_write_end[i] <= $time;
- tm_group_write_end[i[1]] <= $time;
- tm_write_end <= $time;
- end
- end
- // clk pin is disabled during self refresh
- if (!in_self_refresh && tm_ck_pos ) begin
- tjit_cc_time = $time - tm_ck_pos - tck_i;
- tck_i = $time - tm_ck_pos;
- tck_avg = tck_avg - tck_sample[ck_cntr%TDLLK]/$itor(TDLLK);
- tck_avg = tck_avg + tck_i/$itor(TDLLK);
- tck_sample[ck_cntr%TDLLK] = tck_i;
- tjit_per_rtime = tck_i - tck_avg;
- if (dll_locked && check_strict_timing) begin
- // check accumulated error
- terr_nper_rtime = 0;
- for (i=0; i<12; i=i+1) begin
- terr_nper_rtime = terr_nper_rtime + tck_sample[i] - tck_avg;
- terr_nper_rtime = abs_value(terr_nper_rtime);
- case (i)
- 0 :;
- 1 : if (terr_nper_rtime - TERR_2PER >= 1.0) $display ("%m: at time %t ERROR: tERR(2per) violation by %f ps.", $time, terr_nper_rtime - TERR_2PER);
- 2 : if (terr_nper_rtime - TERR_3PER >= 1.0) $display ("%m: at time %t ERROR: tERR(3per) violation by %f ps.", $time, terr_nper_rtime - TERR_3PER);
- 3 : if (terr_nper_rtime - TERR_4PER >= 1.0) $display ("%m: at time %t ERROR: tERR(4per) violation by %f ps.", $time, terr_nper_rtime - TERR_4PER);
- 4 : if (terr_nper_rtime - TERR_5PER >= 1.0) $display ("%m: at time %t ERROR: tERR(5per) violation by %f ps.", $time, terr_nper_rtime - TERR_5PER);
- 5 : if (terr_nper_rtime - TERR_6PER >= 1.0) $display ("%m: at time %t ERROR: tERR(6per) violation by %f ps.", $time, terr_nper_rtime - TERR_6PER);
- 6 : if (terr_nper_rtime - TERR_7PER >= 1.0) $display ("%m: at time %t ERROR: tERR(7per) violation by %f ps.", $time, terr_nper_rtime - TERR_7PER);
- 7 : if (terr_nper_rtime - TERR_8PER >= 1.0) $display ("%m: at time %t ERROR: tERR(8per) violation by %f ps.", $time, terr_nper_rtime - TERR_8PER);
- 8 : if (terr_nper_rtime - TERR_9PER >= 1.0) $display ("%m: at time %t ERROR: tERR(9per) violation by %f ps.", $time, terr_nper_rtime - TERR_9PER);
- 9 : if (terr_nper_rtime - TERR_10PER >= 1.0) $display ("%m: at time %t ERROR: tERR(10per) violation by %f ps.", $time, terr_nper_rtime - TERR_10PER);
- 10 : if (terr_nper_rtime - TERR_11PER >= 1.0) $display ("%m: at time %t ERROR: tERR(11per) violation by %f ps.", $time, terr_nper_rtime - TERR_11PER);
- 11 : if (terr_nper_rtime - TERR_12PER >= 1.0) $display ("%m: at time %t ERROR: tERR(12per) violation by %f ps.", $time, terr_nper_rtime - TERR_12PER);
- endcase
- end
-
- // check tCK min/max/jitter
- if (abs_value(tjit_per_rtime) - TJIT_PER >= 1.0)
- $display ("%m: at time %t ERROR: tJIT(per) violation by %f ps.", $time, abs_value(tjit_per_rtime) - TJIT_PER);
- if (abs_value(tjit_cc_time) - TJIT_CC >= 1.0)
- $display ("%m: at time %t ERROR: tJIT(cc) violation by %f ps.", $time, abs_value(tjit_cc_time) - TJIT_CC);
- if (TCK_MIN - tck_avg >= 1.0)
- $display ("%m: at time %t ERROR: tCK(avg) minimum violation by %f ps.", $time, TCK_MIN - tck_avg);
- if (tck_avg - TCK_MAX >= 1.0)
- $display ("%m: at time %t ERROR: tCK(avg) maximum violation by %f ps.", $time, tck_avg - TCK_MAX);
- // check tCL
- if (tm_ck_neg - $time < TCL_ABS_MIN*tck_avg)
- $display ("%m: at time %t ERROR: tCL(abs) minimum violation on CLK by %t", $time, TCL_ABS_MIN*tck_avg - tm_ck_neg + $time);
- if (tcl_avg < TCL_AVG_MIN*tck_avg)
- $display ("%m: at time %t ERROR: tCL(avg) minimum violation on CLK by %t", $time, TCL_AVG_MIN*tck_avg - tcl_avg);
- if (tcl_avg > TCL_AVG_MAX*tck_avg)
- $display ("%m: at time %t ERROR: tCL(avg) maximum violation on CLK by %t", $time, tcl_avg - TCL_AVG_MAX*tck_avg);
- end
- // calculate the tch avg jitter
- tch_avg = tch_avg - tch_sample[ck_cntr%TDLLK]/$itor(TDLLK);
- tch_avg = tch_avg + tch_i/$itor(TDLLK);
- tch_sample[ck_cntr%TDLLK] = tch_i;
- tjit_ch_rtime = tch_i - tch_avg;
- duty_cycle = tch_avg/tck_avg;
- // update timers/counters
- tcl_i <= $time - tm_ck_neg;
- end
- prev_odt <= odt_in;
- // update timers/counters
- ck_cntr <= ck_cntr + 1;
- tm_ck_pos = $time;
- end else begin
- // clk pin is disabled during self refresh
- if (!in_self_refresh) begin
- if (dll_locked && check_strict_timing) begin
- if ($time - tm_ck_pos < TCH_ABS_MIN*tck_avg)
- $display ("%m: at time %t ERROR: tCH(abs) minimum violation on CLK by %t", $time, TCH_ABS_MIN*tck_avg - $time + tm_ck_pos);
- if (tch_avg < TCH_AVG_MIN*tck_avg)
- $display ("%m: at time %t ERROR: tCH(avg) minimum violation on CLK by %t", $time, TCH_AVG_MIN*tck_avg - tch_avg);
- if (tch_avg > TCH_AVG_MAX*tck_avg)
- $display ("%m: at time %t ERROR: tCH(avg) maximum violation on CLK by %t", $time, tch_avg - TCH_AVG_MAX*tck_avg);
- end
-
- // calculate the tcl avg jitter
- tcl_avg = tcl_avg - tcl_sample[ck_cntr%TDLLK]/$itor(TDLLK);
- tcl_avg = tcl_avg + tcl_i/$itor(TDLLK);
- tcl_sample[ck_cntr%TDLLK] = tcl_i;
- // update timers/counters
- tch_i <= $time - tm_ck_pos;
- end
- tm_ck_neg = $time;
- end
- // on die termination
- if (odt_en || dyn_odt_en) begin
- // odt pin is disabled during self refresh
- if (!in_self_refresh && diff_ck) begin
- if ($time - tm_odt < TIS)
- $display ("%m: at time %t ERROR: tIS violation on ODT by %t", $time, tm_odt + TIS - $time);
- if (prev_odt ^ odt_in) begin
- if (!dll_locked)
- $display ("%m: at time %t WARNING: tDLLK violation during ODT transition.", $time);
- if (($time - tm_load_mode < TMOD) || (ck_cntr - ck_load_mode < TMOD_TCK))
- $display ("%m: at time %t ERROR: tMOD violation during ODT transition", $time);
- if (ck_cntr - ck_zqinit < TZQINIT)
- $display ("%m: at time %t ERROR: TZQinit violation during ODT transition", $time);
- if (ck_cntr - ck_zqoper < TZQOPER)
- $display ("%m: at time %t ERROR: TZQoper violation during ODT transition", $time);
- if (ck_cntr - ck_zqcs < TZQCS)
- $display ("%m: at time %t ERROR: tZQcs violation during ODT transition", $time);
- // if (($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK))
- // $display ("%m: at time %t ERROR: tXPDLL violation during ODT transition", $time);
- if (ck_cntr - ck_self_refresh < TXSDLL)
- $display ("%m: at time %t ERROR: tXSDLL violation during ODT transition", $time);
- if (in_self_refresh)
- $display ("%m: at time %t ERROR: Illegal ODT transition during Self Refresh.", $time);
- if (!odt_in && (ck_cntr - ck_odt < ODTH4))
- $display ("%m: at time %t ERROR: ODTH4 violation during ODT transition", $time);
- if (!odt_in && (ck_cntr - ck_odth8 < ODTH8))
- $display ("%m: at time %t ERROR: ODTH8 violation during ODT transition", $time);
- if (($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK))
- $display ("%m: at time %t WARNING: tXPDLL during ODT transition. Synchronous or asynchronous change in termination resistance is possible.", $time);
- // async ODT mode applies:
- // 1.) during precharge power down with DLL off
- // 2.) if tANPD has not been satisfied
- // 3.) until tXPDLL has been satisfied
- if ((in_power_down && low_power && (active_bank == 0)) || ($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK)) begin
- odt_state = odt_in;
- if (DEBUG && odt_en) $display ("%m: at time %t INFO: Async On Die Termination Rtt_NOM = %d Ohm", $time, {32{odt_state}} & get_rtt_nom(odt_rtt_nom));
- if (odt_state) begin
- odt_state_dly <= #(TAONPD) odt_state;
- end else begin
- odt_state_dly <= #(TAOFPD) odt_state;
- end
- // sync ODT mode applies:
- // 1.) during normal operation
- // 2.) during active power down
- // 3.) during precharge power down with DLL on
- end else begin
- odt_pipeline[2*(write_latency - 2)] = 1'b1; // ODTLon, ODTLoff
- end
- ck_odt <= ck_cntr;
- end
- end
- if (odt_pipeline[0]) begin
- odt_state = ~odt_state;
- if (DEBUG && odt_en) $display ("%m: at time %t INFO: Sync On Die Termination Rtt_NOM = %d Ohm", $time, {32{odt_state}} & get_rtt_nom(odt_rtt_nom));
- if (odt_state) begin
- odt_state_dly <= #(TAON) odt_state;
- end else begin
- odt_state_dly <= #(TAOF*tck_avg) odt_state;
- end
- end
- if (rd_pipeline[RDQSEN_PRE]) begin
- odt_cntr = 1 + RDQSEN_PRE + bl_pipeline[RDQSEN_PRE] + RDQSEN_PST - 1;
- end
- if (odt_cntr > 0) begin
- if (odt_state) begin
- $display ("%m: at time %t ERROR: On Die Termination must be OFF during Read data transfer.", $time);
- end
- odt_cntr = odt_cntr - 1;
- end
- if (dyn_odt_en && odt_state) begin
- if (DEBUG && (dyn_odt_state ^ dyn_odt_pipeline[0]))
- $display ("%m: at time %t INFO: Sync On Die Termination Rtt_WR = %d Ohm", $time, {32{dyn_odt_pipeline[0]}} & get_rtt_wr(odt_rtt_wr));
- dyn_odt_state = dyn_odt_pipeline[0];
- end
- dyn_odt_state_dly <= #(TADC*tck_avg) dyn_odt_state;
- end
- /*
- if (cke_in && write_levelization) begin
- for (i=0; i<DQS_BITS; i=i+1) begin
- if ($time - tm_dqs_pos[i] < TWLH)
- $display ("%m: at time %t WARNING: tWLH violation on DQS bit %d positive edge. Indeterminate CK capture is possible.", $time, i);
- end
- end
- */
- // shift pipelines
- if (|wr_pipeline || |rd_pipeline || |al_pipeline) begin
- al_pipeline = al_pipeline>>1;
- wr_pipeline = wr_pipeline>>1;
- rd_pipeline = rd_pipeline>>1;
- for (i=0; i<`MAX_PIPE; i=i+1) begin
- bl_pipeline[i] = bl_pipeline[i+1];
- ba_pipeline[i] = ba_pipeline[i+1];
- row_pipeline[i] = row_pipeline[i+1];
- col_pipeline[i] = col_pipeline[i+1];
- end
- end
- if (|odt_pipeline || |dyn_odt_pipeline) begin
- odt_pipeline = odt_pipeline>>1;
- dyn_odt_pipeline = dyn_odt_pipeline>>1;
- end
- end
- end
- // receiver(s)
- task dqs_even_receiver;
- input [3:0] i;
- reg [63:0] bit_mask;
- begin
- bit_mask = {`DQ_PER_DQS{1'b1}}<<(i*`DQ_PER_DQS);
- if (dqs_even[i]) begin
- if (tdqs_en) begin // tdqs disables dm
- dm_in_pos[i] = 1'b0;
- end else begin
- dm_in_pos[i] = dm_in[i];
- end
- dq_in_pos = (dq_in & bit_mask) | (dq_in_pos & ~bit_mask);
- end
- end
- endtask
- always @(posedge dqs_even[ 0]) dqs_even_receiver( 0);
- always @(posedge dqs_even[ 1]) dqs_even_receiver( 1);
- always @(posedge dqs_even[ 2]) dqs_even_receiver( 2);
- always @(posedge dqs_even[ 3]) dqs_even_receiver( 3);
- always @(posedge dqs_even[ 4]) dqs_even_receiver( 4);
- always @(posedge dqs_even[ 5]) dqs_even_receiver( 5);
- always @(posedge dqs_even[ 6]) dqs_even_receiver( 6);
- always @(posedge dqs_even[ 7]) dqs_even_receiver( 7);
- always @(posedge dqs_even[ 8]) dqs_even_receiver( 8);
- always @(posedge dqs_even[ 9]) dqs_even_receiver( 9);
- always @(posedge dqs_even[10]) dqs_even_receiver(10);
- always @(posedge dqs_even[11]) dqs_even_receiver(11);
- always @(posedge dqs_even[12]) dqs_even_receiver(12);
- always @(posedge dqs_even[13]) dqs_even_receiver(13);
- always @(posedge dqs_even[14]) dqs_even_receiver(14);
- always @(posedge dqs_even[15]) dqs_even_receiver(15);
- task dqs_odd_receiver;
- input [3:0] i;
- reg [63:0] bit_mask;
- begin
- bit_mask = {`DQ_PER_DQS{1'b1}}<<(i*`DQ_PER_DQS);
- if (dqs_odd[i]) begin
- if (tdqs_en) begin // tdqs disables dm
- dm_in_neg[i] = 1'b0;
- end else begin
- dm_in_neg[i] = dm_in[i];
- end
- dq_in_neg = (dq_in & bit_mask) | (dq_in_neg & ~bit_mask);
- end
- end
- endtask
- always @(posedge dqs_odd[ 0]) dqs_odd_receiver( 0);
- always @(posedge dqs_odd[ 1]) dqs_odd_receiver( 1);
- always @(posedge dqs_odd[ 2]) dqs_odd_receiver( 2);
- always @(posedge dqs_odd[ 3]) dqs_odd_receiver( 3);
- always @(posedge dqs_odd[ 4]) dqs_odd_receiver( 4);
- always @(posedge dqs_odd[ 5]) dqs_odd_receiver( 5);
- always @(posedge dqs_odd[ 6]) dqs_odd_receiver( 6);
- always @(posedge dqs_odd[ 7]) dqs_odd_receiver( 7);
- always @(posedge dqs_odd[ 8]) dqs_odd_receiver( 8);
- always @(posedge dqs_odd[ 9]) dqs_odd_receiver( 9);
- always @(posedge dqs_odd[10]) dqs_odd_receiver(10);
- always @(posedge dqs_odd[11]) dqs_odd_receiver(11);
- always @(posedge dqs_odd[12]) dqs_odd_receiver(12);
- always @(posedge dqs_odd[13]) dqs_odd_receiver(13);
- always @(posedge dqs_odd[14]) dqs_odd_receiver(14);
- always @(posedge dqs_odd[15]) dqs_odd_receiver(15);
- // Processes to check hold and pulse width of control signals
- always @(posedge rst_n_in) begin
- if ($time > 100000) begin
- if (tm_rst_n + 100000 > $time)
- $display ("%m: at time %t ERROR: RST_N pulse width violation by %t", $time, tm_rst_n + 100000 - $time);
- end
- tm_rst_n = $time;
- end
- always @(cke_in) begin
- if (rst_n_in) begin
- if ($time > TIH) begin
- if ($time - tm_ck_pos < TIH)
- $display ("%m: at time %t ERROR: tIH violation on CKE by %t", $time, tm_ck_pos + TIH - $time);
- end
- if ($time - tm_cke < TIPW)
- $display ("%m: at time %t ERROR: tIPW violation on CKE by %t", $time, tm_cke + TIPW - $time);
- end
- tm_cke = $time;
- end
- always @(odt_in) begin
- if (rst_n_in && odt_en && !in_self_refresh) begin
- if ($time - tm_ck_pos < TIH)
- $display ("%m: at time %t ERROR: tIH violation on ODT by %t", $time, tm_ck_pos + TIH - $time);
- if ($time - tm_odt < TIPW)
- $display ("%m: at time %t ERROR: tIPW violation on ODT by %t", $time, tm_odt + TIPW - $time);
- end
- tm_odt = $time;
- end
- task cmd_addr_timing_check;
- input i;
- reg [4:0] i;
- begin
- if (rst_n_in && prev_cke) begin
- if ($time - tm_ck_pos < TIH)
- $display ("%m: at time %t ERROR: tIH violation on %s by %t", $time, cmd_addr_string[i], tm_ck_pos + TIH - $time);
- if ($time - tm_cmd_addr[i] < TIPW)
- $display ("%m: at time %t ERROR: tIPW violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIPW - $time);
- end
- tm_cmd_addr[i] = $time;
- end
- endtask
- always @(cs_n_in ) cmd_addr_timing_check( 0);
- always @(ras_n_in ) cmd_addr_timing_check( 1);
- always @(cas_n_in ) cmd_addr_timing_check( 2);
- always @(we_n_in ) cmd_addr_timing_check( 3);
- always @(ba_in [ 0]) cmd_addr_timing_check( 4);
- always @(ba_in [ 1]) cmd_addr_timing_check( 5);
- always @(ba_in [ 2]) cmd_addr_timing_check( 6);
- always @(addr_in[ 0]) cmd_addr_timing_check( 7);
- always @(addr_in[ 1]) cmd_addr_timing_check( 8);
- always @(addr_in[ 2]) cmd_addr_timing_check( 9);
- always @(addr_in[ 3]) cmd_addr_timing_check(10);
- always @(addr_in[ 4]) cmd_addr_timing_check(11);
- always @(addr_in[ 5]) cmd_addr_timing_check(12);
- always @(addr_in[ 6]) cmd_addr_timing_check(13);
- always @(addr_in[ 7]) cmd_addr_timing_check(14);
- always @(addr_in[ 8]) cmd_addr_timing_check(15);
- always @(addr_in[ 9]) cmd_addr_timing_check(16);
- always @(addr_in[10]) cmd_addr_timing_check(17);
- always @(addr_in[11]) cmd_addr_timing_check(18);
- always @(addr_in[12]) cmd_addr_timing_check(19);
- always @(addr_in[13]) cmd_addr_timing_check(20);
- always @(addr_in[14]) cmd_addr_timing_check(21);
- always @(addr_in[15]) cmd_addr_timing_check(22);
- // Processes to check setup and hold of data signals
- task dm_timing_check;
- input i;
- reg [3:0] i;
- begin
- if (dqs_in_valid) begin
- if ($time - tm_dqs[i] < TDH)
- $display ("%m: at time %t ERROR: tDH violation on DM bit %d by %t", $time, i, tm_dqs[i] + TDH - $time);
- if (check_dm_tdipw[i]) begin
- if ($time - tm_dm[i] < TDIPW)
- $display ("%m: at time %t ERROR: tDIPW violation on DM bit %d by %t", $time, i, tm_dm[i] + TDIPW - $time);
- end
- end
- check_dm_tdipw[i] <= 1'b0;
- tm_dm[i] = $time;
- end
- endtask
- always @(dm_in[ 0]) dm_timing_check( 0);
- always @(dm_in[ 1]) dm_timing_check( 1);
- always @(dm_in[ 2]) dm_timing_check( 2);
- always @(dm_in[ 3]) dm_timing_check( 3);
- always @(dm_in[ 4]) dm_timing_check( 4);
- always @(dm_in[ 5]) dm_timing_check( 5);
- always @(dm_in[ 6]) dm_timing_check( 6);
- always @(dm_in[ 7]) dm_timing_check( 7);
- always @(dm_in[ 8]) dm_timing_check( 8);
- always @(dm_in[ 9]) dm_timing_check( 9);
- always @(dm_in[10]) dm_timing_check(10);
- always @(dm_in[11]) dm_timing_check(11);
- always @(dm_in[12]) dm_timing_check(12);
- always @(dm_in[13]) dm_timing_check(13);
- always @(dm_in[14]) dm_timing_check(14);
- always @(dm_in[15]) dm_timing_check(15);
- task dq_timing_check;
- input i;
- reg [5:0] i;
- begin
- if (dqs_in_valid) begin
- if ($time - tm_dqs[i/`DQ_PER_DQS] < TDH)
- $display ("%m: at time %t ERROR: tDH violation on DQ bit %d by %t", $time, i, tm_dqs[i/`DQ_PER_DQS] + TDH - $time);
- if (check_dq_tdipw[i]) begin
- if ($time - tm_dq[i] < TDIPW)
- $display ("%m: at time %t ERROR: tDIPW violation on DQ bit %d by %t", $time, i, tm_dq[i] + TDIPW - $time);
- end
- end
- check_dq_tdipw[i] <= 1'b0;
- tm_dq[i] = $time;
- end
- endtask
- always @(dq_in[ 0]) dq_timing_check( 0);
- always @(dq_in[ 1]) dq_timing_check( 1);
- always @(dq_in[ 2]) dq_timing_check( 2);
- always @(dq_in[ 3]) dq_timing_check( 3);
- always @(dq_in[ 4]) dq_timing_check( 4);
- always @(dq_in[ 5]) dq_timing_check( 5);
- always @(dq_in[ 6]) dq_timing_check( 6);
- always @(dq_in[ 7]) dq_timing_check( 7);
- always @(dq_in[ 8]) dq_timing_check( 8);
- always @(dq_in[ 9]) dq_timing_check( 9);
- always @(dq_in[10]) dq_timing_check(10);
- always @(dq_in[11]) dq_timing_check(11);
- always @(dq_in[12]) dq_timing_check(12);
- always @(dq_in[13]) dq_timing_check(13);
- always @(dq_in[14]) dq_timing_check(14);
- always @(dq_in[15]) dq_timing_check(15);
- always @(dq_in[16]) dq_timing_check(16);
- always @(dq_in[17]) dq_timing_check(17);
- always @(dq_in[18]) dq_timing_check(18);
- always @(dq_in[19]) dq_timing_check(19);
- always @(dq_in[20]) dq_timing_check(20);
- always @(dq_in[21]) dq_timing_check(21);
- always @(dq_in[22]) dq_timing_check(22);
- always @(dq_in[23]) dq_timing_check(23);
- always @(dq_in[24]) dq_timing_check(24);
- always @(dq_in[25]) dq_timing_check(25);
- always @(dq_in[26]) dq_timing_check(26);
- always @(dq_in[27]) dq_timing_check(27);
- always @(dq_in[28]) dq_timing_check(28);
- always @(dq_in[29]) dq_timing_check(29);
- always @(dq_in[30]) dq_timing_check(30);
- always @(dq_in[31]) dq_timing_check(31);
- always @(dq_in[32]) dq_timing_check(32);
- always @(dq_in[33]) dq_timing_check(33);
- always @(dq_in[34]) dq_timing_check(34);
- always @(dq_in[35]) dq_timing_check(35);
- always @(dq_in[36]) dq_timing_check(36);
- always @(dq_in[37]) dq_timing_check(37);
- always @(dq_in[38]) dq_timing_check(38);
- always @(dq_in[39]) dq_timing_check(39);
- always @(dq_in[40]) dq_timing_check(40);
- always @(dq_in[41]) dq_timing_check(41);
- always @(dq_in[42]) dq_timing_check(42);
- always @(dq_in[43]) dq_timing_check(43);
- always @(dq_in[44]) dq_timing_check(44);
- always @(dq_in[45]) dq_timing_check(45);
- always @(dq_in[46]) dq_timing_check(46);
- always @(dq_in[47]) dq_timing_check(47);
- always @(dq_in[48]) dq_timing_check(48);
- always @(dq_in[49]) dq_timing_check(49);
- always @(dq_in[50]) dq_timing_check(50);
- always @(dq_in[51]) dq_timing_check(51);
- always @(dq_in[52]) dq_timing_check(52);
- always @(dq_in[53]) dq_timing_check(53);
- always @(dq_in[54]) dq_timing_check(54);
- always @(dq_in[55]) dq_timing_check(55);
- always @(dq_in[56]) dq_timing_check(56);
- always @(dq_in[57]) dq_timing_check(57);
- always @(dq_in[58]) dq_timing_check(58);
- always @(dq_in[59]) dq_timing_check(59);
- always @(dq_in[60]) dq_timing_check(60);
- always @(dq_in[61]) dq_timing_check(61);
- always @(dq_in[62]) dq_timing_check(62);
- always @(dq_in[63]) dq_timing_check(63);
- task dqs_pos_timing_check;
- input i;
- reg [4:0] i;
- reg [3:0] j;
- begin
- if (write_levelization && i<16) begin
- if (ck_cntr - ck_load_mode < TWLMRD)
- $display ("%m: at time %t ERROR: tWLMRD violation on DQS bit %d positive edge.", $time, i);
- /*
- if (($time - tm_ck_pos < TWLS) || ($time - tm_ck_neg < TWLS))
- $display ("%m: at time %t WARNING: tWLS violation on DQS bit %d positive edge. Indeterminate CK capture is possible.", $time, i);
- */
- if (DEBUG)
- $display ("%m: at time %t Write Leveling @ DQS ck = %b", $time, diff_ck);
- dq_out_en_dly[i*`DQ_PER_DQS] <= #(TWLO) 1'b1;
- dq_out_dly[i*`DQ_PER_DQS] <= #(TWLO) diff_ck;
- for (j=1; j<`DQ_PER_DQS; j=j+1) begin
- dq_out_en_dly[i*`DQ_PER_DQS+j] <= #(TWLO + TWLOE) 1'b1;
- dq_out_dly[i*`DQ_PER_DQS+j] <= #(TWLO + TWLOE) 1'b0;
- end
- end
- if (dqs_in_valid && ((wdqs_pos_cntr[i] < wr_burst_length/2) || b2b_write)) begin
- if (dqs_in[i] ^ prev_dqs_in[i]) begin
- if (dll_locked) begin
- if (check_write_preamble[i]) begin
- if ($time - tm_dqs_pos[i] < $rtoi(TWPRE*tck_avg))
- $display ("%m: at time %t ERROR: tWPRE violation on &s bit %d", $time, dqs_string[i/16], i%16);
- end else if (check_write_postamble[i]) begin
- if ($time - tm_dqs_neg[i] < $rtoi(TWPST*tck_avg))
- $display ("%m: at time %t ERROR: tWPST violation on %s bit %d", $time, dqs_string[i/16], i%16);
- end else begin
- if ($time - tm_dqs_neg[i] < $rtoi(TDQSL*tck_avg))
- $display ("%m: at time %t ERROR: tDQSL violation on %s bit %d", $time, dqs_string[i/16], i%16);
- end
- end
- if ($time - tm_dm[i%16] < TDS)
- $display ("%m: at time %t ERROR: tDS violation on DM bit %d by %t", $time, i, tm_dm[i%16] + TDS - $time);
- if (!dq_out_en) begin
- for (j=0; j<`DQ_PER_DQS; j=j+1) begin
- if ($time - tm_dq[(i%16)*`DQ_PER_DQS+j] < TDS)
- $display ("%m: at time %t ERROR: tDS violation on DQ bit %d by %t", $time, i*`DQ_PER_DQS+j, tm_dq[(i%16)*`DQ_PER_DQS+j] + TDS - $time);
- check_dq_tdipw[(i%16)*`DQ_PER_DQS+j] <= 1'b1;
- end
- end
- if ((wdqs_pos_cntr[i] < wr_burst_length/2) && !b2b_write) begin
- wdqs_pos_cntr[i] <= wdqs_pos_cntr[i] + 1;
- end else begin
- wdqs_pos_cntr[i] <= 1;
- end
- check_dm_tdipw[i%16] <= 1'b1;
- check_write_preamble[i] <= 1'b0;
- check_write_postamble[i] <= 1'b0;
- check_write_dqs_low[i] <= 1'b0;
- tm_dqs[i%16] <= $time;
- end else begin
- $display ("%m: at time %t ERROR: Invalid latching edge on %s bit %d", $time, dqs_string[i/16], i%16);
- end
- end
- tm_dqss_pos[i] <= $time;
- tm_dqs_pos[i] = $time;
- prev_dqs_in[i] <= dqs_in[i];
- end
- endtask
- always @(posedge dqs_in[ 0]) dqs_pos_timing_check( 0);
- always @(posedge dqs_in[ 1]) dqs_pos_timing_check( 1);
- always @(posedge dqs_in[ 2]) dqs_pos_timing_check( 2);
- always @(posedge dqs_in[ 3]) dqs_pos_timing_check( 3);
- always @(posedge dqs_in[ 4]) dqs_pos_timing_check( 4);
- always @(posedge dqs_in[ 5]) dqs_pos_timing_check( 5);
- always @(posedge dqs_in[ 6]) dqs_pos_timing_check( 6);
- always @(posedge dqs_in[ 7]) dqs_pos_timing_check( 7);
- always @(posedge dqs_in[ 8]) dqs_pos_timing_check( 8);
- always @(posedge dqs_in[ 9]) dqs_pos_timing_check( 9);
- always @(posedge dqs_in[10]) dqs_pos_timing_check(10);
- always @(posedge dqs_in[11]) dqs_pos_timing_check(11);
- always @(posedge dqs_in[12]) dqs_pos_timing_check(12);
- always @(posedge dqs_in[13]) dqs_pos_timing_check(13);
- always @(posedge dqs_in[14]) dqs_pos_timing_check(14);
- always @(posedge dqs_in[15]) dqs_pos_timing_check(15);
- always @(negedge dqs_in[16]) dqs_pos_timing_check(16);
- always @(negedge dqs_in[17]) dqs_pos_timing_check(17);
- always @(negedge dqs_in[18]) dqs_pos_timing_check(18);
- always @(negedge dqs_in[19]) dqs_pos_timing_check(19);
- always @(negedge dqs_in[20]) dqs_pos_timing_check(20);
- always @(negedge dqs_in[21]) dqs_pos_timing_check(21);
- always @(negedge dqs_in[22]) dqs_pos_timing_check(22);
- always @(negedge dqs_in[23]) dqs_pos_timing_check(23);
- always @(negedge dqs_in[24]) dqs_pos_timing_check(24);
- always @(negedge dqs_in[25]) dqs_pos_timing_check(25);
- always @(negedge dqs_in[26]) dqs_pos_timing_check(26);
- always @(negedge dqs_in[27]) dqs_pos_timing_check(27);
- always @(negedge dqs_in[28]) dqs_pos_timing_check(28);
- always @(negedge dqs_in[29]) dqs_pos_timing_check(29);
- always @(negedge dqs_in[30]) dqs_pos_timing_check(30);
- always @(negedge dqs_in[31]) dqs_pos_timing_check(31);
- task dqs_neg_timing_check;
- input i;
- reg [4:0] i;
- reg [3:0] j;
- begin
- if (write_levelization && i<16) begin
- if (ck_cntr - ck_load_mode < TWLDQSEN)
- $display ("%m: at time %t ERROR: tWLDQSEN violation on DQS bit %d.", $time, i);
- if ($time - tm_dqs_pos[i] < $rtoi(TDQSH*tck_avg))
- $display ("%m: at time %t ERROR: tDQSH violation on DQS bit %d by %t", $time, i, tm_dqs_pos[i] + TDQSH*tck_avg - $time);
- end
- if (dqs_in_valid && (wdqs_pos_cntr[i] > 0) && check_write_dqs_high[i]) begin
- if (dqs_in[i] ^ prev_dqs_in[i]) begin
- if (dll_locked) begin
- if ($time - tm_dqs_pos[i] < $rtoi(TDQSH*tck_avg))
- $display ("%m: at time %t ERROR: tDQSH violation on %s bit %d", $time, dqs_string[i/16], i%16);
- if ($time - tm_ck_pos < $rtoi(TDSH*tck_avg))
- $display ("%m: at time %t ERROR: tDSH violation on %s bit %d", $time, dqs_string[i/16], i%16);
- end
- if ($time - tm_dm[i%16] < TDS)
- $display ("%m: at time %t ERROR: tDS violation on DM bit %d by %t", $time, i, tm_dm[i%16] + TDS - $time);
- if (!dq_out_en) begin
- for (j=0; j<`DQ_PER_DQS; j=j+1) begin
- if ($time - tm_dq[(i%16)*`DQ_PER_DQS+j] < TDS)
- $display ("%m: at time %t ERROR: tDS violation on DQ bit %d by %t", $time, i*`DQ_PER_DQS+j, tm_dq[(i%16)*`DQ_PER_DQS+j] + TDS - $time);
- check_dq_tdipw[(i%16)*`DQ_PER_DQS+j] <= 1'b1;
- end
- end
- check_dm_tdipw[i%16] <= 1'b1;
- tm_dqs[i%16] <= $time;
- end else begin
- $display ("%m: at time %t ERROR: Invalid latching edge on %s bit %d", $time, dqs_string[i/16], i%16);
- end
- end
- check_write_dqs_high[i] <= 1'b0;
- tm_dqs_neg[i] = $time;
- prev_dqs_in[i] <= dqs_in[i];
- end
- endtask
- always @(negedge dqs_in[ 0]) dqs_neg_timing_check( 0);
- always @(negedge dqs_in[ 1]) dqs_neg_timing_check( 1);
- always @(negedge dqs_in[ 2]) dqs_neg_timing_check( 2);
- always @(negedge dqs_in[ 3]) dqs_neg_timing_check( 3);
- always @(negedge dqs_in[ 4]) dqs_neg_timing_check( 4);
- always @(negedge dqs_in[ 5]) dqs_neg_timing_check( 5);
- always @(negedge dqs_in[ 6]) dqs_neg_timing_check( 6);
- always @(negedge dqs_in[ 7]) dqs_neg_timing_check( 7);
- always @(negedge dqs_in[ 8]) dqs_neg_timing_check( 8);
- always @(negedge dqs_in[ 9]) dqs_neg_timing_check( 9);
- always @(negedge dqs_in[10]) dqs_neg_timing_check(10);
- always @(negedge dqs_in[11]) dqs_neg_timing_check(11);
- always @(negedge dqs_in[12]) dqs_neg_timing_check(12);
- always @(negedge dqs_in[13]) dqs_neg_timing_check(13);
- always @(negedge dqs_in[14]) dqs_neg_timing_check(14);
- always @(negedge dqs_in[15]) dqs_neg_timing_check(15);
- always @(posedge dqs_in[16]) dqs_neg_timing_check(16);
- always @(posedge dqs_in[17]) dqs_neg_timing_check(17);
- always @(posedge dqs_in[18]) dqs_neg_timing_check(18);
- always @(posedge dqs_in[19]) dqs_neg_timing_check(19);
- always @(posedge dqs_in[20]) dqs_neg_timing_check(20);
- always @(posedge dqs_in[21]) dqs_neg_timing_check(21);
- always @(posedge dqs_in[22]) dqs_neg_timing_check(22);
- always @(posedge dqs_in[23]) dqs_neg_timing_check(23);
- always @(posedge dqs_in[24]) dqs_neg_timing_check(24);
- always @(posedge dqs_in[25]) dqs_neg_timing_check(25);
- always @(posedge dqs_in[26]) dqs_neg_timing_check(26);
- always @(posedge dqs_in[27]) dqs_neg_timing_check(27);
- always @(posedge dqs_in[28]) dqs_neg_timing_check(28);
- always @(posedge dqs_in[29]) dqs_neg_timing_check(29);
- always @(posedge dqs_in[30]) dqs_neg_timing_check(30);
- always @(posedge dqs_in[31]) dqs_neg_timing_check(31);
- endmodule