/doc/html/quadrule_8f90_source.html

http://github.com/ixkael/3DEX · HTML · 9415 lines · 9409 code · 2 blank · 4 comment · 0 complexity · de0964cb4b61e40277ad4dee789592d5 MD5 · raw file

  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  2. <html xmlns="http://www.w3.org/1999/xhtml">
  3. <head>
  4. <meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
  5. <title>3DEX: /Users/bl/Dropbox/3DEX/src/f90/external/quadrule.f90 Source File</title>
  6. <link href="tabs.css" rel="stylesheet" type="text/css"/>
  7. <link href="search/search.css" rel="stylesheet" type="text/css"/>
  8. <script type="text/javascript" src="search/search.js"></script>
  9. <link href="doxygen.css" rel="stylesheet" type="text/css"/>
  10. </head>
  11. <body onload='searchBox.OnSelectItem(0);'>
  12. <!-- Generated by Doxygen 1.7.4 -->
  13. <script type="text/javascript"><!--
  14. var searchBox = new SearchBox("searchBox", "search",false,'Search');
  15. --></script>
  16. <div id="top">
  17. <div id="titlearea">
  18. <table cellspacing="0" cellpadding="0">
  19. <tbody>
  20. <tr style="height: 56px;">
  21. <td style="padding-left: 0.5em;">
  22. <div id="projectname">3DEX&#160;<span id="projectnumber">1.0</span></div>
  23. <div id="projectbrief">Three-dimensional Fourier-Bessel decomposition</div>
  24. </td>
  25. </tr>
  26. </tbody>
  27. </table>
  28. </div>
  29. <div id="navrow1" class="tabs">
  30. <ul class="tablist">
  31. <li><a href="index.html"><span>Main&#160;Page</span></a></li>
  32. <li><a href="pages.html"><span>Related&#160;Pages</span></a></li>
  33. <li><a href="namespaces.html"><span>Modules</span></a></li>
  34. <li><a href="annotated.html"><span>Data&#160;Types&#160;List</span></a></li>
  35. <li class="current"><a href="files.html"><span>Files</span></a></li>
  36. <li id="searchli">
  37. <div id="MSearchBox" class="MSearchBoxInactive">
  38. <span class="left">
  39. <img id="MSearchSelect" src="search/mag_sel.png"
  40. onmouseover="return searchBox.OnSearchSelectShow()"
  41. onmouseout="return searchBox.OnSearchSelectHide()"
  42. alt=""/>
  43. <input type="text" id="MSearchField" value="Search" accesskey="S"
  44. onfocus="searchBox.OnSearchFieldFocus(true)"
  45. onblur="searchBox.OnSearchFieldFocus(false)"
  46. onkeyup="searchBox.OnSearchFieldChange(event)"/>
  47. </span><span class="right">
  48. <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
  49. </span>
  50. </div>
  51. </li>
  52. </ul>
  53. </div>
  54. <div id="navrow2" class="tabs2">
  55. <ul class="tablist">
  56. <li><a href="files.html"><span>File&#160;List</span></a></li>
  57. <li><a href="globals.html"><span>File&#160;Members</span></a></li>
  58. </ul>
  59. </div>
  60. <div class="header">
  61. <div class="headertitle">
  62. <div class="title">/Users/bl/Dropbox/3DEX/src/f90/external/quadrule.f90</div> </div>
  63. </div>
  64. <div class="contents">
  65. <a href="quadrule_8f90.html">Go to the documentation of this file.</a><div class="fragment"><pre class="fragment"><a name="l00001"></a><a class="code" href="quadrule_8f90.html#a5db7bba3aa7d37d932b3f545141b52d4">00001</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a5db7bba3aa7d37d932b3f545141b52d4">bashforth_set</a> ( norder, xtab, weight )
  66. <a name="l00002"></a>00002 <span class="comment">!</span>
  67. <a name="l00003"></a>00003 <span class="comment">!*******************************************************************************</span>
  68. <a name="l00004"></a>00004 <span class="comment">!</span>
  69. <a name="l00005"></a>00005 <span class="comment">!! BASHFORTH_SET sets abscissas and weights for Adams-Bashforth quadrature.</span>
  70. <a name="l00006"></a>00006 <span class="comment">!</span>
  71. <a name="l00007"></a>00007 <span class="comment">!</span>
  72. <a name="l00008"></a>00008 <span class="comment">! Definition:</span>
  73. <a name="l00009"></a>00009 <span class="comment">!</span>
  74. <a name="l00010"></a>00010 <span class="comment">! Adams-Bashforth quadrature formulas are normally used in solving</span>
  75. <a name="l00011"></a>00011 <span class="comment">! ordinary differential equations, and are not really suitable for</span>
  76. <a name="l00012"></a>00012 <span class="comment">! general quadrature computations. However, an Adams-Bashforth formula</span>
  77. <a name="l00013"></a>00013 <span class="comment">! is equivalent to approximating the integral of F(Y(X)) between X(M)</span>
  78. <a name="l00014"></a>00014 <span class="comment">! and X(M+1), using an explicit formula that relies only on known values</span>
  79. <a name="l00015"></a>00015 <span class="comment">! of F(Y(X)) at X(M-N+1) through X(M). For this reason, the formulas</span>
  80. <a name="l00016"></a>00016 <span class="comment">! have been included here.</span>
  81. <a name="l00017"></a>00017 <span class="comment">!</span>
  82. <a name="l00018"></a>00018 <span class="comment">! Suppose the unknown function is denoted by Y(X), with derivative</span>
  83. <a name="l00019"></a>00019 <span class="comment">! F(Y(X)), and that approximate values of the function are known at a</span>
  84. <a name="l00020"></a>00020 <span class="comment">! series of X values, which we write as X(1), X(2), ..., X(M). We write</span>
  85. <a name="l00021"></a>00021 <span class="comment">! the value Y(X(1)) as Y(1) and so on.</span>
  86. <a name="l00022"></a>00022 <span class="comment">!</span>
  87. <a name="l00023"></a>00023 <span class="comment">! Then the solution of the ODE Y&#39;=F(X,Y) at the next point X(M+1) is</span>
  88. <a name="l00024"></a>00024 <span class="comment">! computed by:</span>
  89. <a name="l00025"></a>00025 <span class="comment">!</span>
  90. <a name="l00026"></a>00026 <span class="comment">! Y(M+1) = Y(M) + Integral ( X(M) &lt; X &lt; X(M+1) ) F(Y(X)) dX</span>
  91. <a name="l00027"></a>00027 <span class="comment">! = Y(M) + H * Sum ( 1 &lt;= I &lt;= N ) W(I) * F(Y(M+1-I)) approximately.</span>
  92. <a name="l00028"></a>00028 <span class="comment">!</span>
  93. <a name="l00029"></a>00029 <span class="comment">! In the documentation that follows, we replace F(Y(X)) by F(X).</span>
  94. <a name="l00030"></a>00030 <span class="comment">!</span>
  95. <a name="l00031"></a>00031 <span class="comment">! Integration interval:</span>
  96. <a name="l00032"></a>00032 <span class="comment">!</span>
  97. <a name="l00033"></a>00033 <span class="comment">! [ 0, 1 ].</span>
  98. <a name="l00034"></a>00034 <span class="comment">!</span>
  99. <a name="l00035"></a>00035 <span class="comment">! Weight function:</span>
  100. <a name="l00036"></a>00036 <span class="comment">!</span>
  101. <a name="l00037"></a>00037 <span class="comment">! 1.0D+00</span>
  102. <a name="l00038"></a>00038 <span class="comment">!</span>
  103. <a name="l00039"></a>00039 <span class="comment">! Integral to approximate:</span>
  104. <a name="l00040"></a>00040 <span class="comment">!</span>
  105. <a name="l00041"></a>00041 <span class="comment">! Integral ( 0 &lt;= X &lt;= 1 ) F(X) dX.</span>
  106. <a name="l00042"></a>00042 <span class="comment">!</span>
  107. <a name="l00043"></a>00043 <span class="comment">! Approximate integral:</span>
  108. <a name="l00044"></a>00044 <span class="comment">!</span>
  109. <a name="l00045"></a>00045 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( 1 - I ),</span>
  110. <a name="l00046"></a>00046 <span class="comment">!</span>
  111. <a name="l00047"></a>00047 <span class="comment">! Note:</span>
  112. <a name="l00048"></a>00048 <span class="comment">!</span>
  113. <a name="l00049"></a>00049 <span class="comment">! The Adams-Bashforth formulas require equally spaced data.</span>
  114. <a name="l00050"></a>00050 <span class="comment">!</span>
  115. <a name="l00051"></a>00051 <span class="comment">! Here is how the formula is applied in the case with non-unit spacing:</span>
  116. <a name="l00052"></a>00052 <span class="comment">!</span>
  117. <a name="l00053"></a>00053 <span class="comment">! Integral ( A &lt;= X &lt;= A+H ) F(X) dX =</span>
  118. <a name="l00054"></a>00054 <span class="comment">! H * Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( A - (I-1)*H ),</span>
  119. <a name="l00055"></a>00055 <span class="comment">! approximately.</span>
  120. <a name="l00056"></a>00056 <span class="comment">!</span>
  121. <a name="l00057"></a>00057 <span class="comment">! The reference lists the second coefficient of the order 8 Adams-Bashforth</span>
  122. <a name="l00058"></a>00058 <span class="comment">! formula as</span>
  123. <a name="l00059"></a>00059 <span class="comment">! weight(2) = -1162169.0D+00 / 120960.0D+00</span>
  124. <a name="l00060"></a>00060 <span class="comment">! but this should be</span>
  125. <a name="l00061"></a>00061 <span class="comment">! weight(2) = -1152169.0D+00 / 120960.0D+00</span>
  126. <a name="l00062"></a>00062 <span class="comment">!</span>
  127. <a name="l00063"></a>00063 <span class="comment">! Reference:</span>
  128. <a name="l00064"></a>00064 <span class="comment">!</span>
  129. <a name="l00065"></a>00065 <span class="comment">! Abramowitz and Stegun,</span>
  130. <a name="l00066"></a>00066 <span class="comment">! Handbook of Mathematical Functions,</span>
  131. <a name="l00067"></a>00067 <span class="comment">! National Bureau of Standards, 1964.</span>
  132. <a name="l00068"></a>00068 <span class="comment">!</span>
  133. <a name="l00069"></a>00069 <span class="comment">! Jean Lapidus and John Seinfeld,</span>
  134. <a name="l00070"></a>00070 <span class="comment">! Numerical Solution of Ordinary Differential Equations,</span>
  135. <a name="l00071"></a>00071 <span class="comment">! Academic Press, 1971.</span>
  136. <a name="l00072"></a>00072 <span class="comment">!</span>
  137. <a name="l00073"></a>00073 <span class="comment">! Daniel Zwillinger, editor,</span>
  138. <a name="l00074"></a>00074 <span class="comment">! Standard Mathematical Tables and Formulae,</span>
  139. <a name="l00075"></a>00075 <span class="comment">! 30th Edition,</span>
  140. <a name="l00076"></a>00076 <span class="comment">! CRC Press, 1996.</span>
  141. <a name="l00077"></a>00077 <span class="comment">!</span>
  142. <a name="l00078"></a>00078 <span class="comment">! Modified:</span>
  143. <a name="l00079"></a>00079 <span class="comment">!</span>
  144. <a name="l00080"></a>00080 <span class="comment">! 15 September 1998</span>
  145. <a name="l00081"></a>00081 <span class="comment">!</span>
  146. <a name="l00082"></a>00082 <span class="comment">! Author:</span>
  147. <a name="l00083"></a>00083 <span class="comment">!</span>
  148. <a name="l00084"></a>00084 <span class="comment">! John Burkardt</span>
  149. <a name="l00085"></a>00085 <span class="comment">!</span>
  150. <a name="l00086"></a>00086 <span class="comment">! Parameters:</span>
  151. <a name="l00087"></a>00087 <span class="comment">!</span>
  152. <a name="l00088"></a>00088 <span class="comment">! Input, integer NORDER, the order of the rule. NORDER should be</span>
  153. <a name="l00089"></a>00089 <span class="comment">! between 1 and 8.</span>
  154. <a name="l00090"></a>00090 <span class="comment">!</span>
  155. <a name="l00091"></a>00091 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  156. <a name="l00092"></a>00092 <span class="comment">!</span>
  157. <a name="l00093"></a>00093 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  158. <a name="l00094"></a>00094 <span class="comment">! WEIGHT(1) is the weight at X = 0, WEIGHT(2) the weight at X = -1,</span>
  159. <a name="l00095"></a>00095 <span class="comment">! and so on. The weights are rational, and should sum to 1. Some</span>
  160. <a name="l00096"></a>00096 <span class="comment">! weights may be negative.</span>
  161. <a name="l00097"></a>00097 <span class="comment">!</span>
  162. <a name="l00098"></a>00098 <span class="keyword">implicit none</span>
  163. <a name="l00099"></a>00099 <span class="comment">!</span>
  164. <a name="l00100"></a>00100 <span class="keywordtype">integer</span> norder
  165. <a name="l00101"></a>00101 <span class="comment">!</span>
  166. <a name="l00102"></a>00102 <span class="keywordtype">double precision</span> d
  167. <a name="l00103"></a>00103 <span class="keywordtype">integer</span> i
  168. <a name="l00104"></a>00104 <span class="keywordtype">double precision</span> weight(norder)
  169. <a name="l00105"></a>00105 <span class="keywordtype">double precision</span> xtab(norder)
  170. <a name="l00106"></a>00106 <span class="comment">!</span>
  171. <a name="l00107"></a>00107 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  172. <a name="l00108"></a>00108
  173. <a name="l00109"></a>00109 weight(1) = 1.0D+00
  174. <a name="l00110"></a>00110
  175. <a name="l00111"></a>00111 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  176. <a name="l00112"></a>00112
  177. <a name="l00113"></a>00113 d = 2.0D+00
  178. <a name="l00114"></a>00114
  179. <a name="l00115"></a>00115 weight(1) = 3.0D+00 / d
  180. <a name="l00116"></a>00116 weight(2) = - 1.0D+00 / d
  181. <a name="l00117"></a>00117
  182. <a name="l00118"></a>00118 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  183. <a name="l00119"></a>00119
  184. <a name="l00120"></a>00120 d = 12.0D+00
  185. <a name="l00121"></a>00121
  186. <a name="l00122"></a>00122 weight(1) = 23.0D+00 / d
  187. <a name="l00123"></a>00123 weight(2) = - 16.0D+00 / d
  188. <a name="l00124"></a>00124 weight(3) = 5.0D+00 / d
  189. <a name="l00125"></a>00125
  190. <a name="l00126"></a>00126 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  191. <a name="l00127"></a>00127
  192. <a name="l00128"></a>00128 d = 24.0D+00
  193. <a name="l00129"></a>00129
  194. <a name="l00130"></a>00130 weight(1) = 55.0D+00 / d
  195. <a name="l00131"></a>00131 weight(2) = - 59.0D+00 / d
  196. <a name="l00132"></a>00132 weight(3) = 37.0D+00 / d
  197. <a name="l00133"></a>00133 weight(4) = - 9.0D+00 / d
  198. <a name="l00134"></a>00134
  199. <a name="l00135"></a>00135 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  200. <a name="l00136"></a>00136
  201. <a name="l00137"></a>00137 d = 720.0D+00
  202. <a name="l00138"></a>00138
  203. <a name="l00139"></a>00139 weight(1) = 1901.0D+00 / d
  204. <a name="l00140"></a>00140 weight(2) = - 2774.0D+00 / d
  205. <a name="l00141"></a>00141 weight(3) = 2616.0D+00 / d
  206. <a name="l00142"></a>00142 weight(4) = - 1274.0D+00 / d
  207. <a name="l00143"></a>00143 weight(5) = 251.0D+00 / d
  208. <a name="l00144"></a>00144
  209. <a name="l00145"></a>00145 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  210. <a name="l00146"></a>00146
  211. <a name="l00147"></a>00147 d = 1440.0D+00
  212. <a name="l00148"></a>00148
  213. <a name="l00149"></a>00149 weight(1) = 4277.0D+00 / d
  214. <a name="l00150"></a>00150 weight(2) = - 7923.0D+00 / d
  215. <a name="l00151"></a>00151 weight(3) = 9982.0D+00 / d
  216. <a name="l00152"></a>00152 weight(4) = - 7298.0D+00 / d
  217. <a name="l00153"></a>00153 weight(5) = 2877.0D+00 / d
  218. <a name="l00154"></a>00154 weight(6) = - 475.0D+00 / d
  219. <a name="l00155"></a>00155
  220. <a name="l00156"></a>00156 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  221. <a name="l00157"></a>00157
  222. <a name="l00158"></a>00158 d = 60480.0D+00
  223. <a name="l00159"></a>00159
  224. <a name="l00160"></a>00160 weight(1) = 198721.0D+00 / d
  225. <a name="l00161"></a>00161 weight(2) = - 447288.0D+00 / d
  226. <a name="l00162"></a>00162 weight(3) = 705549.0D+00 / d
  227. <a name="l00163"></a>00163 weight(4) = - 688256.0D+00 / d
  228. <a name="l00164"></a>00164 weight(5) = 407139.0D+00 / d
  229. <a name="l00165"></a>00165 weight(6) = - 134472.0D+00 / d
  230. <a name="l00166"></a>00166 weight(7) = 19087.0D+00 / d
  231. <a name="l00167"></a>00167
  232. <a name="l00168"></a>00168 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  233. <a name="l00169"></a>00169
  234. <a name="l00170"></a>00170 d = 120960.0D+00
  235. <a name="l00171"></a>00171
  236. <a name="l00172"></a>00172 weight(1) = 434241.0D+00 / d
  237. <a name="l00173"></a>00173 weight(2) = - 1152169.0D+00 / d
  238. <a name="l00174"></a>00174 weight(3) = 2183877.0D+00 / d
  239. <a name="l00175"></a>00175 weight(4) = - 2664477.0D+00 / d
  240. <a name="l00176"></a>00176 weight(5) = 2102243.0D+00 / d
  241. <a name="l00177"></a>00177 weight(6) = - 1041723.0D+00 / d
  242. <a name="l00178"></a>00178 weight(7) = 295767.0D+00 / d
  243. <a name="l00179"></a>00179 weight(8) = - 36799.0D+00 / d
  244. <a name="l00180"></a>00180
  245. <a name="l00181"></a>00181 <span class="keyword">else</span>
  246. <a name="l00182"></a>00182
  247. <a name="l00183"></a>00183 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  248. <a name="l00184"></a>00184 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;BASHFORTH_SET - Fatal error!&#39;</span>
  249. <a name="l00185"></a>00185 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  250. <a name="l00186"></a>00186 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; Legal values are 1 through 8.&#39;</span>
  251. <a name="l00187"></a>00187 stop
  252. <a name="l00188"></a>00188
  253. <a name="l00189"></a>00189 <span class="keyword">end if</span>
  254. <a name="l00190"></a>00190
  255. <a name="l00191"></a>00191 <span class="keyword">do</span> i = 1, norder
  256. <a name="l00192"></a>00192 xtab(i) = dble ( 1 - i )
  257. <a name="l00193"></a>00193 <span class="keyword">end do</span>
  258. <a name="l00194"></a>00194
  259. <a name="l00195"></a>00195 return
  260. <a name="l00196"></a>00196 <span class="keyword">end</span>
  261. <a name="l00197"></a><a class="code" href="quadrule_8f90.html#a33c49c6fa2701ed35a7132dfa2ee7a90">00197</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a33c49c6fa2701ed35a7132dfa2ee7a90">bdf_set</a> ( norder, alpha, beta, gamma )
  262. <a name="l00198"></a>00198 <span class="comment">!</span>
  263. <a name="l00199"></a>00199 <span class="comment">!*******************************************************************************</span>
  264. <a name="l00200"></a>00200 <span class="comment">!</span>
  265. <a name="l00201"></a>00201 <span class="comment">!! BDF_SET sets weights for backward differentiation ODE weights.</span>
  266. <a name="l00202"></a>00202 <span class="comment">!</span>
  267. <a name="l00203"></a>00203 <span class="comment">!</span>
  268. <a name="l00204"></a>00204 <span class="comment">! Discussion:</span>
  269. <a name="l00205"></a>00205 <span class="comment">!</span>
  270. <a name="l00206"></a>00206 <span class="comment">! GAMMA * Y(N+1) = Sum ( 1 &lt;= I &lt;= NORDER ) ALPHA(I) * Y(N+1-I)</span>
  271. <a name="l00207"></a>00207 <span class="comment">! + dX * BETA * Y&#39;(X(N+1),Y(N+1))</span>
  272. <a name="l00208"></a>00208 <span class="comment">!</span>
  273. <a name="l00209"></a>00209 <span class="comment">! This is equivalent to the backward differentiation corrector formulas.</span>
  274. <a name="l00210"></a>00210 <span class="comment">!</span>
  275. <a name="l00211"></a>00211 <span class="comment">! Modified:</span>
  276. <a name="l00212"></a>00212 <span class="comment">!</span>
  277. <a name="l00213"></a>00213 <span class="comment">! 30 December 1999</span>
  278. <a name="l00214"></a>00214 <span class="comment">!</span>
  279. <a name="l00215"></a>00215 <span class="comment">! Author:</span>
  280. <a name="l00216"></a>00216 <span class="comment">!</span>
  281. <a name="l00217"></a>00217 <span class="comment">! John Burkardt</span>
  282. <a name="l00218"></a>00218 <span class="comment">!</span>
  283. <a name="l00219"></a>00219 <span class="comment">! Parameters:</span>
  284. <a name="l00220"></a>00220 <span class="comment">!</span>
  285. <a name="l00221"></a>00221 <span class="comment">! Input, integer NORDER, the order of the rule, between 1 and 6.</span>
  286. <a name="l00222"></a>00222 <span class="comment">!</span>
  287. <a name="l00223"></a>00223 <span class="comment">! Output, double precision ALPHA(NORDER), BETA, GAMMA, the weights.</span>
  288. <a name="l00224"></a>00224 <span class="comment">!</span>
  289. <a name="l00225"></a>00225 <span class="keyword">implicit none</span>
  290. <a name="l00226"></a>00226 <span class="comment">!</span>
  291. <a name="l00227"></a>00227 <span class="keywordtype">integer</span> norder
  292. <a name="l00228"></a>00228 <span class="comment">!</span>
  293. <a name="l00229"></a>00229 <span class="keywordtype">double precision</span> alpha(norder)
  294. <a name="l00230"></a>00230 <span class="keywordtype">double precision</span> beta
  295. <a name="l00231"></a>00231 <span class="keywordtype">double precision</span> gamma
  296. <a name="l00232"></a>00232 <span class="comment">!</span>
  297. <a name="l00233"></a>00233 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  298. <a name="l00234"></a>00234 beta = 1.0D+00
  299. <a name="l00235"></a>00235 gamma = 1.0D+00
  300. <a name="l00236"></a>00236 alpha(1) = 1.0D+00
  301. <a name="l00237"></a>00237 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  302. <a name="l00238"></a>00238 beta = 2.0D+00
  303. <a name="l00239"></a>00239 gamma = 3.0D+00
  304. <a name="l00240"></a>00240 alpha(1) = 4.0D+00
  305. <a name="l00241"></a>00241 alpha(2) = - 1.0D+00
  306. <a name="l00242"></a>00242 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  307. <a name="l00243"></a>00243 beta = 6.0D+00
  308. <a name="l00244"></a>00244 gamma = 11.0D+00
  309. <a name="l00245"></a>00245 alpha(1) = 18.0D+00
  310. <a name="l00246"></a>00246 alpha(2) = - 9.0D+00
  311. <a name="l00247"></a>00247 alpha(3) = 2.0D+00
  312. <a name="l00248"></a>00248 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  313. <a name="l00249"></a>00249 beta = 12.0D+00
  314. <a name="l00250"></a>00250 gamma = 25.0D+00
  315. <a name="l00251"></a>00251 alpha(1) = 48.0D+00
  316. <a name="l00252"></a>00252 alpha(2) = - 36.0D+00
  317. <a name="l00253"></a>00253 alpha(3) = 16.0D+00
  318. <a name="l00254"></a>00254 alpha(4) = - 3.0D+00
  319. <a name="l00255"></a>00255 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  320. <a name="l00256"></a>00256 beta = 60.0D+00
  321. <a name="l00257"></a>00257 gamma = 137.0D+00
  322. <a name="l00258"></a>00258 alpha(1) = 300.0D+00
  323. <a name="l00259"></a>00259 alpha(2) = - 300.0D+00
  324. <a name="l00260"></a>00260 alpha(3) = 200.0D+00
  325. <a name="l00261"></a>00261 alpha(4) = - 75.0D+00
  326. <a name="l00262"></a>00262 alpha(5) = 12.0D+00
  327. <a name="l00263"></a>00263 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  328. <a name="l00264"></a>00264 beta = 60.0D+00
  329. <a name="l00265"></a>00265 gamma = 147.0D+00
  330. <a name="l00266"></a>00266 alpha(1) = 360.0D+00
  331. <a name="l00267"></a>00267 alpha(2) = - 450.0D+00
  332. <a name="l00268"></a>00268 alpha(3) = 400.0D+00
  333. <a name="l00269"></a>00269 alpha(4) = - 225.0D+00
  334. <a name="l00270"></a>00270 alpha(5) = 72.0D+00
  335. <a name="l00271"></a>00271 alpha(6) = - 10.0D+00
  336. <a name="l00272"></a>00272 <span class="keyword">else</span>
  337. <a name="l00273"></a>00273 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  338. <a name="l00274"></a>00274 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;BDF_SET - Fatal error!&#39;</span>
  339. <a name="l00275"></a>00275 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal order requested = &#39;</span>, norder
  340. <a name="l00276"></a>00276 stop
  341. <a name="l00277"></a>00277 <span class="keyword">end if</span>
  342. <a name="l00278"></a>00278
  343. <a name="l00279"></a>00279 return
  344. <a name="l00280"></a>00280 <span class="keyword">end</span>
  345. <a name="l00281"></a><a class="code" href="quadrule_8f90.html#a7888ddfbe8865b018471ece2f1ac169b">00281</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a7888ddfbe8865b018471ece2f1ac169b">bdfc_set</a> ( norder, weight, xtab )
  346. <a name="l00282"></a>00282 <span class="comment">!</span>
  347. <a name="l00283"></a>00283 <span class="comment">!*******************************************************************************</span>
  348. <a name="l00284"></a>00284 <span class="comment">!</span>
  349. <a name="l00285"></a>00285 <span class="comment">!! BDFC_SET sets weights for backward differentiation corrector quadrature.</span>
  350. <a name="l00286"></a>00286 <span class="comment">!</span>
  351. <a name="l00287"></a>00287 <span class="comment">!</span>
  352. <a name="l00288"></a>00288 <span class="comment">! Definition:</span>
  353. <a name="l00289"></a>00289 <span class="comment">!</span>
  354. <a name="l00290"></a>00290 <span class="comment">! A backward differentiation corrector formula is defined for a set</span>
  355. <a name="l00291"></a>00291 <span class="comment">! of evenly spaced abscissas X(I) with X(1) = 1 and X(2) = 0. Assuming</span>
  356. <a name="l00292"></a>00292 <span class="comment">! that the values of the function to be integrated are known at the</span>
  357. <a name="l00293"></a>00293 <span class="comment">! abscissas, the formula is written in terms of the function value at</span>
  358. <a name="l00294"></a>00294 <span class="comment">! X(1), and the backward differences at X(1) that approximate the</span>
  359. <a name="l00295"></a>00295 <span class="comment">! derivatives there.</span>
  360. <a name="l00296"></a>00296 <span class="comment">!</span>
  361. <a name="l00297"></a>00297 <span class="comment">! Integration interval:</span>
  362. <a name="l00298"></a>00298 <span class="comment">!</span>
  363. <a name="l00299"></a>00299 <span class="comment">! [ 0, 1 ]</span>
  364. <a name="l00300"></a>00300 <span class="comment">!</span>
  365. <a name="l00301"></a>00301 <span class="comment">! Weight function:</span>
  366. <a name="l00302"></a>00302 <span class="comment">!</span>
  367. <a name="l00303"></a>00303 <span class="comment">! 1.0D+00</span>
  368. <a name="l00304"></a>00304 <span class="comment">!</span>
  369. <a name="l00305"></a>00305 <span class="comment">! Integral to approximate:</span>
  370. <a name="l00306"></a>00306 <span class="comment">!</span>
  371. <a name="l00307"></a>00307 <span class="comment">! Integral ( 0 &lt;= X &lt;= 1 ) F(X) dX</span>
  372. <a name="l00308"></a>00308 <span class="comment">!</span>
  373. <a name="l00309"></a>00309 <span class="comment">! Approximate integral:</span>
  374. <a name="l00310"></a>00310 <span class="comment">!</span>
  375. <a name="l00311"></a>00311 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * BD**(I-1) F ( 1 ).</span>
  376. <a name="l00312"></a>00312 <span class="comment">!</span>
  377. <a name="l00313"></a>00313 <span class="comment">! Here, &quot;BD**(I-1) F ( 1 )&quot; denotes the (I-1)st backward difference</span>
  378. <a name="l00314"></a>00314 <span class="comment">! of F at X = 1, using a spacing of 1. In particular,</span>
  379. <a name="l00315"></a>00315 <span class="comment">!</span>
  380. <a name="l00316"></a>00316 <span class="comment">! BD**0 F(1) = F(1)</span>
  381. <a name="l00317"></a>00317 <span class="comment">! BD**1 F(1) = F(1) - F(0)</span>
  382. <a name="l00318"></a>00318 <span class="comment">! BD**2 F(1) = F(1) - 2 * F(0) + F(-1 )</span>
  383. <a name="l00319"></a>00319 <span class="comment">!</span>
  384. <a name="l00320"></a>00320 <span class="comment">! Note:</span>
  385. <a name="l00321"></a>00321 <span class="comment">!</span>
  386. <a name="l00322"></a>00322 <span class="comment">! The relationship between a backward difference corrector and the</span>
  387. <a name="l00323"></a>00323 <span class="comment">! corresponding Adams-Moulton formula may be illustrated for the</span>
  388. <a name="l00324"></a>00324 <span class="comment">! BDF corrector of order 4:</span>
  389. <a name="l00325"></a>00325 <span class="comment">!</span>
  390. <a name="l00326"></a>00326 <span class="comment">! BD**0 F(1) - 1/2 * BD**1 F(1) - 1/12 * BD**2 F(1) - 1/24 * BDF**3 F(1)</span>
  391. <a name="l00327"></a>00327 <span class="comment">! = F(1)</span>
  392. <a name="l00328"></a>00328 <span class="comment">! - 1/2 * ( F(1) - F(0) )</span>
  393. <a name="l00329"></a>00329 <span class="comment">! - 1/12 * ( F(1) - 2 * F(0) + F(-1) )</span>
  394. <a name="l00330"></a>00330 <span class="comment">! - 1/24 * ( F(1) - 3 * F(0) + 3 * F(-1) - F(-2) )</span>
  395. <a name="l00331"></a>00331 <span class="comment">! = 9/24 * F(1) + 19/24 * F(0) - 5/24 * F(-1) + 1/24 * F(-2)</span>
  396. <a name="l00332"></a>00332 <span class="comment">!</span>
  397. <a name="l00333"></a>00333 <span class="comment">! which is the Adams-Moulton formula of order 4.</span>
  398. <a name="l00334"></a>00334 <span class="comment">! </span>
  399. <a name="l00335"></a>00335 <span class="comment">! Reference:</span>
  400. <a name="l00336"></a>00336 <span class="comment">!</span>
  401. <a name="l00337"></a>00337 <span class="comment">! Simeon Fatunla,</span>
  402. <a name="l00338"></a>00338 <span class="comment">! Numerical Methods for Initial Value Problems in Ordinary Differential</span>
  403. <a name="l00339"></a>00339 <span class="comment">! Equations,</span>
  404. <a name="l00340"></a>00340 <span class="comment">! Academic Press, 1988.</span>
  405. <a name="l00341"></a>00341 <span class="comment">!</span>
  406. <a name="l00342"></a>00342 <span class="comment">! Modified:</span>
  407. <a name="l00343"></a>00343 <span class="comment">!</span>
  408. <a name="l00344"></a>00344 <span class="comment">! 28 February 2000</span>
  409. <a name="l00345"></a>00345 <span class="comment">!</span>
  410. <a name="l00346"></a>00346 <span class="comment">! Author:</span>
  411. <a name="l00347"></a>00347 <span class="comment">!</span>
  412. <a name="l00348"></a>00348 <span class="comment">! John Burkardt</span>
  413. <a name="l00349"></a>00349 <span class="comment">!</span>
  414. <a name="l00350"></a>00350 <span class="comment">! Parameters:</span>
  415. <a name="l00351"></a>00351 <span class="comment">!</span>
  416. <a name="l00352"></a>00352 <span class="comment">! Input, integer NORDER, the order of the rule, which can be</span>
  417. <a name="l00353"></a>00353 <span class="comment">! any value from 1 to 19.</span>
  418. <a name="l00354"></a>00354 <span class="comment">!</span>
  419. <a name="l00355"></a>00355 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  420. <a name="l00356"></a>00356 <span class="comment">!</span>
  421. <a name="l00357"></a>00357 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  422. <a name="l00358"></a>00358 <span class="comment">!</span>
  423. <a name="l00359"></a>00359 <span class="keyword">implicit none</span>
  424. <a name="l00360"></a>00360 <span class="comment">!</span>
  425. <a name="l00361"></a>00361 <span class="keywordtype">integer</span>, <span class="keywordtype">parameter</span> :: maxord = 19
  426. <a name="l00362"></a>00362 <span class="comment">!</span>
  427. <a name="l00363"></a>00363 <span class="keywordtype">integer</span> norder
  428. <a name="l00364"></a>00364 <span class="comment">!</span>
  429. <a name="l00365"></a>00365 <span class="keywordtype">integer</span> i
  430. <a name="l00366"></a>00366 <span class="keywordtype">double precision</span> w(maxord)
  431. <a name="l00367"></a>00367 <span class="keywordtype">double precision</span> weight(norder)
  432. <a name="l00368"></a>00368 <span class="keywordtype">double precision</span> xtab(norder)
  433. <a name="l00369"></a>00369 <span class="comment">!</span>
  434. <a name="l00370"></a>00370 w(1) = 1.0D+00
  435. <a name="l00371"></a>00371 w(2) = - 1.0D+00 / 2.0D+00
  436. <a name="l00372"></a>00372 w(3) = - 1.0D+00 / 12.0D+00
  437. <a name="l00373"></a>00373 w(4) = - 1.0D+00 / 24.0D+00
  438. <a name="l00374"></a>00374 w(5) = - 19.0D+00 / 720.0D+00
  439. <a name="l00375"></a>00375 w(6) = - 3.0D+00 / 160.0D+00
  440. <a name="l00376"></a>00376 w(7) = - 863.0D+00 / 60480.0D+00
  441. <a name="l00377"></a>00377 w(8) = - 275.0D+00 / 24792.0D+00
  442. <a name="l00378"></a>00378 w(9) = - 33953.0D+00 / 3628800.0D+00
  443. <a name="l00379"></a>00379 w(10) = - 8183.0D+00 / 1036800.0D+00
  444. <a name="l00380"></a>00380 w(11) = - 3250433.0D+00 / 479001600.0D+00
  445. <a name="l00381"></a>00381 w(12) = - 4671.0D+00 / 788480.0D+00
  446. <a name="l00382"></a>00382 w(13) = - 13695779093.0D+00 / 2615348736000.0D+00
  447. <a name="l00383"></a>00383 w(14) = - 2224234463.0D+00 / 475517952000.0D+00
  448. <a name="l00384"></a>00384 w(15) = - 132282840127.0D+00 / 31384184832000.0D+00
  449. <a name="l00385"></a>00385 w(16) = - 2639651053.0D+00 / 689762304000.0D+00
  450. <a name="l00386"></a>00386 w(17) = 111956703448001.0D+00 / 3201186852864.0D+00
  451. <a name="l00387"></a>00387 w(18) = 50188465.0D+00 / 15613165568.0D+00
  452. <a name="l00388"></a>00388 w(19) = 2334028946344463.0D+00 / 786014494949376.0D+00
  453. <a name="l00389"></a>00389
  454. <a name="l00390"></a>00390 <span class="keyword">do</span> i = 1, min ( norder, maxord )
  455. <a name="l00391"></a>00391 weight(i) = w(i)
  456. <a name="l00392"></a>00392 <span class="keyword">end do</span>
  457. <a name="l00393"></a>00393
  458. <a name="l00394"></a>00394 <span class="keyword">do</span> i = 1, norder
  459. <a name="l00395"></a>00395 xtab(i) = dble ( 2 - i )
  460. <a name="l00396"></a>00396 <span class="keyword">end do</span>
  461. <a name="l00397"></a>00397
  462. <a name="l00398"></a>00398 return
  463. <a name="l00399"></a>00399 <span class="keyword">end</span>
  464. <a name="l00400"></a><a class="code" href="quadrule_8f90.html#ae1f2722140b0af5e1a2bf8e5877222aa">00400</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#ae1f2722140b0af5e1a2bf8e5877222aa">bdfp_set</a> ( norder, weight, xtab )
  465. <a name="l00401"></a>00401 <span class="comment">!</span>
  466. <a name="l00402"></a>00402 <span class="comment">!*******************************************************************************</span>
  467. <a name="l00403"></a>00403 <span class="comment">!</span>
  468. <a name="l00404"></a>00404 <span class="comment">!! BDFP_SET sets weights for backward differentiation predictor quadrature.</span>
  469. <a name="l00405"></a>00405 <span class="comment">!</span>
  470. <a name="l00406"></a>00406 <span class="comment">!</span>
  471. <a name="l00407"></a>00407 <span class="comment">! Definition:</span>
  472. <a name="l00408"></a>00408 <span class="comment">!</span>
  473. <a name="l00409"></a>00409 <span class="comment">! A backward differentiation predictor formula is defined for a set</span>
  474. <a name="l00410"></a>00410 <span class="comment">! of evenly spaced abscissas X(I) with X(1) = 1 and X(2) = 0. Assuming</span>
  475. <a name="l00411"></a>00411 <span class="comment">! that the values of the function to be integrated are known at the</span>
  476. <a name="l00412"></a>00412 <span class="comment">! abscissas, the formula is written in terms of the function value at</span>
  477. <a name="l00413"></a>00413 <span class="comment">! X(2), and the backward differences at X(2) that approximate the</span>
  478. <a name="l00414"></a>00414 <span class="comment">! derivatives there. A backward differentiation predictor formula</span>
  479. <a name="l00415"></a>00415 <span class="comment">! is equivalent to an Adams-Bashforth formula of the same order.</span>
  480. <a name="l00416"></a>00416 <span class="comment">!</span>
  481. <a name="l00417"></a>00417 <span class="comment">! Integration interval:</span>
  482. <a name="l00418"></a>00418 <span class="comment">!</span>
  483. <a name="l00419"></a>00419 <span class="comment">! [ 0, 1 ]</span>
  484. <a name="l00420"></a>00420 <span class="comment">!</span>
  485. <a name="l00421"></a>00421 <span class="comment">! Weight function:</span>
  486. <a name="l00422"></a>00422 <span class="comment">!</span>
  487. <a name="l00423"></a>00423 <span class="comment">! 1.0D+00</span>
  488. <a name="l00424"></a>00424 <span class="comment">!</span>
  489. <a name="l00425"></a>00425 <span class="comment">! Integral to approximate:</span>
  490. <a name="l00426"></a>00426 <span class="comment">!</span>
  491. <a name="l00427"></a>00427 <span class="comment">! Integral ( 0 &lt;= X &lt;= 1 ) F(X) dX</span>
  492. <a name="l00428"></a>00428 <span class="comment">!</span>
  493. <a name="l00429"></a>00429 <span class="comment">! Approximate integral:</span>
  494. <a name="l00430"></a>00430 <span class="comment">!</span>
  495. <a name="l00431"></a>00431 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * BD**(I-1) F ( 0 ),</span>
  496. <a name="l00432"></a>00432 <span class="comment">!</span>
  497. <a name="l00433"></a>00433 <span class="comment">! Here, &quot;BD**(I-1) F ( 0 )&quot; denotes the (I-1)st backward difference</span>
  498. <a name="l00434"></a>00434 <span class="comment">! of F at X = 0, using a spacing of 1. In particular,</span>
  499. <a name="l00435"></a>00435 <span class="comment">!</span>
  500. <a name="l00436"></a>00436 <span class="comment">! BD**0 F(0) = F(0)</span>
  501. <a name="l00437"></a>00437 <span class="comment">! BD**1 F(0) = F(0) - F(-1)</span>
  502. <a name="l00438"></a>00438 <span class="comment">! BD**2 F(0) = F(0) - 2 * F(-1) + F(-2 )</span>
  503. <a name="l00439"></a>00439 <span class="comment">!</span>
  504. <a name="l00440"></a>00440 <span class="comment">! Note:</span>
  505. <a name="l00441"></a>00441 <span class="comment">!</span>
  506. <a name="l00442"></a>00442 <span class="comment">! The relationship between a backward difference predictor and the</span>
  507. <a name="l00443"></a>00443 <span class="comment">! corresponding Adams-Bashforth formula may be illustrated for the</span>
  508. <a name="l00444"></a>00444 <span class="comment">! BDF predictor of order 3:</span>
  509. <a name="l00445"></a>00445 <span class="comment">!</span>
  510. <a name="l00446"></a>00446 <span class="comment">! BD**0 F(0) + 0.5 * BD**1 F(0) + 5/12 * BD**2 F(0)</span>
  511. <a name="l00447"></a>00447 <span class="comment">! = F(0)</span>
  512. <a name="l00448"></a>00448 <span class="comment">! + 1/2 * ( F(0) - F(1) )</span>
  513. <a name="l00449"></a>00449 <span class="comment">! + 5/12 * ( F(0) - 2 * F(-1) + F(-2) )</span>
  514. <a name="l00450"></a>00450 <span class="comment">! = 23/12 * F(0) - 16/12 * F(-1) + 5/12 F(-2)</span>
  515. <a name="l00451"></a>00451 <span class="comment">!</span>
  516. <a name="l00452"></a>00452 <span class="comment">! which is the Adams-Bashforth formula of order 3.</span>
  517. <a name="l00453"></a>00453 <span class="comment">! </span>
  518. <a name="l00454"></a>00454 <span class="comment">! Reference:</span>
  519. <a name="l00455"></a>00455 <span class="comment">!</span>
  520. <a name="l00456"></a>00456 <span class="comment">! Simeon Fatunla,</span>
  521. <a name="l00457"></a>00457 <span class="comment">! Numerical Methods for Initial Value Problems in Ordinary Differential</span>
  522. <a name="l00458"></a>00458 <span class="comment">! Equations,</span>
  523. <a name="l00459"></a>00459 <span class="comment">! Academic Press, 1988.</span>
  524. <a name="l00460"></a>00460 <span class="comment">!</span>
  525. <a name="l00461"></a>00461 <span class="comment">! Modified:</span>
  526. <a name="l00462"></a>00462 <span class="comment">!</span>
  527. <a name="l00463"></a>00463 <span class="comment">! 29 February 2000</span>
  528. <a name="l00464"></a>00464 <span class="comment">!</span>
  529. <a name="l00465"></a>00465 <span class="comment">! Author:</span>
  530. <a name="l00466"></a>00466 <span class="comment">!</span>
  531. <a name="l00467"></a>00467 <span class="comment">! John Burkardt</span>
  532. <a name="l00468"></a>00468 <span class="comment">!</span>
  533. <a name="l00469"></a>00469 <span class="comment">! Parameters:</span>
  534. <a name="l00470"></a>00470 <span class="comment">!</span>
  535. <a name="l00471"></a>00471 <span class="comment">! Input, integer NORDER, the order of the rule, which can be</span>
  536. <a name="l00472"></a>00472 <span class="comment">! any value from 1 to 19.</span>
  537. <a name="l00473"></a>00473 <span class="comment">!</span>
  538. <a name="l00474"></a>00474 <span class="comment">! Output, double precision WEIGHT(NORDER), the weight of the rule.</span>
  539. <a name="l00475"></a>00475 <span class="comment">!</span>
  540. <a name="l00476"></a>00476 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  541. <a name="l00477"></a>00477 <span class="comment">!</span>
  542. <a name="l00478"></a>00478 <span class="keyword">implicit none</span>
  543. <a name="l00479"></a>00479 <span class="comment">!</span>
  544. <a name="l00480"></a>00480 <span class="keywordtype">integer</span>, <span class="keywordtype">parameter</span> :: maxord = 19
  545. <a name="l00481"></a>00481 <span class="comment">!</span>
  546. <a name="l00482"></a>00482 <span class="keywordtype">integer</span> norder
  547. <a name="l00483"></a>00483 <span class="comment">!</span>
  548. <a name="l00484"></a>00484 <span class="keywordtype">integer</span> i
  549. <a name="l00485"></a>00485 <span class="keywordtype">double precision</span> w(maxord)
  550. <a name="l00486"></a>00486 <span class="keywordtype">double precision</span> weight(norder)
  551. <a name="l00487"></a>00487 <span class="keywordtype">double precision</span> xtab(norder)
  552. <a name="l00488"></a>00488 <span class="comment">!</span>
  553. <a name="l00489"></a>00489 w(1) = 1.0D+00
  554. <a name="l00490"></a>00490 w(2) = 1.0D+00 / 2.0D+00
  555. <a name="l00491"></a>00491 w(3) = 5.0D+00 / 12.0D+00
  556. <a name="l00492"></a>00492 w(4) = 3.0D+00 / 8.0D+00
  557. <a name="l00493"></a>00493 w(5) = 251.0D+00 / 720.0D+00
  558. <a name="l00494"></a>00494 w(6) = 95.0D+00 / 288.0D+00
  559. <a name="l00495"></a>00495 w(7) = 19087.0D+00 / 60480.0D+00
  560. <a name="l00496"></a>00496 w(8) = 5257.0D+00 / 17280.0D+00
  561. <a name="l00497"></a>00497 w(9) = 1070017.0D+00 / 3628800.0D+00
  562. <a name="l00498"></a>00498 w(10) = 25713.0D+00 / 89600.0D+00
  563. <a name="l00499"></a>00499 w(11) = 26842253.0D+00 / 95800320.0D+00
  564. <a name="l00500"></a>00500 w(12) = 4777223.0D+00 / 17418240.0D+00
  565. <a name="l00501"></a>00501 w(13) = 703604254357.0D+00 / 2615348736000.0D+00
  566. <a name="l00502"></a>00502 w(14) = 106364763817.0D+00 / 402361344000.0D+00
  567. <a name="l00503"></a>00503 w(15) = 1166309819657.0D+00 / 4483454976000.0D+00
  568. <a name="l00504"></a>00504 w(16) = 25221445.0D+00 / 98402304.0D+00
  569. <a name="l00505"></a>00505 w(17) = 8092989203533249.0D+00 / 3201186852864.0D+00
  570. <a name="l00506"></a>00506 w(18) = 85455477715379.0D+00 / 34237292544.0D+00
  571. <a name="l00507"></a>00507 w(19) = 12600467236042756559.0D+00 / 5109094217170944.0D+00
  572. <a name="l00508"></a>00508
  573. <a name="l00509"></a>00509 <span class="keyword">do</span> i = 1, min ( norder, maxord )
  574. <a name="l00510"></a>00510 weight(i) = w(i)
  575. <a name="l00511"></a>00511 <span class="keyword">end do</span>
  576. <a name="l00512"></a>00512
  577. <a name="l00513"></a>00513 <span class="keyword">do</span> i = 1, norder
  578. <a name="l00514"></a>00514 xtab(i) = dble ( 1 - i )
  579. <a name="l00515"></a>00515 <span class="keyword">end do</span>
  580. <a name="l00516"></a>00516
  581. <a name="l00517"></a>00517 return
  582. <a name="l00518"></a>00518 <span class="keyword">end</span>
  583. <a name="l00519"></a><a class="code" href="quadrule_8f90.html#aed98218103418a57a42bce561d3f221a">00519</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#aed98218103418a57a42bce561d3f221a">bdf_sum</a> ( func, norder, weight, xtab, diftab, result )
  584. <a name="l00520"></a>00520 <span class="comment">!</span>
  585. <a name="l00521"></a>00521 <span class="comment">!*******************************************************************************</span>
  586. <a name="l00522"></a>00522 <span class="comment">!</span>
  587. <a name="l00523"></a>00523 <span class="comment">!! BDF_SUM carries out an explicit backward difference quadrature rule for [0,1].</span>
  588. <a name="l00524"></a>00524 <span class="comment">!</span>
  589. <a name="l00525"></a>00525 <span class="comment">!</span>
  590. <a name="l00526"></a>00526 <span class="comment">! Integral to approximate:</span>
  591. <a name="l00527"></a>00527 <span class="comment">!</span>
  592. <a name="l00528"></a>00528 <span class="comment">! Integral ( 0 &lt;= X &lt;= 1 ) F(X) dX</span>
  593. <a name="l00529"></a>00529 <span class="comment">!</span>
  594. <a name="l00530"></a>00530 <span class="comment">! Formula:</span>
  595. <a name="l00531"></a>00531 <span class="comment">!</span>
  596. <a name="l00532"></a>00532 <span class="comment">! RESULT = Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * BDF**(I-1) FUNC ( 0 )</span>
  597. <a name="l00533"></a>00533 <span class="comment">!</span>
  598. <a name="l00534"></a>00534 <span class="comment">! Note:</span>
  599. <a name="l00535"></a>00535 <span class="comment">!</span>
  600. <a name="l00536"></a>00536 <span class="comment">! The integral from 0 to 1 is approximated using data at X = 0,</span>
  601. <a name="l00537"></a>00537 <span class="comment">! -1, -2, ..., -NORDER+1. This is a form of extrapolation, and</span>
  602. <a name="l00538"></a>00538 <span class="comment">! the approximation can become poor as NORDER increases.</span>
  603. <a name="l00539"></a>00539 <span class="comment">!</span>
  604. <a name="l00540"></a>00540 <span class="comment">! Modified:</span>
  605. <a name="l00541"></a>00541 <span class="comment">!</span>
  606. <a name="l00542"></a>00542 <span class="comment">! 26 October 2000</span>
  607. <a name="l00543"></a>00543 <span class="comment">!</span>
  608. <a name="l00544"></a>00544 <span class="comment">! Author:</span>
  609. <a name="l00545"></a>00545 <span class="comment">!</span>
  610. <a name="l00546"></a>00546 <span class="comment">! John Burkardt</span>
  611. <a name="l00547"></a>00547 <span class="comment">!</span>
  612. <a name="l00548"></a>00548 <span class="comment">! Parameters:</span>
  613. <a name="l00549"></a>00549 <span class="comment">!</span>
  614. <a name="l00550"></a>00550 <span class="comment">! Input, external FUNC, the name of the FORTRAN function which evaluates</span>
  615. <a name="l00551"></a>00551 <span class="comment">! the integrand. The function must have the form</span>
  616. <a name="l00552"></a>00552 <span class="comment">! double precision func ( x ).</span>
  617. <a name="l00553"></a>00553 <span class="comment">!</span>
  618. <a name="l00554"></a>00554 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  619. <a name="l00555"></a>00555 <span class="comment">!</span>
  620. <a name="l00556"></a>00556 <span class="comment">! Input, double precision WEIGHT(NORDER), the weights of the rule.</span>
  621. <a name="l00557"></a>00557 <span class="comment">!</span>
  622. <a name="l00558"></a>00558 <span class="comment">! Input, double precision XTAB(NORDER), the abscissas of the rule.</span>
  623. <a name="l00559"></a>00559 <span class="comment">!</span>
  624. <a name="l00560"></a>00560 <span class="comment">! Workspace, double precision DIFTAB(NORDER).</span>
  625. <a name="l00561"></a>00561 <span class="comment">!</span>
  626. <a name="l00562"></a>00562 <span class="comment">! Output, double precision RESULT, the approximate value of the integral.</span>
  627. <a name="l00563"></a>00563 <span class="comment">!</span>
  628. <a name="l00564"></a>00564 <span class="keyword">implicit none</span>
  629. <a name="l00565"></a>00565 <span class="comment">!</span>
  630. <a name="l00566"></a>00566 <span class="keywordtype">integer</span> norder
  631. <a name="l00567"></a>00567 <span class="comment">!</span>
  632. <a name="l00568"></a>00568 <span class="keywordtype">double precision</span> diftab(norder)
  633. <a name="l00569"></a>00569 <span class="keywordtype">double precision</span>, <span class="keywordtype">external</span> :: func
  634. <a name="l00570"></a>00570 <span class="keywordtype">integer</span> i
  635. <a name="l00571"></a>00571 <span class="keywordtype">integer</span> j
  636. <a name="l00572"></a>00572 <span class="keywordtype">double precision</span> result
  637. <a name="l00573"></a>00573 <span class="keywordtype">double precision</span> weight(norder)
  638. <a name="l00574"></a>00574 <span class="keywordtype">double precision</span> xtab(norder)
  639. <a name="l00575"></a>00575 <span class="comment">!</span>
  640. <a name="l00576"></a>00576 <span class="keyword">do</span> i = 1, norder
  641. <a name="l00577"></a>00577 diftab(i) = func ( xtab(i) )
  642. <a name="l00578"></a>00578 <span class="keyword">end do</span>
  643. <a name="l00579"></a>00579
  644. <a name="l00580"></a>00580 <span class="keyword">do</span> i = 2, norder
  645. <a name="l00581"></a>00581 <span class="keyword">do</span> j = i, norder
  646. <a name="l00582"></a>00582 diftab(norder+i-j) = ( diftab(norder+i-j-1) - diftab(norder+i-j) )
  647. <a name="l00583"></a>00583 <span class="keyword">end do</span>
  648. <a name="l00584"></a>00584 <span class="keyword">end do</span>
  649. <a name="l00585"></a>00585
  650. <a name="l00586"></a>00586 result = dot_product ( weight(1:norder), diftab(1:norder) )
  651. <a name="l00587"></a>00587
  652. <a name="l00588"></a>00588 return
  653. <a name="l00589"></a>00589 <span class="keyword">end</span>
  654. <a name="l00590"></a><a class="code" href="quadrule_8f90.html#ade9f4e674221ccedd6251da05db6bbba">00590</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#ade9f4e674221ccedd6251da05db6bbba">cheb_set</a> ( norder, xtab, weight )
  655. <a name="l00591"></a>00591 <span class="comment">!</span>
  656. <a name="l00592"></a>00592 <span class="comment">!*******************************************************************************</span>
  657. <a name="l00593"></a>00593 <span class="comment">!</span>
  658. <a name="l00594"></a>00594 <span class="comment">!! CHEB_SET sets abscissas and weights for Chebyshev quadrature.</span>
  659. <a name="l00595"></a>00595 <span class="comment">!</span>
  660. <a name="l00596"></a>00596 <span class="comment">!</span>
  661. <a name="l00597"></a>00597 <span class="comment">! Integration interval:</span>
  662. <a name="l00598"></a>00598 <span class="comment">!</span>
  663. <a name="l00599"></a>00599 <span class="comment">! [ -1, 1 ]</span>
  664. <a name="l00600"></a>00600 <span class="comment">!</span>
  665. <a name="l00601"></a>00601 <span class="comment">! Weight function:</span>
  666. <a name="l00602"></a>00602 <span class="comment">!</span>
  667. <a name="l00603"></a>00603 <span class="comment">! 1.0D+00</span>
  668. <a name="l00604"></a>00604 <span class="comment">!</span>
  669. <a name="l00605"></a>00605 <span class="comment">! Integral to approximate:</span>
  670. <a name="l00606"></a>00606 <span class="comment">!</span>
  671. <a name="l00607"></a>00607 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) F(X) dX</span>
  672. <a name="l00608"></a>00608 <span class="comment">!</span>
  673. <a name="l00609"></a>00609 <span class="comment">! Approximate integral:</span>
  674. <a name="l00610"></a>00610 <span class="comment">!</span>
  675. <a name="l00611"></a>00611 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  676. <a name="l00612"></a>00612 <span class="comment">!</span>
  677. <a name="l00613"></a>00613 <span class="comment">! Note:</span>
  678. <a name="l00614"></a>00614 <span class="comment">!</span>
  679. <a name="l00615"></a>00615 <span class="comment">! The Chebyshev rule is distinguished by using equal weights.</span>
  680. <a name="l00616"></a>00616 <span class="comment">!</span>
  681. <a name="l00617"></a>00617 <span class="comment">! Reference:</span>
  682. <a name="l00618"></a>00618 <span class="comment">!</span>
  683. <a name="l00619"></a>00619 <span class="comment">! Abramowitz and Stegun,</span>
  684. <a name="l00620"></a>00620 <span class="comment">! Handbook of Mathematical Functions,</span>
  685. <a name="l00621"></a>00621 <span class="comment">! National Bureau of Standards, 1964.</span>
  686. <a name="l00622"></a>00622 <span class="comment">!</span>
  687. <a name="l00623"></a>00623 <span class="comment">! H Engels,</span>
  688. <a name="l00624"></a>00624 <span class="comment">! Numerical Quadrature and Cubature,</span>
  689. <a name="l00625"></a>00625 <span class="comment">! Academic Press, 1980.</span>
  690. <a name="l00626"></a>00626 <span class="comment">!</span>
  691. <a name="l00627"></a>00627 <span class="comment">! Zdenek Kopal,</span>
  692. <a name="l00628"></a>00628 <span class="comment">! Numerical Analysis,</span>
  693. <a name="l00629"></a>00629 <span class="comment">! John Wiley, 1955.</span>
  694. <a name="l00630"></a>00630 <span class="comment">!</span>
  695. <a name="l00631"></a>00631 <span class="comment">! Daniel Zwillinger, editor,</span>
  696. <a name="l00632"></a>00632 <span class="comment">! Standard Mathematical Tables and Formulae,</span>
  697. <a name="l00633"></a>00633 <span class="comment">! 30th Edition,</span>
  698. <a name="l00634"></a>00634 <span class="comment">! CRC Press, 1996.</span>
  699. <a name="l00635"></a>00635 <span class="comment">!</span>
  700. <a name="l00636"></a>00636 <span class="comment">! Modified:</span>
  701. <a name="l00637"></a>00637 <span class="comment">!</span>
  702. <a name="l00638"></a>00638 <span class="comment">! 27 October 2000</span>
  703. <a name="l00639"></a>00639 <span class="comment">!</span>
  704. <a name="l00640"></a>00640 <span class="comment">! Author:</span>
  705. <a name="l00641"></a>00641 <span class="comment">!</span>
  706. <a name="l00642"></a>00642 <span class="comment">! John Burkardt</span>
  707. <a name="l00643"></a>00643 <span class="comment">!</span>
  708. <a name="l00644"></a>00644 <span class="comment">! Parameters:</span>
  709. <a name="l00645"></a>00645 <span class="comment">!</span>
  710. <a name="l00646"></a>00646 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  711. <a name="l00647"></a>00647 <span class="comment">! NORDER may only have the values 1, 2, 3, 4, 5, 6, 7 or 9.</span>
  712. <a name="l00648"></a>00648 <span class="comment">! There are NO other Chebyshev rules with real abscissas.</span>
  713. <a name="l00649"></a>00649 <span class="comment">!</span>
  714. <a name="l00650"></a>00650 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule,</span>
  715. <a name="l00651"></a>00651 <span class="comment">! which are symmetric in [-1,1].</span>
  716. <a name="l00652"></a>00652 <span class="comment">!</span>
  717. <a name="l00653"></a>00653 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule,</span>
  718. <a name="l00654"></a>00654 <span class="comment">! which should each equal 2 / NORDER.</span>
  719. <a name="l00655"></a>00655 <span class="comment">!</span>
  720. <a name="l00656"></a>00656 <span class="keyword">implicit none</span>
  721. <a name="l00657"></a>00657 <span class="comment">!</span>
  722. <a name="l00658"></a>00658 <span class="keywordtype">integer</span> norder
  723. <a name="l00659"></a>00659 <span class="comment">!</span>
  724. <a name="l00660"></a>00660 <span class="keywordtype">integer</span> i
  725. <a name="l00661"></a>00661 <span class="keywordtype">double precision</span> weight(norder)
  726. <a name="l00662"></a>00662 <span class="keywordtype">double precision</span> xtab(norder)
  727. <a name="l00663"></a>00663 <span class="comment">!</span>
  728. <a name="l00664"></a>00664 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  729. <a name="l00665"></a>00665
  730. <a name="l00666"></a>00666 xtab(1) = 0.0D+00
  731. <a name="l00667"></a>00667
  732. <a name="l00668"></a>00668 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  733. <a name="l00669"></a>00669
  734. <a name="l00670"></a>00670 xtab(1) = - 1.0D+00 / sqrt ( 3.0D+00 )
  735. <a name="l00671"></a>00671 xtab(2) = 1.0D+00 / sqrt ( 3.0D+00 )
  736. <a name="l00672"></a>00672
  737. <a name="l00673"></a>00673 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  738. <a name="l00674"></a>00674
  739. <a name="l00675"></a>00675 xtab(1) = - 1.0D+00 / sqrt ( 2.0D+00 )
  740. <a name="l00676"></a>00676 xtab(2) = 0.0D+00
  741. <a name="l00677"></a>00677 xtab(3) = 1.0D+00 / sqrt ( 2.0D+00 )
  742. <a name="l00678"></a>00678
  743. <a name="l00679"></a>00679 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  744. <a name="l00680"></a>00680
  745. <a name="l00681"></a>00681 xtab(1) = - sqrt ( ( 1.0D+00 + 2.0D+00/ sqrt ( 5.0D+00 ) ) / 3.0D+00 )
  746. <a name="l00682"></a>00682 xtab(2) = - sqrt ( ( 1.0D+00 - 2.0D+00/ sqrt ( 5.0D+00 ) ) / 3.0D+00 )
  747. <a name="l00683"></a>00683 xtab(3) = sqrt ( ( 1.0D+00 - 2.0D+00/ sqrt ( 5.0D+00 ) ) / 3.0D+00 )
  748. <a name="l00684"></a>00684 xtab(4) = sqrt ( ( 1.0D+00 + 2.0D+00/ sqrt ( 5.0D+00 ) ) / 3.0D+00 )
  749. <a name="l00685"></a>00685
  750. <a name="l00686"></a>00686 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  751. <a name="l00687"></a>00687
  752. <a name="l00688"></a>00688 xtab(1) = - sqrt ( ( 5.0D+00 + sqrt ( 11.0D+00) ) / 12.0D+00 )
  753. <a name="l00689"></a>00689 xtab(2) = - sqrt ( ( 5.0D+00 - sqrt ( 11.0D+00) ) / 12.0D+00 )
  754. <a name="l00690"></a>00690 xtab(3) = 0.0D+00
  755. <a name="l00691"></a>00691 xtab(4) = sqrt ( ( 5.0D+00 - sqrt ( 11.0D+00) ) / 12.0D+00 )
  756. <a name="l00692"></a>00692 xtab(5) = sqrt ( ( 5.0D+00 + sqrt ( 11.0D+00) ) / 12.0D+00 )
  757. <a name="l00693"></a>00693
  758. <a name="l00694"></a>00694 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  759. <a name="l00695"></a>00695
  760. <a name="l00696"></a>00696 xtab(1) = - 0.866246818107820591383598D+00
  761. <a name="l00697"></a>00697 xtab(2) = - 0.422518653761111529118546D+00
  762. <a name="l00698"></a>00698 xtab(3) = - 0.266635401516704720331534D+00
  763. <a name="l00699"></a>00699 xtab(4) = 0.266635401516704720331534D+00
  764. <a name="l00700"></a>00700 xtab(5) = 0.422518653761111529118546D+00
  765. <a name="l00701"></a>00701 xtab(6) = 0.866246818107820591383598D+00
  766. <a name="l00702"></a>00702
  767. <a name="l00703"></a>00703 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  768. <a name="l00704"></a>00704
  769. <a name="l00705"></a>00705 xtab(1) = - 0.883861700758049035704224D+00
  770. <a name="l00706"></a>00706 xtab(2) = - 0.529656775285156811385048D+00
  771. <a name="l00707"></a>00707 xtab(3) = - 0.323911810519907637519673D+00
  772. <a name="l00708"></a>00708 xtab(4) = 0.0D+00
  773. <a name="l00709"></a>00709 xtab(5) = 0.323911810519907637519673D+00
  774. <a name="l00710"></a>00710 xtab(6) = 0.529656775285156811385048D+00
  775. <a name="l00711"></a>00711 xtab(7) = 0.883861700758049035704224D+00
  776. <a name="l00712"></a>00712
  777. <a name="l00713"></a>00713 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 9 ) <span class="keyword">then</span>
  778. <a name="l00714"></a>00714
  779. <a name="l00715"></a>00715 xtab(1) = - 0.911589307728434473664949D+00
  780. <a name="l00716"></a>00716 xtab(2) = - 0.601018655380238071428128D+00
  781. <a name="l00717"></a>00717 xtab(3) = - 0.528761783057879993260181D+00
  782. <a name="l00718"></a>00718 xtab(4) = - 0.167906184214803943068031D+00
  783. <a name="l00719"></a>00719 xtab(5) = 0.0D+00
  784. <a name="l00720"></a>00720 xtab(6) = 0.167906184214803943068031D+00
  785. <a name="l00721"></a>00721 xtab(7) = 0.528761783057879993260181D+00
  786. <a name="l00722"></a>00722 xtab(8) = 0.601018655380238071428128D+00
  787. <a name="l00723"></a>00723 xtab(9) = 0.911589307728434473664949D+00
  788. <a name="l00724"></a>00724
  789. <a name="l00725"></a>00725 <span class="keyword">else</span>
  790. <a name="l00726"></a>00726
  791. <a name="l00727"></a>00727 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  792. <a name="l00728"></a>00728 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;CHEB_SET - Fatal error!&#39;</span>
  793. <a name="l00729"></a>00729 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  794. <a name="l00730"></a>00730 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; Legal values are 1 through 7, and 9.&#39;</span>
  795. <a name="l00731"></a>00731 stop
  796. <a name="l00732"></a>00732
  797. <a name="l00733"></a>00733 <span class="keyword">end if</span>
  798. <a name="l00734"></a>00734
  799. <a name="l00735"></a>00735 weight(1:norder) = 2.0D+00 / dble ( norder )
  800. <a name="l00736"></a>00736
  801. <a name="l00737"></a>00737 return
  802. <a name="l00738"></a>00738 <span class="keyword">end</span>
  803. <a name="l00739"></a><a class="code" href="quadrule_8f90.html#a54208a5fdf9d1d82565b1aa741c51811">00739</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a54208a5fdf9d1d82565b1aa741c51811">cheb_to_set</a> ( norder, xtab, weight )
  804. <a name="l00740"></a>00740 <span class="comment">!</span>
  805. <a name="l00741"></a>00741 <span class="comment">!*******************************************************************************</span>
  806. <a name="l00742"></a>00742 <span class="comment">!</span>
  807. <a name="l00743"></a>00743 <span class="comment">!! CHEB_TO_SET sets up open Gauss-Chebyshev (first kind) quadrature.</span>
  808. <a name="l00744"></a>00744 <span class="comment">!</span>
  809. <a name="l00745"></a>00745 <span class="comment">!</span>
  810. <a name="l00746"></a>00746 <span class="comment">! Integration interval:</span>
  811. <a name="l00747"></a>00747 <span class="comment">!</span>
  812. <a name="l00748"></a>00748 <span class="comment">! [ -1, 1 ]</span>
  813. <a name="l00749"></a>00749 <span class="comment">!</span>
  814. <a name="l00750"></a>00750 <span class="comment">! Weight function:</span>
  815. <a name="l00751"></a>00751 <span class="comment">!</span>
  816. <a name="l00752"></a>00752 <span class="comment">! 1 / SQRT ( 1 - X**2 )</span>
  817. <a name="l00753"></a>00753 <span class="comment">!</span>
  818. <a name="l00754"></a>00754 <span class="comment">! Integral to approximate:</span>
  819. <a name="l00755"></a>00755 <span class="comment">!</span>
  820. <a name="l00756"></a>00756 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) F(X) / SQRT ( 1 - X**2 ) dX</span>
  821. <a name="l00757"></a>00757 <span class="comment">!</span>
  822. <a name="l00758"></a>00758 <span class="comment">! Approximate integral:</span>
  823. <a name="l00759"></a>00759 <span class="comment">!</span>
  824. <a name="l00760"></a>00760 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  825. <a name="l00761"></a>00761 <span class="comment">!</span>
  826. <a name="l00762"></a>00762 <span class="comment">! Precision:</span>
  827. <a name="l00763"></a>00763 <span class="comment">!</span>
  828. <a name="l00764"></a>00764 <span class="comment">! If NORDER points are used, then Gauss-Chebyshev quadrature</span>
  829. <a name="l00765"></a>00765 <span class="comment">! will compute the integral exactly, whenever F(X) is a polynomial</span>
  830. <a name="l00766"></a>00766 <span class="comment">! of degree 2*NORDER-1 or less.</span>
  831. <a name="l00767"></a>00767 <span class="comment">!</span>
  832. <a name="l00768"></a>00768 <span class="comment">! Note:</span>
  833. <a name="l00769"></a>00769 <span class="comment">!</span>
  834. <a name="l00770"></a>00770 <span class="comment">! The abscissas of the rule are zeroes of the Chebyshev polynomials</span>
  835. <a name="l00771"></a>00771 <span class="comment">! of the first kind, T(NORDER)(X).</span>
  836. <a name="l00772"></a>00772 <span class="comment">!</span>
  837. <a name="l00773"></a>00773 <span class="comment">! Reference:</span>
  838. <a name="l00774"></a>00774 <span class="comment">!</span>
  839. <a name="l00775"></a>00775 <span class="comment">! Daniel Zwillinger, editor,</span>
  840. <a name="l00776"></a>00776 <span class="comment">! Standard Mathematical Tables and Formulae,</span>
  841. <a name="l00777"></a>00777 <span class="comment">! 30th Edition,</span>
  842. <a name="l00778"></a>00778 <span class="comment">! CRC Press, 1996.</span>
  843. <a name="l00779"></a>00779 <span class="comment">!</span>
  844. <a name="l00780"></a>00780 <span class="comment">! Modified:</span>
  845. <a name="l00781"></a>00781 <span class="comment">!</span>
  846. <a name="l00782"></a>00782 <span class="comment">! 15 September 1998</span>
  847. <a name="l00783"></a>00783 <span class="comment">!</span>
  848. <a name="l00784"></a>00784 <span class="comment">! Author:</span>
  849. <a name="l00785"></a>00785 <span class="comment">!</span>
  850. <a name="l00786"></a>00786 <span class="comment">! John Burkardt</span>
  851. <a name="l00787"></a>00787 <span class="comment">!</span>
  852. <a name="l00788"></a>00788 <span class="comment">! Parameters:</span>
  853. <a name="l00789"></a>00789 <span class="comment">!</span>
  854. <a name="l00790"></a>00790 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  855. <a name="l00791"></a>00791 <span class="comment">!</span>
  856. <a name="l00792"></a>00792 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  857. <a name="l00793"></a>00793 <span class="comment">!</span>
  858. <a name="l00794"></a>00794 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule,</span>
  859. <a name="l00795"></a>00795 <span class="comment">! which are all equal to PI / NORDER.</span>
  860. <a name="l00796"></a>00796 <span class="comment">!</span>
  861. <a name="l00797"></a>00797 <span class="keyword">implicit none</span>
  862. <a name="l00798"></a>00798 <span class="comment">!</span>
  863. <a name="l00799"></a>00799 <span class="keywordtype">integer</span> norder
  864. <a name="l00800"></a>00800 <span class="comment">!</span>
  865. <a name="l00801"></a>00801 <span class="keywordtype">double precision</span> angle
  866. <a name="l00802"></a>00802 <span class="keywordtype">double precision</span> d_pi
  867. <a name="l00803"></a>00803 <span class="keywordtype">integer</span> i
  868. <a name="l00804"></a>00804 <span class="keywordtype">double precision</span> weight(norder)
  869. <a name="l00805"></a>00805 <span class="keywordtype">double precision</span> xtab(norder)
  870. <a name="l00806"></a>00806 <span class="comment">!</span>
  871. <a name="l00807"></a>00807 <span class="keyword">do</span> i = 1, norder
  872. <a name="l00808"></a>00808 angle = dble ( 2 * i - 1 ) * d_pi ( ) / dble ( 2 * norder )
  873. <a name="l00809"></a>00809 xtab(i) = cos ( angle )
  874. <a name="l00810"></a>00810 <span class="keyword">end do</span>
  875. <a name="l00811"></a>00811
  876. <a name="l00812"></a>00812 weight(1:norder) = d_pi ( ) / dble ( norder )
  877. <a name="l00813"></a>00813
  878. <a name="l00814"></a>00814 return
  879. <a name="l00815"></a>00815 <span class="keyword">end</span>
  880. <a name="l00816"></a><a class="code" href="quadrule_8f90.html#aa1f1a725b4cc2ef2f039255e99227f0d">00816</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#aa1f1a725b4cc2ef2f039255e99227f0d">cheb_tc_set</a> ( norder, xtab, weight )
  881. <a name="l00817"></a>00817 <span class="comment">!</span>
  882. <a name="l00818"></a>00818 <span class="comment">!*******************************************************************************</span>
  883. <a name="l00819"></a>00819 <span class="comment">!</span>
  884. <a name="l00820"></a>00820 <span class="comment">!! CHEB_TC_SET sets up closed Gauss-Chebyshev (first kind) quadrature.</span>
  885. <a name="l00821"></a>00821 <span class="comment">!</span>
  886. <a name="l00822"></a>00822 <span class="comment">!</span>
  887. <a name="l00823"></a>00823 <span class="comment">! Integration interval:</span>
  888. <a name="l00824"></a>00824 <span class="comment">!</span>
  889. <a name="l00825"></a>00825 <span class="comment">! [ -1, 1 ]</span>
  890. <a name="l00826"></a>00826 <span class="comment">!</span>
  891. <a name="l00827"></a>00827 <span class="comment">! Weight function:</span>
  892. <a name="l00828"></a>00828 <span class="comment">!</span>
  893. <a name="l00829"></a>00829 <span class="comment">! 1 / SQRT ( 1 - X**2 )</span>
  894. <a name="l00830"></a>00830 <span class="comment">!</span>
  895. <a name="l00831"></a>00831 <span class="comment">! Integral to approximate:</span>
  896. <a name="l00832"></a>00832 <span class="comment">!</span>
  897. <a name="l00833"></a>00833 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) F(X) / SQRT ( 1 - X**2 ) dX</span>
  898. <a name="l00834"></a>00834 <span class="comment">!</span>
  899. <a name="l00835"></a>00835 <span class="comment">! Approximate integral:</span>
  900. <a name="l00836"></a>00836 <span class="comment">!</span>
  901. <a name="l00837"></a>00837 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  902. <a name="l00838"></a>00838 <span class="comment">!</span>
  903. <a name="l00839"></a>00839 <span class="comment">! Precision:</span>
  904. <a name="l00840"></a>00840 <span class="comment">!</span>
  905. <a name="l00841"></a>00841 <span class="comment">! If NORDER points are used, then Gauss-Chebyshev quadrature</span>
  906. <a name="l00842"></a>00842 <span class="comment">! will compute the integral exactly, whenever F(X) is a polynomial</span>
  907. <a name="l00843"></a>00843 <span class="comment">! of degree 2*NORDER-3 or less.</span>
  908. <a name="l00844"></a>00844 <span class="comment">!</span>
  909. <a name="l00845"></a>00845 <span class="comment">! Note:</span>
  910. <a name="l00846"></a>00846 <span class="comment">!</span>
  911. <a name="l00847"></a>00847 <span class="comment">! The abscissas include -1 and 1.</span>
  912. <a name="l00848"></a>00848 <span class="comment">!</span>
  913. <a name="l00849"></a>00849 <span class="comment">! If the order is doubled, the abscissas of the new rule include</span>
  914. <a name="l00850"></a>00850 <span class="comment">! all the points of the old rule. This fact can be used to</span>
  915. <a name="l00851"></a>00851 <span class="comment">! efficiently implement error estimation.</span>
  916. <a name="l00852"></a>00852 <span class="comment">!</span>
  917. <a name="l00853"></a>00853 <span class="comment">! Reference:</span>
  918. <a name="l00854"></a>00854 <span class="comment">!</span>
  919. <a name="l00855"></a>00855 <span class="comment">! Daniel Zwillinger, editor,</span>
  920. <a name="l00856"></a>00856 <span class="comment">! Standard Mathematical Tables and Formulae,</span>
  921. <a name="l00857"></a>00857 <span class="comment">! 30th Edition,</span>
  922. <a name="l00858"></a>00858 <span class="comment">! CRC Press, 1996.</span>
  923. <a name="l00859"></a>00859 <span class="comment">!</span>
  924. <a name="l00860"></a>00860 <span class="comment">! Modified:</span>
  925. <a name="l00861"></a>00861 <span class="comment">!</span>
  926. <a name="l00862"></a>00862 <span class="comment">! 15 September 1998</span>
  927. <a name="l00863"></a>00863 <span class="comment">!</span>
  928. <a name="l00864"></a>00864 <span class="comment">! Author:</span>
  929. <a name="l00865"></a>00865 <span class="comment">!</span>
  930. <a name="l00866"></a>00866 <span class="comment">! John Burkardt</span>
  931. <a name="l00867"></a>00867 <span class="comment">!</span>
  932. <a name="l00868"></a>00868 <span class="comment">! Parameters:</span>
  933. <a name="l00869"></a>00869 <span class="comment">!</span>
  934. <a name="l00870"></a>00870 <span class="comment">! Input, integer NORDER, the order of the rule, which must be at least 2.</span>
  935. <a name="l00871"></a>00871 <span class="comment">!</span>
  936. <a name="l00872"></a>00872 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  937. <a name="l00873"></a>00873 <span class="comment">!</span>
  938. <a name="l00874"></a>00874 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  939. <a name="l00875"></a>00875 <span class="comment">! The first and last weights are 0.5 * PI / ( NORDER - 1),</span>
  940. <a name="l00876"></a>00876 <span class="comment">! and all other weights are PI / ( NORDER - 1 ).</span>
  941. <a name="l00877"></a>00877 <span class="comment">!</span>
  942. <a name="l00878"></a>00878 <span class="keyword">implicit none</span>
  943. <a name="l00879"></a>00879 <span class="comment">!</span>
  944. <a name="l00880"></a>00880 <span class="keywordtype">integer</span> norder
  945. <a name="l00881"></a>00881 <span class="comment">!</span>
  946. <a name="l00882"></a>00882 <span class="keywordtype">double precision</span> angle
  947. <a name="l00883"></a>00883 <span class="keywordtype">double precision</span> d_pi
  948. <a name="l00884"></a>00884 <span class="keywordtype">integer</span> i
  949. <a name="l00885"></a>00885 <span class="keywordtype">double precision</span> weight(norder)
  950. <a name="l00886"></a>00886 <span class="keywordtype">double precision</span> xtab(norder)
  951. <a name="l00887"></a>00887 <span class="comment">!</span>
  952. <a name="l00888"></a>00888 <span class="keyword">if</span> ( norder &lt; 2 ) <span class="keyword">then</span>
  953. <a name="l00889"></a>00889 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  954. <a name="l00890"></a>00890 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;CHEB_TC_SET - Fatal error!&#39;</span>
  955. <a name="l00891"></a>00891 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; NORDER must be at least 2.&#39;</span>
  956. <a name="l00892"></a>00892 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; The input value was NORDER = &#39;</span>, norder
  957. <a name="l00893"></a>00893 stop
  958. <a name="l00894"></a>00894 <span class="keyword">end if</span>
  959. <a name="l00895"></a>00895
  960. <a name="l00896"></a>00896 <span class="keyword">do</span> i = 1, norder
  961. <a name="l00897"></a>00897
  962. <a name="l00898"></a>00898 angle = dble ( i - 1 ) * d_pi ( ) / dble ( norder - 1 )
  963. <a name="l00899"></a>00899 xtab(i) = cos ( angle )
  964. <a name="l00900"></a>00900
  965. <a name="l00901"></a>00901 <span class="keyword">end do</span>
  966. <a name="l00902"></a>00902
  967. <a name="l00903"></a>00903 weight(1) = d_pi ( ) / dble ( 2 * ( norder - 1 ) )
  968. <a name="l00904"></a>00904 weight(2:norder-1) = d_pi ( ) / dble ( norder - 1 )
  969. <a name="l00905"></a>00905 weight(norder) = d_pi ( ) / dble ( 2 * ( norder - 1 ) )
  970. <a name="l00906"></a>00906
  971. <a name="l00907"></a>00907 return
  972. <a name="l00908"></a>00908 <span class="keyword">end</span>
  973. <a name="l00909"></a><a class="code" href="quadrule_8f90.html#ac7f04c61f2321ddc4bbf90358305d11e">00909</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#ac7f04c61f2321ddc4bbf90358305d11e">cheb_u_set</a> ( norder, xtab, weight )
  974. <a name="l00910"></a>00910 <span class="comment">!</span>
  975. <a name="l00911"></a>00911 <span class="comment">!*******************************************************************************</span>
  976. <a name="l00912"></a>00912 <span class="comment">!</span>
  977. <a name="l00913"></a>00913 <span class="comment">!! CHEB_U_SET sets abscissas and weights for Gauss-Chebyshev quadrature.</span>
  978. <a name="l00914"></a>00914 <span class="comment">!</span>
  979. <a name="l00915"></a>00915 <span class="comment">!</span>
  980. <a name="l00916"></a>00916 <span class="comment">! Integration interval:</span>
  981. <a name="l00917"></a>00917 <span class="comment">!</span>
  982. <a name="l00918"></a>00918 <span class="comment">! [ -1, 1 ]</span>
  983. <a name="l00919"></a>00919 <span class="comment">!</span>
  984. <a name="l00920"></a>00920 <span class="comment">! Weight function:</span>
  985. <a name="l00921"></a>00921 <span class="comment">!</span>
  986. <a name="l00922"></a>00922 <span class="comment">! SQRT ( 1 - X**2 )</span>
  987. <a name="l00923"></a>00923 <span class="comment">!</span>
  988. <a name="l00924"></a>00924 <span class="comment">! Integral to approximate:</span>
  989. <a name="l00925"></a>00925 <span class="comment">!</span>
  990. <a name="l00926"></a>00926 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) SQRT ( 1 - X**2 ) * F(X) dX</span>
  991. <a name="l00927"></a>00927 <span class="comment">!</span>
  992. <a name="l00928"></a>00928 <span class="comment">! Approximate integral:</span>
  993. <a name="l00929"></a>00929 <span class="comment">!</span>
  994. <a name="l00930"></a>00930 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  995. <a name="l00931"></a>00931 <span class="comment">!</span>
  996. <a name="l00932"></a>00932 <span class="comment">! Precision:</span>
  997. <a name="l00933"></a>00933 <span class="comment">!</span>
  998. <a name="l00934"></a>00934 <span class="comment">! If NORDER points are used, then Gauss-Chebyshev quadrature</span>
  999. <a name="l00935"></a>00935 <span class="comment">! will compute the integral exactly, whenever F(X) is a polynomial</span>
  1000. <a name="l00936"></a>00936 <span class="comment">! of degree 2*NORDER-1 or less.</span>
  1001. <a name="l00937"></a>00937 <span class="comment">!</span>
  1002. <a name="l00938"></a>00938 <span class="comment">! Note:</span>
  1003. <a name="l00939"></a>00939 <span class="comment">!</span>
  1004. <a name="l00940"></a>00940 <span class="comment">! The abscissas are zeroes of the Chebyshev polynomials</span>
  1005. <a name="l00941"></a>00941 <span class="comment">! of the second kind, U(NORDER)(X).</span>
  1006. <a name="l00942"></a>00942 <span class="comment">!</span>
  1007. <a name="l00943"></a>00943 <span class="comment">! Reference:</span>
  1008. <a name="l00944"></a>00944 <span class="comment">!</span>
  1009. <a name="l00945"></a>00945 <span class="comment">! Daniel Zwillinger, editor,</span>
  1010. <a name="l00946"></a>00946 <span class="comment">! Standard Mathematical Tables and Formulae,</span>
  1011. <a name="l00947"></a>00947 <span class="comment">! 30th Edition,</span>
  1012. <a name="l00948"></a>00948 <span class="comment">! CRC Press, 1996.</span>
  1013. <a name="l00949"></a>00949 <span class="comment">!</span>
  1014. <a name="l00950"></a>00950 <span class="comment">! Modified:</span>
  1015. <a name="l00951"></a>00951 <span class="comment">!</span>
  1016. <a name="l00952"></a>00952 <span class="comment">! 15 September 1998</span>
  1017. <a name="l00953"></a>00953 <span class="comment">!</span>
  1018. <a name="l00954"></a>00954 <span class="comment">! Author:</span>
  1019. <a name="l00955"></a>00955 <span class="comment">!</span>
  1020. <a name="l00956"></a>00956 <span class="comment">! John Burkardt</span>
  1021. <a name="l00957"></a>00957 <span class="comment">!</span>
  1022. <a name="l00958"></a>00958 <span class="comment">! Parameters:</span>
  1023. <a name="l00959"></a>00959 <span class="comment">!</span>
  1024. <a name="l00960"></a>00960 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  1025. <a name="l00961"></a>00961 <span class="comment">!</span>
  1026. <a name="l00962"></a>00962 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  1027. <a name="l00963"></a>00963 <span class="comment">!</span>
  1028. <a name="l00964"></a>00964 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule,</span>
  1029. <a name="l00965"></a>00965 <span class="comment">! which are all equal to PI / NORDER.</span>
  1030. <a name="l00966"></a>00966 <span class="comment">!</span>
  1031. <a name="l00967"></a>00967 <span class="keyword">implicit none</span>
  1032. <a name="l00968"></a>00968 <span class="comment">!</span>
  1033. <a name="l00969"></a>00969 <span class="keywordtype">integer</span> norder
  1034. <a name="l00970"></a>00970 <span class="comment">!</span>
  1035. <a name="l00971"></a>00971 <span class="keywordtype">double precision</span> angle
  1036. <a name="l00972"></a>00972 <span class="keywordtype">double precision</span> d_pi
  1037. <a name="l00973"></a>00973 <span class="keywordtype">integer</span> i
  1038. <a name="l00974"></a>00974 <span class="keywordtype">double precision</span> weight(norder)
  1039. <a name="l00975"></a>00975 <span class="keywordtype">double precision</span> xtab(norder)
  1040. <a name="l00976"></a>00976 <span class="comment">!</span>
  1041. <a name="l00977"></a>00977 <span class="keyword">do</span> i = 1, norder
  1042. <a name="l00978"></a>00978 angle = dble ( i ) * d_pi ( ) / dble ( norder + 1 )
  1043. <a name="l00979"></a>00979 xtab(i) = cos ( angle )
  1044. <a name="l00980"></a>00980 weight(i) = d_pi ( ) * ( sin ( angle ) )**2 / dble ( norder + 1 )
  1045. <a name="l00981"></a>00981 <span class="keyword">end do</span>
  1046. <a name="l00982"></a>00982
  1047. <a name="l00983"></a>00983 return
  1048. <a name="l00984"></a>00984 <span class="keyword">end</span>
  1049. <a name="l00985"></a><a class="code" href="quadrule_8f90.html#ab73cf601dce50b6fc79d82a6ee87bb67">00985</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#ab73cf601dce50b6fc79d82a6ee87bb67">d_swap</a> ( x, y )
  1050. <a name="l00986"></a>00986 <span class="comment">!</span>
  1051. <a name="l00987"></a>00987 <span class="comment">!*******************************************************************************</span>
  1052. <a name="l00988"></a>00988 <span class="comment">!</span>
  1053. <a name="l00989"></a>00989 <span class="comment">!! D_SWAP switches two double precision values.</span>
  1054. <a name="l00990"></a>00990 <span class="comment">!</span>
  1055. <a name="l00991"></a>00991 <span class="comment">!</span>
  1056. <a name="l00992"></a>00992 <span class="comment">! Modified:</span>
  1057. <a name="l00993"></a>00993 <span class="comment">!</span>
  1058. <a name="l00994"></a>00994 <span class="comment">! 01 May 2000</span>
  1059. <a name="l00995"></a>00995 <span class="comment">!</span>
  1060. <a name="l00996"></a>00996 <span class="comment">! Author:</span>
  1061. <a name="l00997"></a>00997 <span class="comment">!</span>
  1062. <a name="l00998"></a>00998 <span class="comment">! John Burkardt</span>
  1063. <a name="l00999"></a>00999 <span class="comment">!</span>
  1064. <a name="l01000"></a>01000 <span class="comment">! Parameters:</span>
  1065. <a name="l01001"></a>01001 <span class="comment">!</span>
  1066. <a name="l01002"></a>01002 <span class="comment">! Input/output, double precision X, Y. On output, the values of X and</span>
  1067. <a name="l01003"></a>01003 <span class="comment">! Y have been interchanged.</span>
  1068. <a name="l01004"></a>01004 <span class="comment">!</span>
  1069. <a name="l01005"></a>01005 <span class="keyword">implicit none</span>
  1070. <a name="l01006"></a>01006 <span class="comment">!</span>
  1071. <a name="l01007"></a>01007 <span class="keywordtype">double precision</span> x
  1072. <a name="l01008"></a>01008 <span class="keywordtype">double precision</span> y
  1073. <a name="l01009"></a>01009 <span class="keywordtype">double precision</span> z
  1074. <a name="l01010"></a>01010 <span class="comment">!</span>
  1075. <a name="l01011"></a>01011 z = x
  1076. <a name="l01012"></a>01012 x = y
  1077. <a name="l01013"></a>01013 y = z
  1078. <a name="l01014"></a>01014
  1079. <a name="l01015"></a>01015 return
  1080. <a name="l01016"></a>01016 <span class="keyword">end</span>
  1081. <a name="l01017"></a><a class="code" href="quadrule_8f90.html#a1196e8a1c04167d129db7f177728d7fc">01017</a> <span class="keyword">function </span>d_pi ( )
  1082. <a name="l01018"></a>01018 <span class="comment">!</span>
  1083. <a name="l01019"></a>01019 <span class="comment">!*******************************************************************************</span>
  1084. <a name="l01020"></a>01020 <span class="comment">!</span>
  1085. <a name="l01021"></a>01021 <span class="comment">!! DPI returns the value of pi as a double precision quantity.</span>
  1086. <a name="l01022"></a>01022 <span class="comment">!</span>
  1087. <a name="l01023"></a>01023 <span class="comment">!</span>
  1088. <a name="l01024"></a>01024 <span class="comment">! Modified:</span>
  1089. <a name="l01025"></a>01025 <span class="comment">!</span>
  1090. <a name="l01026"></a>01026 <span class="comment">! 28 April 2000</span>
  1091. <a name="l01027"></a>01027 <span class="comment">!</span>
  1092. <a name="l01028"></a>01028 <span class="comment">! Author:</span>
  1093. <a name="l01029"></a>01029 <span class="comment">!</span>
  1094. <a name="l01030"></a>01030 <span class="comment">! John Burkardt</span>
  1095. <a name="l01031"></a>01031 <span class="comment">!</span>
  1096. <a name="l01032"></a>01032 <span class="comment">! Parameters:</span>
  1097. <a name="l01033"></a>01033 <span class="comment">!</span>
  1098. <a name="l01034"></a>01034 <span class="comment">! Output, double precision D_PI, the value of pi.</span>
  1099. <a name="l01035"></a>01035 <span class="comment">!</span>
  1100. <a name="l01036"></a>01036 <span class="keyword">implicit none</span>
  1101. <a name="l01037"></a>01037 <span class="comment">!</span>
  1102. <a name="l01038"></a>01038 <span class="keywordtype">double precision</span> d_pi
  1103. <a name="l01039"></a>01039 <span class="comment">!</span>
  1104. <a name="l01040"></a>01040 d_pi = 3.14159265358979323846264338327950288419716939937510D+00
  1105. <a name="l01041"></a>01041
  1106. <a name="l01042"></a>01042 return
  1107. <a name="l01043"></a>01043 <span class="keyword">end</span>
  1108. <a name="l01044"></a><a class="code" href="quadrule_8f90.html#a7841cf442902dd98d08b6a4d89a9a7bf">01044</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a7841cf442902dd98d08b6a4d89a9a7bf">dvec_reverse</a> ( n, a )
  1109. <a name="l01045"></a>01045 <span class="comment">!</span>
  1110. <a name="l01046"></a>01046 <span class="comment">!*******************************************************************************</span>
  1111. <a name="l01047"></a>01047 <span class="comment">!</span>
  1112. <a name="l01048"></a>01048 <span class="comment">!! DVEC_REVERSE reverses the elements of a double precision vector.</span>
  1113. <a name="l01049"></a>01049 <span class="comment">!</span>
  1114. <a name="l01050"></a>01050 <span class="comment">!</span>
  1115. <a name="l01051"></a>01051 <span class="comment">! Example:</span>
  1116. <a name="l01052"></a>01052 <span class="comment">!</span>
  1117. <a name="l01053"></a>01053 <span class="comment">! Input:</span>
  1118. <a name="l01054"></a>01054 <span class="comment">!</span>
  1119. <a name="l01055"></a>01055 <span class="comment">! N = 5, A = ( 11.0, 12.0, 13.0, 14.0, 15.0D+00 )</span>
  1120. <a name="l01056"></a>01056 <span class="comment">!</span>
  1121. <a name="l01057"></a>01057 <span class="comment">! Output:</span>
  1122. <a name="l01058"></a>01058 <span class="comment">!</span>
  1123. <a name="l01059"></a>01059 <span class="comment">! A = ( 15.0, 14.0, 13.0, 12.0, 11.0D+00 )</span>
  1124. <a name="l01060"></a>01060 <span class="comment">!</span>
  1125. <a name="l01061"></a>01061 <span class="comment">! Modified:</span>
  1126. <a name="l01062"></a>01062 <span class="comment">!</span>
  1127. <a name="l01063"></a>01063 <span class="comment">! 06 October 1998</span>
  1128. <a name="l01064"></a>01064 <span class="comment">!</span>
  1129. <a name="l01065"></a>01065 <span class="comment">! Author:</span>
  1130. <a name="l01066"></a>01066 <span class="comment">!</span>
  1131. <a name="l01067"></a>01067 <span class="comment">! John Burkardt</span>
  1132. <a name="l01068"></a>01068 <span class="comment">!</span>
  1133. <a name="l01069"></a>01069 <span class="comment">! Parameters:</span>
  1134. <a name="l01070"></a>01070 <span class="comment">!</span>
  1135. <a name="l01071"></a>01071 <span class="comment">! Input, integer N, the number of entries in the array.</span>
  1136. <a name="l01072"></a>01072 <span class="comment">!</span>
  1137. <a name="l01073"></a>01073 <span class="comment">! Input/output, double precision A(N), the array to be reversed.</span>
  1138. <a name="l01074"></a>01074 <span class="comment">!</span>
  1139. <a name="l01075"></a>01075 <span class="keyword">implicit none</span>
  1140. <a name="l01076"></a>01076 <span class="comment">!</span>
  1141. <a name="l01077"></a>01077 <span class="keywordtype">integer</span> n
  1142. <a name="l01078"></a>01078 <span class="comment">!</span>
  1143. <a name="l01079"></a>01079 <span class="keywordtype">double precision</span> a(n)
  1144. <a name="l01080"></a>01080 <span class="keywordtype">integer</span> i
  1145. <a name="l01081"></a>01081 <span class="comment">!</span>
  1146. <a name="l01082"></a>01082 <span class="keyword">do</span> i = 1, n/2
  1147. <a name="l01083"></a>01083 call <a class="code" href="quadrule_8f90.html#ab73cf601dce50b6fc79d82a6ee87bb67">d_swap </a>( a(i), a(n+1-i) )
  1148. <a name="l01084"></a>01084 <span class="keyword">end do</span>
  1149. <a name="l01085"></a>01085
  1150. <a name="l01086"></a>01086 return
  1151. <a name="l01087"></a>01087 <span class="keyword">end</span>
  1152. <a name="l01088"></a><a class="code" href="quadrule_8f90.html#a688af4295664e9e84424169e79729a11">01088</a> <span class="keyword">function </span>gamma ( x )
  1153. <a name="l01089"></a>01089 <span class="comment">!</span>
  1154. <a name="l01090"></a>01090 <span class="comment">!*******************************************************************************</span>
  1155. <a name="l01091"></a>01091 <span class="comment">!</span>
  1156. <a name="l01092"></a>01092 <span class="comment">!! GAMMA computes the gamma function using Hastings&#39;s approximation.</span>
  1157. <a name="l01093"></a>01093 <span class="comment">!</span>
  1158. <a name="l01094"></a>01094 <span class="comment">!</span>
  1159. <a name="l01095"></a>01095 <span class="comment">! Reference:</span>
  1160. <a name="l01096"></a>01096 <span class="comment">!</span>
  1161. <a name="l01097"></a>01097 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  1162. <a name="l01098"></a>01098 <span class="comment">! Gaussian Quadrature Formulas,</span>
  1163. <a name="l01099"></a>01099 <span class="comment">! Prentice Hall, 1966.</span>
  1164. <a name="l01100"></a>01100 <span class="comment">!</span>
  1165. <a name="l01101"></a>01101 <span class="comment">! Modified:</span>
  1166. <a name="l01102"></a>01102 <span class="comment">!</span>
  1167. <a name="l01103"></a>01103 <span class="comment">! 19 September 1998</span>
  1168. <a name="l01104"></a>01104 <span class="comment">!</span>
  1169. <a name="l01105"></a>01105 <span class="comment">! Parameters:</span>
  1170. <a name="l01106"></a>01106 <span class="comment">!</span>
  1171. <a name="l01107"></a>01107 <span class="comment">! Input, double precision X, the argument at which the gamma function</span>
  1172. <a name="l01108"></a>01108 <span class="comment">! is to be evaluated. X must be greater than 0, and less than 70.</span>
  1173. <a name="l01109"></a>01109 <span class="comment">!</span>
  1174. <a name="l01110"></a>01110 <span class="comment">! Output, double precision GAMMA, the gamma function at X.</span>
  1175. <a name="l01111"></a>01111 <span class="comment">!</span>
  1176. <a name="l01112"></a>01112 <span class="keyword">implicit none</span>
  1177. <a name="l01113"></a>01113 <span class="comment">!</span>
  1178. <a name="l01114"></a>01114 <span class="keywordtype">double precision</span> gam
  1179. <a name="l01115"></a>01115 <span class="keywordtype">double precision</span> gamma
  1180. <a name="l01116"></a>01116 <span class="keywordtype">double precision</span> x
  1181. <a name="l01117"></a>01117 <span class="keywordtype">double precision</span> y
  1182. <a name="l01118"></a>01118 <span class="keywordtype">double precision</span> z
  1183. <a name="l01119"></a>01119 <span class="keywordtype">double precision</span> za
  1184. <a name="l01120"></a>01120 <span class="comment">!</span>
  1185. <a name="l01121"></a>01121 gam ( y ) = ((((((( &amp;
  1186. <a name="l01122"></a>01122 0.035868343D+00 * y &amp;
  1187. <a name="l01123"></a>01123 - 0.193527818D+00 ) * y &amp;
  1188. <a name="l01124"></a>01124 + 0.482199394D+00 ) * y &amp;
  1189. <a name="l01125"></a>01125 - 0.756704078D+00 ) * y &amp;
  1190. <a name="l01126"></a>01126 + 0.918206857D+00 ) * y &amp;
  1191. <a name="l01127"></a>01127 - 0.897056937D+00 ) * y &amp;
  1192. <a name="l01128"></a>01128 + 0.988205891D+00 ) * y &amp;
  1193. <a name="l01129"></a>01129 - 0.577191652D+00 ) * y + 1.0D+00
  1194. <a name="l01130"></a>01130
  1195. <a name="l01131"></a>01131 <span class="keyword">if</span> ( x &lt;= 0.0D+00 ) <span class="keyword">then</span>
  1196. <a name="l01132"></a>01132 gamma = 0.0D+00
  1197. <a name="l01133"></a>01133 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  1198. <a name="l01134"></a>01134 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;GAMMA - Fatal error!&#39;</span>
  1199. <a name="l01135"></a>01135 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; Input argument X &lt;= 0.&#39;</span>
  1200. <a name="l01136"></a>01136 stop
  1201. <a name="l01137"></a>01137 <span class="keyword">end if</span>
  1202. <a name="l01138"></a>01138
  1203. <a name="l01139"></a>01139 <span class="keyword">if</span> ( x &gt;= 70.0D+00 ) <span class="keyword">then</span>
  1204. <a name="l01140"></a>01140 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  1205. <a name="l01141"></a>01141 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;GAMMA - Fatal error!&#39;</span>
  1206. <a name="l01142"></a>01142 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; Input argument X &gt;= 70.&#39;</span>
  1207. <a name="l01143"></a>01143 stop
  1208. <a name="l01144"></a>01144 <span class="keyword">end if</span>
  1209. <a name="l01145"></a>01145
  1210. <a name="l01146"></a>01146 <span class="keyword">if</span> ( x == 1.0D+00 ) <span class="keyword">then</span>
  1211. <a name="l01147"></a>01147 gamma = 1.0D+00
  1212. <a name="l01148"></a>01148 return
  1213. <a name="l01149"></a>01149 <span class="keyword">end if</span>
  1214. <a name="l01150"></a>01150
  1215. <a name="l01151"></a>01151 <span class="keyword">if</span> ( x &lt;= 1.0D+00 ) <span class="keyword">then</span>
  1216. <a name="l01152"></a>01152 gamma = gam ( x ) / x
  1217. <a name="l01153"></a>01153 return
  1218. <a name="l01154"></a>01154 <span class="keyword">end if</span>
  1219. <a name="l01155"></a>01155
  1220. <a name="l01156"></a>01156 z = x
  1221. <a name="l01157"></a>01157
  1222. <a name="l01158"></a>01158 za = 1.0D+00
  1223. <a name="l01159"></a>01159
  1224. <a name="l01160"></a>01160 <span class="keyword">do</span>
  1225. <a name="l01161"></a>01161
  1226. <a name="l01162"></a>01162 z = z - 1.0D+00
  1227. <a name="l01163"></a>01163
  1228. <a name="l01164"></a>01164 <span class="keyword">if</span> ( z &lt; 1.0D+00 ) <span class="keyword">then</span>
  1229. <a name="l01165"></a>01165 gamma = za * gam ( z )
  1230. <a name="l01166"></a>01166 exit
  1231. <a name="l01167"></a>01167 <span class="keyword">else</span> <span class="keyword">if</span> ( z == 1.0D+00 ) <span class="keyword">then</span>
  1232. <a name="l01168"></a>01168 gamma = za
  1233. <a name="l01169"></a>01169 exit
  1234. <a name="l01170"></a>01170 <span class="keyword">end if</span>
  1235. <a name="l01171"></a>01171
  1236. <a name="l01172"></a>01172 za = za * z
  1237. <a name="l01173"></a>01173
  1238. <a name="l01174"></a>01174 <span class="keyword">end do</span>
  1239. <a name="l01175"></a>01175
  1240. <a name="l01176"></a>01176 return
  1241. <a name="l01177"></a>01177 <span class="keyword">end</span>
  1242. <a name="l01178"></a><a class="code" href="quadrule_8f90.html#a85e94b692189c91a3f77d8f4c210f70f">01178</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a85e94b692189c91a3f77d8f4c210f70f">hermite_com</a> ( norder, xtab, weight )
  1243. <a name="l01179"></a>01179 <span class="comment">!</span>
  1244. <a name="l01180"></a>01180 <span class="comment">!*******************************************************************************</span>
  1245. <a name="l01181"></a>01181 <span class="comment">!</span>
  1246. <a name="l01182"></a>01182 <span class="comment">!! HERMITE_COM computes the abscissa and weights for Gauss-Hermite quadrature.</span>
  1247. <a name="l01183"></a>01183 <span class="comment">!</span>
  1248. <a name="l01184"></a>01184 <span class="comment">!</span>
  1249. <a name="l01185"></a>01185 <span class="comment">! Discussion:</span>
  1250. <a name="l01186"></a>01186 <span class="comment">!</span>
  1251. <a name="l01187"></a>01187 <span class="comment">! The abscissas are the zeros of the N-th order Hermite polynomial.</span>
  1252. <a name="l01188"></a>01188 <span class="comment">!</span>
  1253. <a name="l01189"></a>01189 <span class="comment">! Integration interval:</span>
  1254. <a name="l01190"></a>01190 <span class="comment">!</span>
  1255. <a name="l01191"></a>01191 <span class="comment">! ( -Infinity, +Infinity )</span>
  1256. <a name="l01192"></a>01192 <span class="comment">!</span>
  1257. <a name="l01193"></a>01193 <span class="comment">! Weight function:</span>
  1258. <a name="l01194"></a>01194 <span class="comment">!</span>
  1259. <a name="l01195"></a>01195 <span class="comment">! EXP ( - X**2 )</span>
  1260. <a name="l01196"></a>01196 <span class="comment">!</span>
  1261. <a name="l01197"></a>01197 <span class="comment">! Integral to approximate:</span>
  1262. <a name="l01198"></a>01198 <span class="comment">!</span>
  1263. <a name="l01199"></a>01199 <span class="comment">! Integral ( -INFINITY &lt; X &lt; +INFINITY ) EXP ( - X**2 ) * F(X) dX</span>
  1264. <a name="l01200"></a>01200 <span class="comment">!</span>
  1265. <a name="l01201"></a>01201 <span class="comment">! Approximate integral:</span>
  1266. <a name="l01202"></a>01202 <span class="comment">!</span>
  1267. <a name="l01203"></a>01203 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  1268. <a name="l01204"></a>01204 <span class="comment">!</span>
  1269. <a name="l01205"></a>01205 <span class="comment">! Reference:</span>
  1270. <a name="l01206"></a>01206 <span class="comment">!</span>
  1271. <a name="l01207"></a>01207 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  1272. <a name="l01208"></a>01208 <span class="comment">! Gaussian Quadrature Formulas,</span>
  1273. <a name="l01209"></a>01209 <span class="comment">! Prentice Hall, 1966.</span>
  1274. <a name="l01210"></a>01210 <span class="comment">!</span>
  1275. <a name="l01211"></a>01211 <span class="comment">! Modified:</span>
  1276. <a name="l01212"></a>01212 <span class="comment">!</span>
  1277. <a name="l01213"></a>01213 <span class="comment">! 19 September 1998</span>
  1278. <a name="l01214"></a>01214 <span class="comment">!</span>
  1279. <a name="l01215"></a>01215 <span class="comment">! Author:</span>
  1280. <a name="l01216"></a>01216 <span class="comment">!</span>
  1281. <a name="l01217"></a>01217 <span class="comment">! John Burkardt</span>
  1282. <a name="l01218"></a>01218 <span class="comment">!</span>
  1283. <a name="l01219"></a>01219 <span class="comment">! Parameters:</span>
  1284. <a name="l01220"></a>01220 <span class="comment">!</span>
  1285. <a name="l01221"></a>01221 <span class="comment">! Input, integer NORDER, the order of the formula to be computed.</span>
  1286. <a name="l01222"></a>01222 <span class="comment">!</span>
  1287. <a name="l01223"></a>01223 <span class="comment">! Output, double precision XTAB(NORDER), the Gauss-Hermite abscissas.</span>
  1288. <a name="l01224"></a>01224 <span class="comment">!</span>
  1289. <a name="l01225"></a>01225 <span class="comment">! Output, double precision WEIGHT(NORDER), the Gauss-Hermite weights.</span>
  1290. <a name="l01226"></a>01226 <span class="comment">!</span>
  1291. <a name="l01227"></a>01227 <span class="keyword">implicit none</span>
  1292. <a name="l01228"></a>01228 <span class="comment">!</span>
  1293. <a name="l01229"></a>01229 <span class="keywordtype">integer</span> norder
  1294. <a name="l01230"></a>01230 <span class="comment">!</span>
  1295. <a name="l01231"></a>01231 <span class="keywordtype">double precision</span> cc
  1296. <a name="l01232"></a>01232 <span class="keywordtype">double precision</span> dp2
  1297. <a name="l01233"></a>01233 <span class="keywordtype">double precision</span> gamma
  1298. <a name="l01234"></a>01234 <span class="keywordtype">integer</span> i
  1299. <a name="l01235"></a>01235 <span class="keywordtype">double precision</span> p1
  1300. <a name="l01236"></a>01236 <span class="keywordtype">double precision</span> s
  1301. <a name="l01237"></a>01237 <span class="keywordtype">double precision</span> temp
  1302. <a name="l01238"></a>01238 <span class="keywordtype">double precision</span> weight(norder)
  1303. <a name="l01239"></a>01239 <span class="keywordtype">double precision</span> x
  1304. <a name="l01240"></a>01240 <span class="keywordtype">double precision</span> xtab(norder)
  1305. <a name="l01241"></a>01241 <span class="comment">!</span>
  1306. <a name="l01242"></a>01242 cc = 1.7724538509D+00 * gamma ( dble ( norder ) ) / ( 2.0D+00**( norder - 1 ) )
  1307. <a name="l01243"></a>01243
  1308. <a name="l01244"></a>01244 s = ( 2.0D+00 * dble ( norder ) + 1.0D+00 )**( 1.0D+00 / 6.0D+00 )
  1309. <a name="l01245"></a>01245
  1310. <a name="l01246"></a>01246 <span class="keyword">do</span> i = 1, ( norder + 1 ) / 2
  1311. <a name="l01247"></a>01247
  1312. <a name="l01248"></a>01248 <span class="keyword">if</span> ( i == 1 ) <span class="keyword">then</span>
  1313. <a name="l01249"></a>01249
  1314. <a name="l01250"></a>01250 x = s**3 - 1.85575D+00 / s
  1315. <a name="l01251"></a>01251
  1316. <a name="l01252"></a>01252 <span class="keyword">else</span> <span class="keyword">if</span> ( i == 2 ) <span class="keyword">then</span>
  1317. <a name="l01253"></a>01253
  1318. <a name="l01254"></a>01254 x = x - 1.14D+00 * ( ( dble ( norder ) )**0.426D+00 ) / x
  1319. <a name="l01255"></a>01255
  1320. <a name="l01256"></a>01256 <span class="keyword">else</span> <span class="keyword">if</span> ( i == 3 ) <span class="keyword">then</span>
  1321. <a name="l01257"></a>01257
  1322. <a name="l01258"></a>01258 x = 1.86D+00 * x - 0.86D+00 * xtab(1)
  1323. <a name="l01259"></a>01259
  1324. <a name="l01260"></a>01260 <span class="keyword">else</span> <span class="keyword">if</span> ( i == 4 ) <span class="keyword">then</span>
  1325. <a name="l01261"></a>01261
  1326. <a name="l01262"></a>01262 x = 1.91D+00 * x - 0.91D+00 * xtab(2)
  1327. <a name="l01263"></a>01263
  1328. <a name="l01264"></a>01264 <span class="keyword">else</span>
  1329. <a name="l01265"></a>01265
  1330. <a name="l01266"></a>01266 x = 2.0D+00 * x - xtab(i-2)
  1331. <a name="l01267"></a>01267
  1332. <a name="l01268"></a>01268 <span class="keyword">end if</span>
  1333. <a name="l01269"></a>01269
  1334. <a name="l01270"></a>01270 call <a class="code" href="quadrule_8f90.html#ae9c37528989dee8bb6c51ff8a4626c05">hermite_root </a>( x, norder, dp2, p1 )
  1335. <a name="l01271"></a>01271
  1336. <a name="l01272"></a>01272 xtab(i) = x
  1337. <a name="l01273"></a>01273 weight(i) = ( cc / dp2 ) / p1
  1338. <a name="l01274"></a>01274
  1339. <a name="l01275"></a>01275 xtab(norder-i+1) = - x
  1340. <a name="l01276"></a>01276 weight(norder-i+1) = weight(i)
  1341. <a name="l01277"></a>01277
  1342. <a name="l01278"></a>01278 <span class="keyword">end do</span>
  1343. <a name="l01279"></a>01279 <span class="comment">!</span>
  1344. <a name="l01280"></a>01280 <span class="comment">! Reverse the order of the XTAB values.</span>
  1345. <a name="l01281"></a>01281 <span class="comment">!</span>
  1346. <a name="l01282"></a>01282 call <a class="code" href="quadrule_8f90.html#a7841cf442902dd98d08b6a4d89a9a7bf">dvec_reverse </a>( norder, xtab )
  1347. <a name="l01283"></a>01283
  1348. <a name="l01284"></a>01284 return
  1349. <a name="l01285"></a>01285 <span class="keyword">end</span>
  1350. <a name="l01286"></a><a class="code" href="quadrule_8f90.html#a837c192f4116548551a6c0b69465adbb">01286</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a837c192f4116548551a6c0b69465adbb">hermite_recur</a> ( p2, dp2, p1, x, norder )
  1351. <a name="l01287"></a>01287 <span class="comment">!</span>
  1352. <a name="l01288"></a>01288 <span class="comment">!*******************************************************************************</span>
  1353. <a name="l01289"></a>01289 <span class="comment">!</span>
  1354. <a name="l01290"></a>01290 <span class="comment">!! HERMITE_RECUR finds the value and derivative of a Hermite polynomial.</span>
  1355. <a name="l01291"></a>01291 <span class="comment">!</span>
  1356. <a name="l01292"></a>01292 <span class="comment">!</span>
  1357. <a name="l01293"></a>01293 <span class="comment">! Reference:</span>
  1358. <a name="l01294"></a>01294 <span class="comment">!</span>
  1359. <a name="l01295"></a>01295 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  1360. <a name="l01296"></a>01296 <span class="comment">! Gaussian Quadrature Formulas,</span>
  1361. <a name="l01297"></a>01297 <span class="comment">! Prentice Hall, 1966.</span>
  1362. <a name="l01298"></a>01298 <span class="comment">!</span>
  1363. <a name="l01299"></a>01299 <span class="comment">! Modified:</span>
  1364. <a name="l01300"></a>01300 <span class="comment">!</span>
  1365. <a name="l01301"></a>01301 <span class="comment">! 19 September 1998</span>
  1366. <a name="l01302"></a>01302 <span class="comment">!</span>
  1367. <a name="l01303"></a>01303 <span class="comment">! Parameters:</span>
  1368. <a name="l01304"></a>01304 <span class="comment">!</span>
  1369. <a name="l01305"></a>01305 <span class="comment">! Output, double precision P2, the value of H(NORDER)(X).</span>
  1370. <a name="l01306"></a>01306 <span class="comment">!</span>
  1371. <a name="l01307"></a>01307 <span class="comment">! Output, double precision DP2, the value of H&#39;(NORDER)(X).</span>
  1372. <a name="l01308"></a>01308 <span class="comment">!</span>
  1373. <a name="l01309"></a>01309 <span class="comment">! Output, double precision P1, the value of H(NORDER-1)(X).</span>
  1374. <a name="l01310"></a>01310 <span class="comment">!</span>
  1375. <a name="l01311"></a>01311 <span class="comment">! Input, double precision X, the point at which polynomials are evaluated.</span>
  1376. <a name="l01312"></a>01312 <span class="comment">!</span>
  1377. <a name="l01313"></a>01313 <span class="comment">! Input, integer NORDER, the order of the polynomial to be computed.</span>
  1378. <a name="l01314"></a>01314 <span class="comment">!</span>
  1379. <a name="l01315"></a>01315 <span class="keyword">implicit none</span>
  1380. <a name="l01316"></a>01316 <span class="comment">!</span>
  1381. <a name="l01317"></a>01317 <span class="keywordtype">integer</span> i
  1382. <a name="l01318"></a>01318 <span class="keywordtype">double precision</span> dp0
  1383. <a name="l01319"></a>01319 <span class="keywordtype">double precision</span> dp1
  1384. <a name="l01320"></a>01320 <span class="keywordtype">double precision</span> dp2
  1385. <a name="l01321"></a>01321 <span class="keywordtype">integer</span> norder
  1386. <a name="l01322"></a>01322 <span class="keywordtype">double precision</span> p0
  1387. <a name="l01323"></a>01323 <span class="keywordtype">double precision</span> p1
  1388. <a name="l01324"></a>01324 <span class="keywordtype">double precision</span> p2
  1389. <a name="l01325"></a>01325 <span class="keywordtype">double precision</span> x
  1390. <a name="l01326"></a>01326 <span class="comment">!</span>
  1391. <a name="l01327"></a>01327 p1 = 1.0D+00
  1392. <a name="l01328"></a>01328 dp1 = 0.0D+00
  1393. <a name="l01329"></a>01329
  1394. <a name="l01330"></a>01330 p2 = x
  1395. <a name="l01331"></a>01331 dp2 = 1.0D+00
  1396. <a name="l01332"></a>01332
  1397. <a name="l01333"></a>01333 <span class="keyword">do</span> i = 2, norder
  1398. <a name="l01334"></a>01334
  1399. <a name="l01335"></a>01335 p0 = p1
  1400. <a name="l01336"></a>01336 dp0 = dp1
  1401. <a name="l01337"></a>01337
  1402. <a name="l01338"></a>01338 p1 = p2
  1403. <a name="l01339"></a>01339 dp1 = dp2
  1404. <a name="l01340"></a>01340
  1405. <a name="l01341"></a>01341 p2 = x * p1 - 0.5D+00 * ( dble ( i ) - 1.0D+00 ) * p0
  1406. <a name="l01342"></a>01342 dp2 = x * dp1 + p1 - 0.5D+00 * ( dble ( i ) - 1.0D+00 ) * dp0
  1407. <a name="l01343"></a>01343
  1408. <a name="l01344"></a>01344 <span class="keyword">end do</span>
  1409. <a name="l01345"></a>01345
  1410. <a name="l01346"></a>01346 return
  1411. <a name="l01347"></a>01347 <span class="keyword">end</span>
  1412. <a name="l01348"></a><a class="code" href="quadrule_8f90.html#ae9c37528989dee8bb6c51ff8a4626c05">01348</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#ae9c37528989dee8bb6c51ff8a4626c05">hermite_root</a> ( x, norder, dp2, p1 )
  1413. <a name="l01349"></a>01349 <span class="comment">!</span>
  1414. <a name="l01350"></a>01350 <span class="comment">!*******************************************************************************</span>
  1415. <a name="l01351"></a>01351 <span class="comment">!</span>
  1416. <a name="l01352"></a>01352 <span class="comment">!! HERMITE_ROOT improves an approximate root of a Hermite polynomial.</span>
  1417. <a name="l01353"></a>01353 <span class="comment">!</span>
  1418. <a name="l01354"></a>01354 <span class="comment">!</span>
  1419. <a name="l01355"></a>01355 <span class="comment">! Reference:</span>
  1420. <a name="l01356"></a>01356 <span class="comment">!</span>
  1421. <a name="l01357"></a>01357 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  1422. <a name="l01358"></a>01358 <span class="comment">! Gaussian Quadrature Formulas,</span>
  1423. <a name="l01359"></a>01359 <span class="comment">! Prentice Hall, 1966.</span>
  1424. <a name="l01360"></a>01360 <span class="comment">!</span>
  1425. <a name="l01361"></a>01361 <span class="comment">! Modified:</span>
  1426. <a name="l01362"></a>01362 <span class="comment">!</span>
  1427. <a name="l01363"></a>01363 <span class="comment">! 19 September 1998</span>
  1428. <a name="l01364"></a>01364 <span class="comment">!</span>
  1429. <a name="l01365"></a>01365 <span class="comment">! Parameters:</span>
  1430. <a name="l01366"></a>01366 <span class="comment">!</span>
  1431. <a name="l01367"></a>01367 <span class="comment">! Input/output, double precision X, the approximate root, which</span>
  1432. <a name="l01368"></a>01368 <span class="comment">! should be improved on output.</span>
  1433. <a name="l01369"></a>01369 <span class="comment">!</span>
  1434. <a name="l01370"></a>01370 <span class="comment">! Input, integer NORDER, the order of the Hermite polynomial.</span>
  1435. <a name="l01371"></a>01371 <span class="comment">!</span>
  1436. <a name="l01372"></a>01372 <span class="comment">! Output, double precision DP2, the value of H&#39;(NORDER)(X).</span>
  1437. <a name="l01373"></a>01373 <span class="comment">!</span>
  1438. <a name="l01374"></a>01374 <span class="comment">! Output, double precision P1, the value of H(NORDER-1)(X).</span>
  1439. <a name="l01375"></a>01375 <span class="comment">!</span>
  1440. <a name="l01376"></a>01376 <span class="keyword">implicit none</span>
  1441. <a name="l01377"></a>01377 <span class="comment">!</span>
  1442. <a name="l01378"></a>01378 <span class="keywordtype">double precision</span> d
  1443. <a name="l01379"></a>01379 <span class="keywordtype">double precision</span> dp2
  1444. <a name="l01380"></a>01380 <span class="keywordtype">double precision</span>, <span class="keywordtype">parameter</span> :: eps = 1.0D-12
  1445. <a name="l01381"></a>01381 <span class="keywordtype">integer</span> i
  1446. <a name="l01382"></a>01382 <span class="keywordtype">integer</span>, <span class="keywordtype">parameter</span> :: maxstep = 10
  1447. <a name="l01383"></a>01383 <span class="keywordtype">integer</span> norder
  1448. <a name="l01384"></a>01384 <span class="keywordtype">double precision</span> p1
  1449. <a name="l01385"></a>01385 <span class="keywordtype">double precision</span> p2
  1450. <a name="l01386"></a>01386 <span class="keywordtype">double precision</span> x
  1451. <a name="l01387"></a>01387 <span class="comment">!</span>
  1452. <a name="l01388"></a>01388 <span class="keyword">do</span> i = 1, maxstep
  1453. <a name="l01389"></a>01389
  1454. <a name="l01390"></a>01390 call <a class="code" href="quadrule_8f90.html#a837c192f4116548551a6c0b69465adbb">hermite_recur </a>( p2, dp2, p1, x, norder )
  1455. <a name="l01391"></a>01391
  1456. <a name="l01392"></a>01392 d = p2 / dp2
  1457. <a name="l01393"></a>01393 x = x - d
  1458. <a name="l01394"></a>01394
  1459. <a name="l01395"></a>01395 <span class="keyword">if</span> ( abs ( d ) &lt;= eps * ( abs ( x ) + 1.0D+00 ) ) <span class="keyword">then</span>
  1460. <a name="l01396"></a>01396 return
  1461. <a name="l01397"></a>01397 <span class="keyword">end if</span>
  1462. <a name="l01398"></a>01398
  1463. <a name="l01399"></a>01399 <span class="keyword">end do</span>
  1464. <a name="l01400"></a>01400
  1465. <a name="l01401"></a>01401 return
  1466. <a name="l01402"></a>01402 <span class="keyword">end</span>
  1467. <a name="l01403"></a><a class="code" href="quadrule_8f90.html#aef932141d0758eb99a63c743dbb0e893">01403</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#aef932141d0758eb99a63c743dbb0e893">hermite_set</a> ( norder, xtab, weight )
  1468. <a name="l01404"></a>01404 <span class="comment">!</span>
  1469. <a name="l01405"></a>01405 <span class="comment">!*******************************************************************************</span>
  1470. <a name="l01406"></a>01406 <span class="comment">!</span>
  1471. <a name="l01407"></a>01407 <span class="comment">!! HERMITE_SET sets abscissas and weights for Hermite quadrature.</span>
  1472. <a name="l01408"></a>01408 <span class="comment">!</span>
  1473. <a name="l01409"></a>01409 <span class="comment">!</span>
  1474. <a name="l01410"></a>01410 <span class="comment">! Integration interval:</span>
  1475. <a name="l01411"></a>01411 <span class="comment">!</span>
  1476. <a name="l01412"></a>01412 <span class="comment">! ( -Infinity, +Infinity )</span>
  1477. <a name="l01413"></a>01413 <span class="comment">!</span>
  1478. <a name="l01414"></a>01414 <span class="comment">! Weight function:</span>
  1479. <a name="l01415"></a>01415 <span class="comment">!</span>
  1480. <a name="l01416"></a>01416 <span class="comment">! EXP ( - X**2 )</span>
  1481. <a name="l01417"></a>01417 <span class="comment">!</span>
  1482. <a name="l01418"></a>01418 <span class="comment">! Integral to approximate:</span>
  1483. <a name="l01419"></a>01419 <span class="comment">!</span>
  1484. <a name="l01420"></a>01420 <span class="comment">! Integral ( -INFINITY &lt; X &lt; +INFINITY ) EXP ( - X**2 ) * F(X) dX</span>
  1485. <a name="l01421"></a>01421 <span class="comment">!</span>
  1486. <a name="l01422"></a>01422 <span class="comment">! Approximate integral:</span>
  1487. <a name="l01423"></a>01423 <span class="comment">!</span>
  1488. <a name="l01424"></a>01424 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) ).</span>
  1489. <a name="l01425"></a>01425 <span class="comment">!</span>
  1490. <a name="l01426"></a>01426 <span class="comment">! Reference:</span>
  1491. <a name="l01427"></a>01427 <span class="comment">!</span>
  1492. <a name="l01428"></a>01428 <span class="comment">! Abramowitz and Stegun,</span>
  1493. <a name="l01429"></a>01429 <span class="comment">! Handbook of Mathematical Functions,</span>
  1494. <a name="l01430"></a>01430 <span class="comment">! National Bureau of Standards, 1964.</span>
  1495. <a name="l01431"></a>01431 <span class="comment">!</span>
  1496. <a name="l01432"></a>01432 <span class="comment">! Vladimir Krylov,</span>
  1497. <a name="l01433"></a>01433 <span class="comment">! Approximate Calculation of Integrals,</span>
  1498. <a name="l01434"></a>01434 <span class="comment">! MacMillan, 1962.</span>
  1499. <a name="l01435"></a>01435 <span class="comment">!</span>
  1500. <a name="l01436"></a>01436 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  1501. <a name="l01437"></a>01437 <span class="comment">! Gaussian Quadrature Formulas,</span>
  1502. <a name="l01438"></a>01438 <span class="comment">! Prentice Hall, 1966.</span>
  1503. <a name="l01439"></a>01439 <span class="comment">!</span>
  1504. <a name="l01440"></a>01440 <span class="comment">! Daniel Zwillinger, editor,</span>
  1505. <a name="l01441"></a>01441 <span class="comment">! Standard Mathematical Tables and Formulae,</span>
  1506. <a name="l01442"></a>01442 <span class="comment">! 30th Edition,</span>
  1507. <a name="l01443"></a>01443 <span class="comment">! CRC Press, 1996.</span>
  1508. <a name="l01444"></a>01444 <span class="comment">!</span>
  1509. <a name="l01445"></a>01445 <span class="comment">! Modified:</span>
  1510. <a name="l01446"></a>01446 <span class="comment">!</span>
  1511. <a name="l01447"></a>01447 <span class="comment">! 06 December 2000</span>
  1512. <a name="l01448"></a>01448 <span class="comment">!</span>
  1513. <a name="l01449"></a>01449 <span class="comment">! Author:</span>
  1514. <a name="l01450"></a>01450 <span class="comment">!</span>
  1515. <a name="l01451"></a>01451 <span class="comment">! John Burkardt</span>
  1516. <a name="l01452"></a>01452 <span class="comment">!</span>
  1517. <a name="l01453"></a>01453 <span class="comment">! Parameters:</span>
  1518. <a name="l01454"></a>01454 <span class="comment">!</span>
  1519. <a name="l01455"></a>01455 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  1520. <a name="l01456"></a>01456 <span class="comment">! NORDER must be between 1 and 20, or one of the values</span>
  1521. <a name="l01457"></a>01457 <span class="comment">! 30, 32, 40, 50, 60 or 64.</span>
  1522. <a name="l01458"></a>01458 <span class="comment">!</span>
  1523. <a name="l01459"></a>01459 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule,</span>
  1524. <a name="l01460"></a>01460 <span class="comment">! which are symmetrically placed around 0.</span>
  1525. <a name="l01461"></a>01461 <span class="comment">!</span>
  1526. <a name="l01462"></a>01462 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  1527. <a name="l01463"></a>01463 <span class="comment">! The weights are positive and symmetric, and should sum</span>
  1528. <a name="l01464"></a>01464 <span class="comment">! to SQRT(PI).</span>
  1529. <a name="l01465"></a>01465 <span class="comment">!</span>
  1530. <a name="l01466"></a>01466 <span class="keyword">implicit none</span>
  1531. <a name="l01467"></a>01467 <span class="comment">!</span>
  1532. <a name="l01468"></a>01468 <span class="keywordtype">integer</span> norder
  1533. <a name="l01469"></a>01469 <span class="comment">!</span>
  1534. <a name="l01470"></a>01470 <span class="keywordtype">double precision</span> d_pi
  1535. <a name="l01471"></a>01471 <span class="keywordtype">double precision</span> xtab(norder)
  1536. <a name="l01472"></a>01472 <span class="keywordtype">double precision</span> weight(norder)
  1537. <a name="l01473"></a>01473 <span class="comment">!</span>
  1538. <a name="l01474"></a>01474 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  1539. <a name="l01475"></a>01475
  1540. <a name="l01476"></a>01476 xtab(1) = 0.0D+00
  1541. <a name="l01477"></a>01477
  1542. <a name="l01478"></a>01478 weight(1) = sqrt ( d_pi ( ) )
  1543. <a name="l01479"></a>01479
  1544. <a name="l01480"></a>01480 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 )<span class="keyword">then</span>
  1545. <a name="l01481"></a>01481
  1546. <a name="l01482"></a>01482 xtab(1) = - 0.707106781186547524400844362105D+00
  1547. <a name="l01483"></a>01483 xtab(2) = 0.707106781186547524400844362105D+00
  1548. <a name="l01484"></a>01484
  1549. <a name="l01485"></a>01485 weight(1) = 0.886226925452758013649083741671D+00
  1550. <a name="l01486"></a>01486 weight(2) = 0.886226925452758013649083741671D+00
  1551. <a name="l01487"></a>01487
  1552. <a name="l01488"></a>01488 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  1553. <a name="l01489"></a>01489
  1554. <a name="l01490"></a>01490 xtab(1) = - 0.122474487139158904909864203735D+01
  1555. <a name="l01491"></a>01491 xtab(2) = 0.0D+00
  1556. <a name="l01492"></a>01492 xtab(3) = 0.122474487139158904909864203735D+01
  1557. <a name="l01493"></a>01493
  1558. <a name="l01494"></a>01494 weight(1) = 0.295408975150919337883027913890D+00
  1559. <a name="l01495"></a>01495 weight(2) = 0.118163590060367735153211165556D+01
  1560. <a name="l01496"></a>01496 weight(3) = 0.295408975150919337883027913890D+00
  1561. <a name="l01497"></a>01497
  1562. <a name="l01498"></a>01498 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  1563. <a name="l01499"></a>01499
  1564. <a name="l01500"></a>01500 xtab(1) = - 0.165068012388578455588334111112D+01
  1565. <a name="l01501"></a>01501 xtab(2) = - 0.524647623275290317884060253835D+00
  1566. <a name="l01502"></a>01502 xtab(3) = 0.524647623275290317884060253835D+00
  1567. <a name="l01503"></a>01503 xtab(4) = 0.165068012388578455588334111112D+01
  1568. <a name="l01504"></a>01504
  1569. <a name="l01505"></a>01505 weight(1) = 0.813128354472451771430345571899D-01
  1570. <a name="l01506"></a>01506 weight(2) = 0.804914090005512836506049184481D+00
  1571. <a name="l01507"></a>01507 weight(3) = 0.804914090005512836506049184481D+00
  1572. <a name="l01508"></a>01508 weight(4) = 0.813128354472451771430345571899D-01
  1573. <a name="l01509"></a>01509
  1574. <a name="l01510"></a>01510 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  1575. <a name="l01511"></a>01511
  1576. <a name="l01512"></a>01512 xtab(1) = - 0.202018287045608563292872408814D+01
  1577. <a name="l01513"></a>01513 xtab(2) = - 0.958572464613818507112770593893D+00
  1578. <a name="l01514"></a>01514 xtab(3) = 0.0D+00
  1579. <a name="l01515"></a>01515 xtab(4) = 0.958572464613818507112770593893D+00
  1580. <a name="l01516"></a>01516 xtab(5) = 0.202018287045608563292872408814D+01
  1581. <a name="l01517"></a>01517
  1582. <a name="l01518"></a>01518 weight(1) = 0.199532420590459132077434585942D-01
  1583. <a name="l01519"></a>01519 weight(2) = 0.393619323152241159828495620852D+00
  1584. <a name="l01520"></a>01520 weight(3) = 0.945308720482941881225689324449D+00
  1585. <a name="l01521"></a>01521 weight(4) = 0.393619323152241159828495620852D+00
  1586. <a name="l01522"></a>01522 weight(5) = 0.199532420590459132077434585942D-01
  1587. <a name="l01523"></a>01523
  1588. <a name="l01524"></a>01524 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  1589. <a name="l01525"></a>01525
  1590. <a name="l01526"></a>01526 xtab(1) = - 0.235060497367449222283392198706D+01
  1591. <a name="l01527"></a>01527 xtab(2) = - 0.133584907401369694971489528297D+01
  1592. <a name="l01528"></a>01528 xtab(3) = - 0.436077411927616508679215948251D+00
  1593. <a name="l01529"></a>01529 xtab(4) = 0.436077411927616508679215948251D+00
  1594. <a name="l01530"></a>01530 xtab(5) = 0.133584907401369694971489528297D+01
  1595. <a name="l01531"></a>01531 xtab(6) = 0.235060497367449222283392198706D+01
  1596. <a name="l01532"></a>01532
  1597. <a name="l01533"></a>01533 weight(1) = 0.453000990550884564085747256463D-02
  1598. <a name="l01534"></a>01534 weight(2) = 0.157067320322856643916311563508D+00
  1599. <a name="l01535"></a>01535 weight(3) = 0.724629595224392524091914705598D+00
  1600. <a name="l01536"></a>01536 weight(4) = 0.724629595224392524091914705598D+00
  1601. <a name="l01537"></a>01537 weight(5) = 0.157067320322856643916311563508D+00
  1602. <a name="l01538"></a>01538 weight(6) = 0.453000990550884564085747256463D-02
  1603. <a name="l01539"></a>01539
  1604. <a name="l01540"></a>01540 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  1605. <a name="l01541"></a>01541
  1606. <a name="l01542"></a>01542 xtab(1) = - 0.265196135683523349244708200652D+01
  1607. <a name="l01543"></a>01543 xtab(2) = - 0.167355162876747144503180139830D+01
  1608. <a name="l01544"></a>01544 xtab(3) = - 0.816287882858964663038710959027D+00
  1609. <a name="l01545"></a>01545 xtab(4) = 0.0D+00
  1610. <a name="l01546"></a>01546 xtab(5) = 0.816287882858964663038710959027D+00
  1611. <a name="l01547"></a>01547 xtab(6) = 0.167355162876747144503180139830D+01
  1612. <a name="l01548"></a>01548 xtab(7) = 0.265196135683523349244708200652D+01
  1613. <a name="l01549"></a>01549
  1614. <a name="l01550"></a>01550 weight(1) = 0.971781245099519154149424255939D-03
  1615. <a name="l01551"></a>01551 weight(2) = 0.545155828191270305921785688417D-01
  1616. <a name="l01552"></a>01552 weight(3) = 0.425607252610127800520317466666D+00
  1617. <a name="l01553"></a>01553 weight(4) = 0.810264617556807326764876563813D+00
  1618. <a name="l01554"></a>01554 weight(5) = 0.425607252610127800520317466666D+00
  1619. <a name="l01555"></a>01555 weight(6) = 0.545155828191270305921785688417D-01
  1620. <a name="l01556"></a>01556 weight(7) = 0.971781245099519154149424255939D-03
  1621. <a name="l01557"></a>01557
  1622. <a name="l01558"></a>01558 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  1623. <a name="l01559"></a>01559
  1624. <a name="l01560"></a>01560 xtab(1) = - 0.293063742025724401922350270524D+01
  1625. <a name="l01561"></a>01561 xtab(2) = - 0.198165675669584292585463063977D+01
  1626. <a name="l01562"></a>01562 xtab(3) = - 0.115719371244678019472076577906D+01
  1627. <a name="l01563"></a>01563 xtab(4) = - 0.381186990207322116854718885584D+00
  1628. <a name="l01564"></a>01564 xtab(5) = 0.381186990207322116854718885584D+00
  1629. <a name="l01565"></a>01565 xtab(6) = 0.115719371244678019472076577906D+01
  1630. <a name="l01566"></a>01566 xtab(7) = 0.198165675669584292585463063977D+01
  1631. <a name="l01567"></a>01567 xtab(8) = 0.293063742025724401922350270524D+01
  1632. <a name="l01568"></a>01568
  1633. <a name="l01569"></a>01569 weight(1) = 0.199604072211367619206090452544D-03
  1634. <a name="l01570"></a>01570 weight(2) = 0.170779830074134754562030564364D-01
  1635. <a name="l01571"></a>01571 weight(3) = 0.207802325814891879543258620286D+00
  1636. <a name="l01572"></a>01572 weight(4) = 0.661147012558241291030415974496D+00
  1637. <a name="l01573"></a>01573 weight(5) = 0.661147012558241291030415974496D+00
  1638. <a name="l01574"></a>01574 weight(6) = 0.207802325814891879543258620286D+00
  1639. <a name="l01575"></a>01575 weight(7) = 0.170779830074134754562030564364D-01
  1640. <a name="l01576"></a>01576 weight(8) = 0.199604072211367619206090452544D-03
  1641. <a name="l01577"></a>01577
  1642. <a name="l01578"></a>01578 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 9 ) <span class="keyword">then</span>
  1643. <a name="l01579"></a>01579
  1644. <a name="l01580"></a>01580 xtab(1) = - 0.319099320178152760723004779538D+01
  1645. <a name="l01581"></a>01581 xtab(2) = - 0.226658058453184311180209693284D+01
  1646. <a name="l01582"></a>01582 xtab(3) = - 0.146855328921666793166701573925D+01
  1647. <a name="l01583"></a>01583 xtab(4) = - 0.723551018752837573322639864579D+00
  1648. <a name="l01584"></a>01584 xtab(5) = 0.0D+00
  1649. <a name="l01585"></a>01585 xtab(6) = 0.723551018752837573322639864579D+00
  1650. <a name="l01586"></a>01586 xtab(7) = 0.146855328921666793166701573925D+01
  1651. <a name="l01587"></a>01587 xtab(8) = 0.226658058453184311180209693284D+01
  1652. <a name="l01588"></a>01588 xtab(9) = 0.319099320178152760723004779538D+01
  1653. <a name="l01589"></a>01589
  1654. <a name="l01590"></a>01590 weight(1) = 0.396069772632643819045862946425D-04
  1655. <a name="l01591"></a>01591 weight(2) = 0.494362427553694721722456597763D-02
  1656. <a name="l01592"></a>01592 weight(3) = 0.884745273943765732879751147476D-01
  1657. <a name="l01593"></a>01593 weight(4) = 0.432651559002555750199812112956D+00
  1658. <a name="l01594"></a>01594 weight(5) = 0.720235215606050957124334723389D+00
  1659. <a name="l01595"></a>01595 weight(6) = 0.432651559002555750199812112956D+00
  1660. <a name="l01596"></a>01596 weight(7) = 0.884745273943765732879751147476D-01
  1661. <a name="l01597"></a>01597 weight(8) = 0.494362427553694721722456597763D-02
  1662. <a name="l01598"></a>01598 weight(9) = 0.396069772632643819045862946425D-04
  1663. <a name="l01599"></a>01599
  1664. <a name="l01600"></a>01600 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 10 ) <span class="keyword">then</span>
  1665. <a name="l01601"></a>01601
  1666. <a name="l01602"></a>01602 xtab(1) = - 0.343615911883773760332672549432D+01
  1667. <a name="l01603"></a>01603 xtab(2) = - 0.253273167423278979640896079775D+01
  1668. <a name="l01604"></a>01604 xtab(3) = - 0.175668364929988177345140122011D+01
  1669. <a name="l01605"></a>01605 xtab(4) = - 0.103661082978951365417749191676D+01
  1670. <a name="l01606"></a>01606 xtab(5) = - 0.342901327223704608789165025557D+00
  1671. <a name="l01607"></a>01607 xtab(6) = 0.342901327223704608789165025557D+00
  1672. <a name="l01608"></a>01608 xtab(7) = 0.103661082978951365417749191676D+01
  1673. <a name="l01609"></a>01609 xtab(8) = 0.175668364929988177345140122011D+01
  1674. <a name="l01610"></a>01610 xtab(9) = 0.253273167423278979640896079775D+01
  1675. <a name="l01611"></a>01611 xtab(10) = 0.343615911883773760332672549432D+01
  1676. <a name="l01612"></a>01612
  1677. <a name="l01613"></a>01613 weight(1) = 0.764043285523262062915936785960D-05
  1678. <a name="l01614"></a>01614 weight(2) = 0.134364574678123269220156558585D-02
  1679. <a name="l01615"></a>01615 weight(3) = 0.338743944554810631361647312776D-01
  1680. <a name="l01616"></a>01616 weight(4) = 0.240138611082314686416523295006D+00
  1681. <a name="l01617"></a>01617 weight(5) = 0.610862633735325798783564990433D+00
  1682. <a name="l01618"></a>01618 weight(6) = 0.610862633735325798783564990433D+00
  1683. <a name="l01619"></a>01619 weight(7) = 0.240138611082314686416523295006D+00
  1684. <a name="l01620"></a>01620 weight(8) = 0.338743944554810631361647312776D-01
  1685. <a name="l01621"></a>01621 weight(9) = 0.134364574678123269220156558585D-02
  1686. <a name="l01622"></a>01622 weight(10) = 0.764043285523262062915936785960D-05
  1687. <a name="l01623"></a>01623
  1688. <a name="l01624"></a>01624 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 11 ) <span class="keyword">then</span>
  1689. <a name="l01625"></a>01625
  1690. <a name="l01626"></a>01626 xtab(1) = - 0.366847084655958251845837146485D+01
  1691. <a name="l01627"></a>01627 xtab(2) = - 0.278329009978165177083671870152D+01
  1692. <a name="l01628"></a>01628 xtab(3) = - 0.202594801582575533516591283121D+01
  1693. <a name="l01629"></a>01629 xtab(4) = - 0.132655708449493285594973473558D+01
  1694. <a name="l01630"></a>01630 xtab(5) = - 0.656809566882099765024611575383D+00
  1695. <a name="l01631"></a>01631 xtab(6) = 0.0D+00
  1696. <a name="l01632"></a>01632 xtab(7) = 0.656809566882099765024611575383D+00
  1697. <a name="l01633"></a>01633 xtab(8) = 0.132655708449493285594973473558D+01
  1698. <a name="l01634"></a>01634 xtab(9) = 0.202594801582575533516591283121D+01
  1699. <a name="l01635"></a>01635 xtab(10) = 0.278329009978165177083671870152D+01
  1700. <a name="l01636"></a>01636 xtab(11) = 0.366847084655958251845837146485D+01
  1701. <a name="l01637"></a>01637
  1702. <a name="l01638"></a>01638 weight(1) = 0.143956039371425822033088366032D-05
  1703. <a name="l01639"></a>01639 weight(2) = 0.346819466323345510643413772940D-03
  1704. <a name="l01640"></a>01640 weight(3) = 0.119113954449115324503874202916D-01
  1705. <a name="l01641"></a>01641 weight(4) = 0.117227875167708503381788649308D+00
  1706. <a name="l01642"></a>01642 weight(5) = 0.429359752356125028446073598601D+00
  1707. <a name="l01643"></a>01643 weight(6) = 0.654759286914591779203940657627D+00
  1708. <a name="l01644"></a>01644 weight(7) = 0.429359752356125028446073598601D+00
  1709. <a name="l01645"></a>01645 weight(8) = 0.117227875167708503381788649308D+00
  1710. <a name="l01646"></a>01646 weight(9) = 0.119113954449115324503874202916D-01
  1711. <a name="l01647"></a>01647 weight(10) = 0.346819466323345510643413772940D-03
  1712. <a name="l01648"></a>01648 weight(11) = 0.143956039371425822033088366032D-05
  1713. <a name="l01649"></a>01649
  1714. <a name="l01650"></a>01650 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 12 ) <span class="keyword">then</span>
  1715. <a name="l01651"></a>01651
  1716. <a name="l01652"></a>01652 xtab(1) = - 0.388972489786978191927164274724D+01
  1717. <a name="l01653"></a>01653 xtab(2) = - 0.302063702512088977171067937518D+01
  1718. <a name="l01654"></a>01654 xtab(3) = - 0.227950708050105990018772856942D+01
  1719. <a name="l01655"></a>01655 xtab(4) = - 0.159768263515260479670966277090D+01
  1720. <a name="l01656"></a>01656 xtab(5) = - 0.947788391240163743704578131060D+00
  1721. <a name="l01657"></a>01657 xtab(6) = - 0.314240376254359111276611634095D+00
  1722. <a name="l01658"></a>01658 xtab(7) = 0.314240376254359111276611634095D+00
  1723. <a name="l01659"></a>01659 xtab(8) = 0.947788391240163743704578131060D+00
  1724. <a name="l01660"></a>01660 xtab(9) = 0.159768263515260479670966277090D+01
  1725. <a name="l01661"></a>01661 xtab(10) = 0.227950708050105990018772856942D+01
  1726. <a name="l01662"></a>01662 xtab(11) = 0.302063702512088977171067937518D+01
  1727. <a name="l01663"></a>01663 xtab(12) = 0.388972489786978191927164274724D+01
  1728. <a name="l01664"></a>01664
  1729. <a name="l01665"></a>01665 weight(1) = 0.265855168435630160602311400877D-06
  1730. <a name="l01666"></a>01666 weight(2) = 0.857368704358785865456906323153D-04
  1731. <a name="l01667"></a>01667 weight(3) = 0.390539058462906185999438432620D-02
  1732. <a name="l01668"></a>01668 weight(4) = 0.516079856158839299918734423606D-01
  1733. <a name="l01669"></a>01669 weight(5) = 0.260492310264161129233396139765D+00
  1734. <a name="l01670"></a>01670 weight(6) = 0.570135236262479578347113482275D+00
  1735. <a name="l01671"></a>01671 weight(7) = 0.570135236262479578347113482275D+00
  1736. <a name="l01672"></a>01672 weight(8) = 0.260492310264161129233396139765D+00
  1737. <a name="l01673"></a>01673 weight(9) = 0.516079856158839299918734423606D-01
  1738. <a name="l01674"></a>01674 weight(10) = 0.390539058462906185999438432620D-02
  1739. <a name="l01675"></a>01675 weight(11) = 0.857368704358785865456906323153D-04
  1740. <a name="l01676"></a>01676 weight(12) = 0.265855168435630160602311400877D-06
  1741. <a name="l01677"></a>01677
  1742. <a name="l01678"></a>01678 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 13 ) <span class="keyword">then</span>
  1743. <a name="l01679"></a>01679
  1744. <a name="l01680"></a>01680 xtab(1) = - 0.410133759617863964117891508007D+01
  1745. <a name="l01681"></a>01681 xtab(2) = - 0.324660897837240998812205115236D+01
  1746. <a name="l01682"></a>01682 xtab(3) = - 0.251973568567823788343040913628D+01
  1747. <a name="l01683"></a>01683 xtab(4) = - 0.185310765160151214200350644316D+01
  1748. <a name="l01684"></a>01684 xtab(5) = - 0.122005503659074842622205526637D+01
  1749. <a name="l01685"></a>01685 xtab(6) = - 0.605763879171060113080537108602D+00
  1750. <a name="l01686"></a>01686 xtab(7) = 0.0D+00
  1751. <a name="l01687"></a>01687 xtab(8) = 0.605763879171060113080537108602D+00
  1752. <a name="l01688"></a>01688 xtab(9) = 0.122005503659074842622205526637D+01
  1753. <a name="l01689"></a>01689 xtab(10) = 0.185310765160151214200350644316D+01
  1754. <a name="l01690"></a>01690 xtab(11) = 0.251973568567823788343040913628D+01
  1755. <a name="l01691"></a>01691 xtab(12) = 0.324660897837240998812205115236D+01
  1756. <a name="l01692"></a>01692 xtab(13) = 0.410133759617863964117891508007D+01
  1757. <a name="l01693"></a>01693
  1758. <a name="l01694"></a>01694 weight(1) = 0.482573185007313108834997332342D-07
  1759. <a name="l01695"></a>01695 weight(2) = 0.204303604027070731248669432937D-04
  1760. <a name="l01696"></a>01696 weight(3) = 0.120745999271938594730924899224D-02
  1761. <a name="l01697"></a>01697 weight(4) = 0.208627752961699392166033805050D-01
  1762. <a name="l01698"></a>01698 weight(5) = 0.140323320687023437762792268873D+00
  1763. <a name="l01699"></a>01699 weight(6) = 0.421616296898543221746893558568D+00
  1764. <a name="l01700"></a>01700 weight(7) = 0.604393187921161642342099068579D+00
  1765. <a name="l01701"></a>01701 weight(8) = 0.421616296898543221746893558568D+00
  1766. <a name="l01702"></a>01702 weight(9) = 0.140323320687023437762792268873D+00
  1767. <a name="l01703"></a>01703 weight(10) = 0.208627752961699392166033805050D-01
  1768. <a name="l01704"></a>01704 weight(11) = 0.120745999271938594730924899224D-02
  1769. <a name="l01705"></a>01705 weight(12) = 0.204303604027070731248669432937D-04
  1770. <a name="l01706"></a>01706 weight(13) = 0.482573185007313108834997332342D-07
  1771. <a name="l01707"></a>01707
  1772. <a name="l01708"></a>01708 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 14 ) <span class="keyword">then</span>
  1773. <a name="l01709"></a>01709
  1774. <a name="l01710"></a>01710 xtab(1) = - 0.430444857047363181262129810037D+01
  1775. <a name="l01711"></a>01711 xtab(2) = - 0.346265693360227055020891736115D+01
  1776. <a name="l01712"></a>01712 xtab(3) = - 0.274847072498540256862499852415D+01
  1777. <a name="l01713"></a>01713 xtab(4) = - 0.209518325850771681573497272630D+01
  1778. <a name="l01714"></a>01714 xtab(5) = - 0.147668273114114087058350654421D+01
  1779. <a name="l01715"></a>01715 xtab(6) = - 0.878713787329399416114679311861D+00
  1780. <a name="l01716"></a>01716 xtab(7) = - 0.291745510672562078446113075799D+00
  1781. <a name="l01717"></a>01717 xtab(8) = 0.291745510672562078446113075799D+00
  1782. <a name="l01718"></a>01718 xtab(9) = 0.878713787329399416114679311861D+00
  1783. <a name="l01719"></a>01719 xtab(10) = 0.147668273114114087058350654421D+01
  1784. <a name="l01720"></a>01720 xtab(11) = 0.209518325850771681573497272630D+01
  1785. <a name="l01721"></a>01721 xtab(12) = 0.274847072498540256862499852415D+01
  1786. <a name="l01722"></a>01722 xtab(13) = 0.346265693360227055020891736115D+01
  1787. <a name="l01723"></a>01723 xtab(14) = 0.430444857047363181262129810037D+01
  1788. <a name="l01724"></a>01724
  1789. <a name="l01725"></a>01725 weight(1) = 0.862859116812515794532041783429D-08
  1790. <a name="l01726"></a>01726 weight(2) = 0.471648435501891674887688950105D-05
  1791. <a name="l01727"></a>01727 weight(3) = 0.355092613551923610483661076691D-03
  1792. <a name="l01728"></a>01728 weight(4) = 0.785005472645794431048644334608D-02
  1793. <a name="l01729"></a>01729 weight(5) = 0.685055342234652055387163312367D-01
  1794. <a name="l01730"></a>01730 weight(6) = 0.273105609064246603352569187026D+00
  1795. <a name="l01731"></a>01731 weight(7) = 0.536405909712090149794921296776D+00
  1796. <a name="l01732"></a>01732 weight(8) = 0.536405909712090149794921296776D+00
  1797. <a name="l01733"></a>01733 weight(9) = 0.273105609064246603352569187026D+00
  1798. <a name="l01734"></a>01734 weight(10) = 0.685055342234652055387163312367D-01
  1799. <a name="l01735"></a>01735 weight(11) = 0.785005472645794431048644334608D-02
  1800. <a name="l01736"></a>01736 weight(12) = 0.355092613551923610483661076691D-03
  1801. <a name="l01737"></a>01737 weight(13) = 0.471648435501891674887688950105D-05
  1802. <a name="l01738"></a>01738 weight(14) = 0.862859116812515794532041783429D-08
  1803. <a name="l01739"></a>01739
  1804. <a name="l01740"></a>01740 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 15 ) <span class="keyword">then</span>
  1805. <a name="l01741"></a>01741
  1806. <a name="l01742"></a>01742 xtab(1) = - 0.449999070730939155366438053053D+01
  1807. <a name="l01743"></a>01743 xtab(2) = - 0.366995037340445253472922383312D+01
  1808. <a name="l01744"></a>01744 xtab(3) = - 0.296716692790560324848896036355D+01
  1809. <a name="l01745"></a>01745 xtab(4) = - 0.232573248617385774545404479449D+01
  1810. <a name="l01746"></a>01746 xtab(5) = - 0.171999257518648893241583152515D+01
  1811. <a name="l01747"></a>01747 xtab(6) = - 0.113611558521092066631913490556D+01
  1812. <a name="l01748"></a>01748 xtab(7) = - 0.565069583255575748526020337198D+00
  1813. <a name="l01749"></a>01749 xtab(8) = 0.0D+00
  1814. <a name="l01750"></a>01750 xtab(9) = 0.565069583255575748526020337198D+00
  1815. <a name="l01751"></a>01751 xtab(10) = 0.113611558521092066631913490556D+01
  1816. <a name="l01752"></a>01752 xtab(11) = 0.171999257518648893241583152515D+01
  1817. <a name="l01753"></a>01753 xtab(12) = 0.232573248617385774545404479449D+01
  1818. <a name="l01754"></a>01754 xtab(13) = 0.296716692790560324848896036355D+01
  1819. <a name="l01755"></a>01755 xtab(14) = 0.366995037340445253472922383312D+01
  1820. <a name="l01756"></a>01756 xtab(15) = 0.449999070730939155366438053053D+01
  1821. <a name="l01757"></a>01757
  1822. <a name="l01758"></a>01758 weight(1) = 0.152247580425351702016062666965D-08
  1823. <a name="l01759"></a>01759 weight(2) = 0.105911554771106663577520791055D-05
  1824. <a name="l01760"></a>01760 weight(3) = 0.100004441232499868127296736177D-03
  1825. <a name="l01761"></a>01761 weight(4) = 0.277806884291277589607887049229D-02
  1826. <a name="l01762"></a>01762 weight(5) = 0.307800338725460822286814158758D-01
  1827. <a name="l01763"></a>01763 weight(6) = 0.158488915795935746883839384960D+00
  1828. <a name="l01764"></a>01764 weight(7) = 0.412028687498898627025891079568D+00
  1829. <a name="l01765"></a>01765 weight(8) = 0.564100308726417532852625797340D+00
  1830. <a name="l01766"></a>01766 weight(9) = 0.412028687498898627025891079568D+00
  1831. <a name="l01767"></a>01767 weight(10) = 0.158488915795935746883839384960D+00
  1832. <a name="l01768"></a>01768 weight(11) = 0.307800338725460822286814158758D-01
  1833. <a name="l01769"></a>01769 weight(12) = 0.277806884291277589607887049229D-02
  1834. <a name="l01770"></a>01770 weight(13) = 0.100004441232499868127296736177D-03
  1835. <a name="l01771"></a>01771 weight(14) = 0.105911554771106663577520791055D-05
  1836. <a name="l01772"></a>01772 weight(15) = 0.152247580425351702016062666965D-08
  1837. <a name="l01773"></a>01773
  1838. <a name="l01774"></a>01774 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 16 ) <span class="keyword">then</span>
  1839. <a name="l01775"></a>01775
  1840. <a name="l01776"></a>01776 xtab(1) = - 0.468873893930581836468849864875D+01
  1841. <a name="l01777"></a>01777 xtab(2) = - 0.386944790486012269871942409801D+01
  1842. <a name="l01778"></a>01778 xtab(3) = - 0.317699916197995602681399455926D+01
  1843. <a name="l01779"></a>01779 xtab(4) = - 0.254620215784748136215932870545D+01
  1844. <a name="l01780"></a>01780 xtab(5) = - 0.195178799091625397743465541496D+01
  1845. <a name="l01781"></a>01781 xtab(6) = - 0.138025853919888079637208966969D+01
  1846. <a name="l01782"></a>01782 xtab(7) = - 0.822951449144655892582454496734D+00
  1847. <a name="l01783"></a>01783 xtab(8) = - 0.273481046138152452158280401965D+00
  1848. <a name="l01784"></a>01784 xtab(9) = 0.273481046138152452158280401965D+00
  1849. <a name="l01785"></a>01785 xtab(10) = 0.822951449144655892582454496734D+00
  1850. <a name="l01786"></a>01786 xtab(11) = 0.138025853919888079637208966969D+01
  1851. <a name="l01787"></a>01787 xtab(12) = 0.195178799091625397743465541496D+01
  1852. <a name="l01788"></a>01788 xtab(13) = 0.254620215784748136215932870545D+01
  1853. <a name="l01789"></a>01789 xtab(14) = 0.317699916197995602681399455926D+01
  1854. <a name="l01790"></a>01790 xtab(15) = 0.386944790486012269871942409801D+01
  1855. <a name="l01791"></a>01791 xtab(16) = 0.468873893930581836468849864875D+01
  1856. <a name="l01792"></a>01792
  1857. <a name="l01793"></a>01793 weight(1) = 0.265480747401118224470926366050D-09
  1858. <a name="l01794"></a>01794 weight(2) = 0.232098084486521065338749423185D-06
  1859. <a name="l01795"></a>01795 weight(3) = 0.271186009253788151201891432244D-04
  1860. <a name="l01796"></a>01796 weight(4) = 0.932284008624180529914277305537D-03
  1861. <a name="l01797"></a>01797 weight(5) = 0.128803115355099736834642999312D-01
  1862. <a name="l01798"></a>01798 weight(6) = 0.838100413989858294154207349001D-01
  1863. <a name="l01799"></a>01799 weight(7) = 0.280647458528533675369463335380D+00
  1864. <a name="l01800"></a>01800 weight(8) = 0.507929479016613741913517341791D+00
  1865. <a name="l01801"></a>01801 weight(9) = 0.507929479016613741913517341791D+00
  1866. <a name="l01802"></a>01802 weight(10) = 0.280647458528533675369463335380D+00
  1867. <a name="l01803"></a>01803 weight(11) = 0.838100413989858294154207349001D-01
  1868. <a name="l01804"></a>01804 weight(12) = 0.128803115355099736834642999312D-01
  1869. <a name="l01805"></a>01805 weight(13) = 0.932284008624180529914277305537D-03
  1870. <a name="l01806"></a>01806 weight(14) = 0.271186009253788151201891432244D-04
  1871. <a name="l01807"></a>01807 weight(15) = 0.232098084486521065338749423185D-06
  1872. <a name="l01808"></a>01808 weight(16) = 0.265480747401118224470926366050D-09
  1873. <a name="l01809"></a>01809
  1874. <a name="l01810"></a>01810 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 17 ) <span class="keyword">then</span>
  1875. <a name="l01811"></a>01811
  1876. <a name="l01812"></a>01812 xtab(1) = - 0.487134519367440308834927655662D+01
  1877. <a name="l01813"></a>01813 xtab(2) = - 0.406194667587547430689245559698D+01
  1878. <a name="l01814"></a>01814 xtab(3) = - 0.337893209114149408338327069289D+01
  1879. <a name="l01815"></a>01815 xtab(4) = - 0.275776291570388873092640349574D+01
  1880. <a name="l01816"></a>01816 xtab(5) = - 0.217350282666662081927537907149D+01
  1881. <a name="l01817"></a>01817 xtab(6) = - 0.161292431422123133311288254454D+01
  1882. <a name="l01818"></a>01818 xtab(7) = - 0.106764872574345055363045773799D+01
  1883. <a name="l01819"></a>01819 xtab(8) = - 0.531633001342654731349086553718D+00
  1884. <a name="l01820"></a>01820 xtab(9) = 0.0D+00
  1885. <a name="l01821"></a>01821 xtab(10) = 0.531633001342654731349086553718D+00
  1886. <a name="l01822"></a>01822 xtab(11) = 0.106764872574345055363045773799D+01
  1887. <a name="l01823"></a>01823 xtab(12) = 0.161292431422123133311288254454D+01
  1888. <a name="l01824"></a>01824 xtab(13) = 0.217350282666662081927537907149D+01
  1889. <a name="l01825"></a>01825 xtab(14) = 0.275776291570388873092640349574D+01
  1890. <a name="l01826"></a>01826 xtab(15) = 0.337893209114149408338327069289D+01
  1891. <a name="l01827"></a>01827 xtab(16) = 0.406194667587547430689245559698D+01
  1892. <a name="l01828"></a>01828 xtab(17) = 0.487134519367440308834927655662D+01
  1893. <a name="l01829"></a>01829
  1894. <a name="l01830"></a>01830 weight(1) = 0.458057893079863330580889281222D-10
  1895. <a name="l01831"></a>01831 weight(2) = 0.497707898163079405227863353715D-07
  1896. <a name="l01832"></a>01832 weight(3) = 0.711228914002130958353327376218D-05
  1897. <a name="l01833"></a>01833 weight(4) = 0.298643286697753041151336643059D-03
  1898. <a name="l01834"></a>01834 weight(5) = 0.506734995762753791170069495879D-02
  1899. <a name="l01835"></a>01835 weight(6) = 0.409200341495762798094994877854D-01
  1900. <a name="l01836"></a>01836 weight(7) = 0.172648297670097079217645196219D+00
  1901. <a name="l01837"></a>01837 weight(8) = 0.401826469470411956577635085257D+00
  1902. <a name="l01838"></a>01838 weight(9) = 0.530917937624863560331883103379D+00
  1903. <a name="l01839"></a>01839 weight(10) = 0.401826469470411956577635085257D+00
  1904. <a name="l01840"></a>01840 weight(11) = 0.172648297670097079217645196219D+00
  1905. <a name="l01841"></a>01841 weight(12) = 0.409200341495762798094994877854D-01
  1906. <a name="l01842"></a>01842 weight(13) = 0.506734995762753791170069495879D-02
  1907. <a name="l01843"></a>01843 weight(14) = 0.298643286697753041151336643059D-03
  1908. <a name="l01844"></a>01844 weight(15) = 0.711228914002130958353327376218D-05
  1909. <a name="l01845"></a>01845 weight(16) = 0.497707898163079405227863353715D-07
  1910. <a name="l01846"></a>01846 weight(17) = 0.458057893079863330580889281222D-10
  1911. <a name="l01847"></a>01847
  1912. <a name="l01848"></a>01848 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 18 ) <span class="keyword">then</span>
  1913. <a name="l01849"></a>01849
  1914. <a name="l01850"></a>01850 xtab(1) = - 0.504836400887446676837203757885D+01
  1915. <a name="l01851"></a>01851 xtab(2) = - 0.424811787356812646302342016090D+01
  1916. <a name="l01852"></a>01852 xtab(3) = - 0.357376906848626607950067599377D+01
  1917. <a name="l01853"></a>01853 xtab(4) = - 0.296137750553160684477863254906D+01
  1918. <a name="l01854"></a>01854 xtab(5) = - 0.238629908916668600026459301424D+01
  1919. <a name="l01855"></a>01855 xtab(6) = - 0.183553160426162889225383944409D+01
  1920. <a name="l01856"></a>01856 xtab(7) = - 0.130092085838961736566626555439D+01
  1921. <a name="l01857"></a>01857 xtab(8) = - 0.776682919267411661316659462284D+00
  1922. <a name="l01858"></a>01858 xtab(9) = - 0.258267750519096759258116098711D+00
  1923. <a name="l01859"></a>01859 xtab(10) = 0.258267750519096759258116098711D+00
  1924. <a name="l01860"></a>01860 xtab(11) = 0.776682919267411661316659462284D+00
  1925. <a name="l01861"></a>01861 xtab(12) = 0.130092085838961736566626555439D+01
  1926. <a name="l01862"></a>01862 xtab(13) = 0.183553160426162889225383944409D+01
  1927. <a name="l01863"></a>01863 xtab(14) = 0.238629908916668600026459301424D+01
  1928. <a name="l01864"></a>01864 xtab(15) = 0.296137750553160684477863254906D+01
  1929. <a name="l01865"></a>01865 xtab(16) = 0.357376906848626607950067599377D+01
  1930. <a name="l01866"></a>01866 xtab(17) = 0.424811787356812646302342016090D+01
  1931. <a name="l01867"></a>01867 xtab(18) = 0.504836400887446676837203757885D+01
  1932. <a name="l01868"></a>01868
  1933. <a name="l01869"></a>01869 weight(1) = 0.782819977211589102925147471012D-11
  1934. <a name="l01870"></a>01870 weight(2) = 0.104672057957920824443559608435D-07
  1935. <a name="l01871"></a>01871 weight(3) = 0.181065448109343040959702385911D-05
  1936. <a name="l01872"></a>01872 weight(4) = 0.918112686792940352914675407371D-04
  1937. <a name="l01873"></a>01873 weight(5) = 0.188852263026841789438175325426D-02
  1938. <a name="l01874"></a>01874 weight(6) = 0.186400423875446519219315221973D-01
  1939. <a name="l01875"></a>01875 weight(7) = 0.973017476413154293308537234155D-01
  1940. <a name="l01876"></a>01876 weight(8) = 0.284807285669979578595606820713D+00
  1941. <a name="l01877"></a>01877 weight(9) = 0.483495694725455552876410522141D+00
  1942. <a name="l01878"></a>01878 weight(10) = 0.483495694725455552876410522141D+00
  1943. <a name="l01879"></a>01879 weight(11) = 0.284807285669979578595606820713D+00
  1944. <a name="l01880"></a>01880 weight(12) = 0.973017476413154293308537234155D-01
  1945. <a name="l01881"></a>01881 weight(13) = 0.186400423875446519219315221973D-01
  1946. <a name="l01882"></a>01882 weight(14) = 0.188852263026841789438175325426D-02
  1947. <a name="l01883"></a>01883 weight(15) = 0.918112686792940352914675407371D-04
  1948. <a name="l01884"></a>01884 weight(16) = 0.181065448109343040959702385911D-05
  1949. <a name="l01885"></a>01885 weight(17) = 0.104672057957920824443559608435D-07
  1950. <a name="l01886"></a>01886 weight(18) = 0.782819977211589102925147471012D-11
  1951. <a name="l01887"></a>01887
  1952. <a name="l01888"></a>01888 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 19 ) <span class="keyword">then</span>
  1953. <a name="l01889"></a>01889
  1954. <a name="l01890"></a>01890 xtab(1) = - 0.522027169053748216460967142500D+01
  1955. <a name="l01891"></a>01891 xtab(2) = - 0.442853280660377943723498532226D+01
  1956. <a name="l01892"></a>01892 xtab(3) = - 0.376218735196402009751489394104D+01
  1957. <a name="l01893"></a>01893 xtab(4) = - 0.315784881834760228184318034120D+01
  1958. <a name="l01894"></a>01894 xtab(5) = - 0.259113378979454256492128084112D+01
  1959. <a name="l01895"></a>01895 xtab(6) = - 0.204923170985061937575050838669D+01
  1960. <a name="l01896"></a>01896 xtab(7) = - 0.152417061939353303183354859367D+01
  1961. <a name="l01897"></a>01897 xtab(8) = - 0.101036838713431135136859873726D+01
  1962. <a name="l01898"></a>01898 xtab(9) = - 0.503520163423888209373811765050D+00
  1963. <a name="l01899"></a>01899 xtab(10) = 0.0D+00
  1964. <a name="l01900"></a>01900 xtab(11) = 0.503520163423888209373811765050D+00
  1965. <a name="l01901"></a>01901 xtab(12) = 0.101036838713431135136859873726D+01
  1966. <a name="l01902"></a>01902 xtab(13) = 0.152417061939353303183354859367D+01
  1967. <a name="l01903"></a>01903 xtab(14) = 0.204923170985061937575050838669D+01
  1968. <a name="l01904"></a>01904 xtab(15) = 0.259113378979454256492128084112D+01
  1969. <a name="l01905"></a>01905 xtab(16) = 0.315784881834760228184318034120D+01
  1970. <a name="l01906"></a>01906 xtab(17) = 0.376218735196402009751489394104D+01
  1971. <a name="l01907"></a>01907 xtab(18) = 0.442853280660377943723498532226D+01
  1972. <a name="l01908"></a>01908 xtab(19) = 0.522027169053748216460967142500D+01
  1973. <a name="l01909"></a>01909
  1974. <a name="l01910"></a>01910 weight(1) = 0.132629709449851575185289154385D-11
  1975. <a name="l01911"></a>01911 weight(2) = 0.216305100986355475019693077221D-08
  1976. <a name="l01912"></a>01912 weight(3) = 0.448824314722312295179447915594D-06
  1977. <a name="l01913"></a>01913 weight(4) = 0.272091977631616257711941025214D-04
  1978. <a name="l01914"></a>01914 weight(5) = 0.670877521407181106194696282100D-03
  1979. <a name="l01915"></a>01915 weight(6) = 0.798886677772299020922211491861D-02
  1980. <a name="l01916"></a>01916 weight(7) = 0.508103869090520673569908110358D-01
  1981. <a name="l01917"></a>01917 weight(8) = 0.183632701306997074156148485766D+00
  1982. <a name="l01918"></a>01918 weight(9) = 0.391608988613030244504042313621D+00
  1983. <a name="l01919"></a>01919 weight(10) = 0.502974888276186530840731361096D+00
  1984. <a name="l01920"></a>01920 weight(11) = 0.391608988613030244504042313621D+00
  1985. <a name="l01921"></a>01921 weight(12) = 0.183632701306997074156148485766D+00
  1986. <a name="l01922"></a>01922 weight(13) = 0.508103869090520673569908110358D-01
  1987. <a name="l01923"></a>01923 weight(14) = 0.798886677772299020922211491861D-02
  1988. <a name="l01924"></a>01924 weight(15) = 0.670877521407181106194696282100D-03
  1989. <a name="l01925"></a>01925 weight(16) = 0.272091977631616257711941025214D-04
  1990. <a name="l01926"></a>01926 weight(17) = 0.448824314722312295179447915594D-06
  1991. <a name="l01927"></a>01927 weight(18) = 0.216305100986355475019693077221D-08
  1992. <a name="l01928"></a>01928 weight(19) = 0.132629709449851575185289154385D-11
  1993. <a name="l01929"></a>01929
  1994. <a name="l01930"></a>01930 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 20 ) <span class="keyword">then</span>
  1995. <a name="l01931"></a>01931
  1996. <a name="l01932"></a>01932 xtab(1) = - 0.538748089001123286201690041068D+01
  1997. <a name="l01933"></a>01933 xtab(2) = - 0.460368244955074427307767524898D+01
  1998. <a name="l01934"></a>01934 xtab(3) = - 0.394476404011562521037562880052D+01
  1999. <a name="l01935"></a>01935 xtab(4) = - 0.334785456738321632691492452300D+01
  2000. <a name="l01936"></a>01936 xtab(5) = - 0.278880605842813048052503375640D+01
  2001. <a name="l01937"></a>01937 xtab(6) = - 0.225497400208927552308233334473D+01
  2002. <a name="l01938"></a>01938 xtab(7) = - 0.173853771211658620678086566214D+01
  2003. <a name="l01939"></a>01939 xtab(8) = - 0.123407621539532300788581834696D+01
  2004. <a name="l01940"></a>01940 xtab(9) = - 0.737473728545394358705605144252D+00
  2005. <a name="l01941"></a>01941 xtab(10) = - 0.245340708300901249903836530634D+00
  2006. <a name="l01942"></a>01942 xtab(11) = 0.245340708300901249903836530634D+00
  2007. <a name="l01943"></a>01943 xtab(12) = 0.737473728545394358705605144252D+00
  2008. <a name="l01944"></a>01944 xtab(13) = 0.123407621539532300788581834696D+01
  2009. <a name="l01945"></a>01945 xtab(14) = 0.173853771211658620678086566214D+01
  2010. <a name="l01946"></a>01946 xtab(15) = 0.225497400208927552308233334473D+01
  2011. <a name="l01947"></a>01947 xtab(16) = 0.278880605842813048052503375640D+01
  2012. <a name="l01948"></a>01948 xtab(17) = 0.334785456738321632691492452300D+01
  2013. <a name="l01949"></a>01949 xtab(18) = 0.394476404011562521037562880052D+01
  2014. <a name="l01950"></a>01950 xtab(19) = 0.460368244955074427307767524898D+01
  2015. <a name="l01951"></a>01951 xtab(20) = 0.538748089001123286201690041068D+01
  2016. <a name="l01952"></a>01952
  2017. <a name="l01953"></a>01953 weight(1) = 0.222939364553415129252250061603D-12
  2018. <a name="l01954"></a>01954 weight(2) = 0.439934099227318055362885145547D-09
  2019. <a name="l01955"></a>01955 weight(3) = 0.108606937076928169399952456345D-06
  2020. <a name="l01956"></a>01956 weight(4) = 0.780255647853206369414599199965D-05
  2021. <a name="l01957"></a>01957 weight(5) = 0.228338636016353967257145917963D-03
  2022. <a name="l01958"></a>01958 weight(6) = 0.324377334223786183218324713235D-02
  2023. <a name="l01959"></a>01959 weight(7) = 0.248105208874636108821649525589D-01
  2024. <a name="l01960"></a>01960 weight(8) = 0.109017206020023320013755033535D+00
  2025. <a name="l01961"></a>01961 weight(9) = 0.286675505362834129719659706228D+00
  2026. <a name="l01962"></a>01962 weight(10) = 0.462243669600610089650328639861D+00
  2027. <a name="l01963"></a>01963 weight(11) = 0.462243669600610089650328639861D+00
  2028. <a name="l01964"></a>01964 weight(12) = 0.286675505362834129719659706228D+00
  2029. <a name="l01965"></a>01965 weight(13) = 0.109017206020023320013755033535D+00
  2030. <a name="l01966"></a>01966 weight(14) = 0.248105208874636108821649525589D-01
  2031. <a name="l01967"></a>01967 weight(15) = 0.324377334223786183218324713235D-02
  2032. <a name="l01968"></a>01968 weight(16) = 0.228338636016353967257145917963D-03
  2033. <a name="l01969"></a>01969 weight(17) = 0.780255647853206369414599199965D-05
  2034. <a name="l01970"></a>01970 weight(18) = 0.108606937076928169399952456345D-06
  2035. <a name="l01971"></a>01971 weight(19) = 0.439934099227318055362885145547D-09
  2036. <a name="l01972"></a>01972 weight(20) = 0.222939364553415129252250061603D-12
  2037. <a name="l01973"></a>01973
  2038. <a name="l01974"></a>01974 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 30 ) <span class="keyword">then</span>
  2039. <a name="l01975"></a>01975
  2040. <a name="l01976"></a>01976 xtab( 1) = -6.86334529352989158106110835756D+00
  2041. <a name="l01977"></a>01977 xtab( 2) = -6.13827922012393462039499237854D+00
  2042. <a name="l01978"></a>01978 xtab( 3) = -5.53314715156749572511833355558D+00
  2043. <a name="l01979"></a>01979 xtab( 4) = -4.98891896858994394448649710633D+00
  2044. <a name="l01980"></a>01980 xtab( 5) = -4.48305535709251834188703761971D+00
  2045. <a name="l01981"></a>01981 xtab( 6) = -4.00390860386122881522787601332D+00
  2046. <a name="l01982"></a>01982 xtab( 7) = -3.54444387315534988692540090217D+00
  2047. <a name="l01983"></a>01983 xtab( 8) = -3.09997052958644174868873332237D+00
  2048. <a name="l01984"></a>01984 xtab( 9) = -2.66713212453561720057110646422D+00
  2049. <a name="l01985"></a>01985 xtab(10) = -2.24339146776150407247297999483D+00
  2050. <a name="l01986"></a>01986 xtab(11) = -1.82674114360368803883588048351D+00
  2051. <a name="l01987"></a>01987 xtab(12) = -1.41552780019818851194072510555D+00
  2052. <a name="l01988"></a>01988 xtab(13) = -1.00833827104672346180498960870D+00
  2053. <a name="l01989"></a>01989 xtab(14) = -0.603921058625552307778155678757D+00
  2054. <a name="l01990"></a>01990 xtab(15) = -0.201128576548871485545763013244D+00
  2055. <a name="l01991"></a>01991 xtab(16) = 0.201128576548871485545763013244D+00
  2056. <a name="l01992"></a>01992 xtab(17) = 0.603921058625552307778155678757D+00
  2057. <a name="l01993"></a>01993 xtab(18) = 1.00833827104672346180498960870D+00
  2058. <a name="l01994"></a>01994 xtab(19) = 1.41552780019818851194072510555D+00
  2059. <a name="l01995"></a>01995 xtab(20) = 1.82674114360368803883588048351D+00
  2060. <a name="l01996"></a>01996 xtab(21) = 2.24339146776150407247297999483D+00
  2061. <a name="l01997"></a>01997 xtab(22) = 2.66713212453561720057110646422D+00
  2062. <a name="l01998"></a>01998 xtab(23) = 3.09997052958644174868873332237D+00
  2063. <a name="l01999"></a>01999 xtab(24) = 3.54444387315534988692540090217D+00
  2064. <a name="l02000"></a>02000 xtab(25) = 4.00390860386122881522787601332D+00
  2065. <a name="l02001"></a>02001 xtab(26) = 4.48305535709251834188703761971D+00
  2066. <a name="l02002"></a>02002 xtab(27) = 4.98891896858994394448649710633D+00
  2067. <a name="l02003"></a>02003 xtab(28) = 5.53314715156749572511833355558D+00
  2068. <a name="l02004"></a>02004 xtab(29) = 6.13827922012393462039499237854D+00
  2069. <a name="l02005"></a>02005 xtab(30) = 6.86334529352989158106110835756D+00
  2070. <a name="l02006"></a>02006
  2071. <a name="l02007"></a>02007 weight( 1) = 0.290825470013122622941102747365D-20
  2072. <a name="l02008"></a>02008 weight( 2) = 0.281033360275090370876277491534D-16
  2073. <a name="l02009"></a>02009 weight( 3) = 0.287860708054870606219239791142D-13
  2074. <a name="l02010"></a>02010 weight( 4) = 0.810618629746304420399344796173D-11
  2075. <a name="l02011"></a>02011 weight( 5) = 0.917858042437852820850075742492D-09
  2076. <a name="l02012"></a>02012 weight( 6) = 0.510852245077594627738963204403D-07
  2077. <a name="l02013"></a>02013 weight( 7) = 0.157909488732471028834638794022D-05
  2078. <a name="l02014"></a>02014 weight( 8) = 0.293872522892298764150118423412D-04
  2079. <a name="l02015"></a>02015 weight( 9) = 0.348310124318685523420995323183D-03
  2080. <a name="l02016"></a>02016 weight(10) = 0.273792247306765846298942568953D-02
  2081. <a name="l02017"></a>02017 weight(11) = 0.147038297048266835152773557787D-01
  2082. <a name="l02018"></a>02018 weight(12) = 0.551441768702342511680754948183D-01
  2083. <a name="l02019"></a>02019 weight(13) = 0.146735847540890099751693643152D+00
  2084. <a name="l02020"></a>02020 weight(14) = 0.280130930839212667413493211293D+00
  2085. <a name="l02021"></a>02021 weight(15) = 0.386394889541813862555601849165D+00
  2086. <a name="l02022"></a>02022 weight(16) = 0.386394889541813862555601849165D+00
  2087. <a name="l02023"></a>02023 weight(17) = 0.280130930839212667413493211293D+00
  2088. <a name="l02024"></a>02024 weight(18) = 0.146735847540890099751693643152D+00
  2089. <a name="l02025"></a>02025 weight(19) = 0.551441768702342511680754948183D-01
  2090. <a name="l02026"></a>02026 weight(20) = 0.147038297048266835152773557787D-01
  2091. <a name="l02027"></a>02027 weight(21) = 0.273792247306765846298942568953D-02
  2092. <a name="l02028"></a>02028 weight(22) = 0.348310124318685523420995323183D-03
  2093. <a name="l02029"></a>02029 weight(23) = 0.293872522892298764150118423412D-04
  2094. <a name="l02030"></a>02030 weight(24) = 0.157909488732471028834638794022D-05
  2095. <a name="l02031"></a>02031 weight(25) = 0.510852245077594627738963204403D-07
  2096. <a name="l02032"></a>02032 weight(26) = 0.917858042437852820850075742492D-09
  2097. <a name="l02033"></a>02033 weight(27) = 0.810618629746304420399344796173D-11
  2098. <a name="l02034"></a>02034 weight(28) = 0.287860708054870606219239791142D-13
  2099. <a name="l02035"></a>02035 weight(29) = 0.281033360275090370876277491534D-16
  2100. <a name="l02036"></a>02036 weight(30) = 0.290825470013122622941102747365D-20
  2101. <a name="l02037"></a>02037
  2102. <a name="l02038"></a>02038 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 32 ) <span class="keyword">then</span>
  2103. <a name="l02039"></a>02039
  2104. <a name="l02040"></a>02040 xtab( 1) = -7.12581390983D+00
  2105. <a name="l02041"></a>02041 xtab( 2) = -6.40949814927D+00
  2106. <a name="l02042"></a>02042 xtab( 3) = -5.81222594952D+00
  2107. <a name="l02043"></a>02043 xtab( 4) = -5.27555098652D+00
  2108. <a name="l02044"></a>02044 xtab( 5) = -4.77716450350D+00
  2109. <a name="l02045"></a>02045 xtab( 6) = -4.30554795335D+00
  2110. <a name="l02046"></a>02046 xtab( 7) = -3.85375548547D+00
  2111. <a name="l02047"></a>02047 xtab( 8) = -3.41716749282D+00
  2112. <a name="l02048"></a>02048 xtab( 9) = -2.99249082500D+00
  2113. <a name="l02049"></a>02049 xtab(10) = -2.57724953773D+00
  2114. <a name="l02050"></a>02050 xtab(11) = -2.16949918361D+00
  2115. <a name="l02051"></a>02051 xtab(12) = -1.76765410946D+00
  2116. <a name="l02052"></a>02052 xtab(13) = -1.37037641095D+00
  2117. <a name="l02053"></a>02053 xtab(14) = -0.976500463590D+00
  2118. <a name="l02054"></a>02054 xtab(15) = -0.584978765436D+00
  2119. <a name="l02055"></a>02055 xtab(16) = -0.194840741569D+00
  2120. <a name="l02056"></a>02056 xtab(17) = 0.194840741569D+00
  2121. <a name="l02057"></a>02057 xtab(18) = 0.584978765436D+00
  2122. <a name="l02058"></a>02058 xtab(19) = 0.976500463590D+00
  2123. <a name="l02059"></a>02059 xtab(20) = 1.37037641095D+00
  2124. <a name="l02060"></a>02060 xtab(21) = 1.76765410946D+00
  2125. <a name="l02061"></a>02061 xtab(22) = 2.16949918361D+00
  2126. <a name="l02062"></a>02062 xtab(23) = 2.57724953773D+00
  2127. <a name="l02063"></a>02063 xtab(24) = 2.99249082500D+00
  2128. <a name="l02064"></a>02064 xtab(25) = 3.41716749282D+00
  2129. <a name="l02065"></a>02065 xtab(26) = 3.85375548547D+00
  2130. <a name="l02066"></a>02066 xtab(27) = 4.30554795335D+00
  2131. <a name="l02067"></a>02067 xtab(28) = 4.77716450350D+00
  2132. <a name="l02068"></a>02068 xtab(29) = 5.27555098652D+00
  2133. <a name="l02069"></a>02069 xtab(30) = 5.81222594952D+00
  2134. <a name="l02070"></a>02070 xtab(31) = 6.40949814927D+00
  2135. <a name="l02071"></a>02071 xtab(32) = 7.12581390983D+00
  2136. <a name="l02072"></a>02072
  2137. <a name="l02073"></a>02073 weight( 1) = 0.731067642736D-22
  2138. <a name="l02074"></a>02074 weight( 2) = 0.923173653649D-18
  2139. <a name="l02075"></a>02075 weight( 3) = 0.119734401709D-14
  2140. <a name="l02076"></a>02076 weight( 4) = 0.421501021125D-12
  2141. <a name="l02077"></a>02077 weight( 5) = 0.593329146300D-10
  2142. <a name="l02078"></a>02078 weight( 6) = 0.409883216476D-08
  2143. <a name="l02079"></a>02079 weight( 7) = 0.157416779254D-06
  2144. <a name="l02080"></a>02080 weight( 8) = 0.365058512955D-05
  2145. <a name="l02081"></a>02081 weight( 9) = 0.541658406172D-04
  2146. <a name="l02082"></a>02082 weight(10) = 0.536268365526D-03
  2147. <a name="l02083"></a>02083 weight(11) = 0.365489032664D-02
  2148. <a name="l02084"></a>02084 weight(12) = 0.175534288315D-01
  2149. <a name="l02085"></a>02085 weight(13) = 0.604581309557D-01
  2150. <a name="l02086"></a>02086 weight(14) = 0.151269734076D+00
  2151. <a name="l02087"></a>02087 weight(15) = 0.277458142302D+00
  2152. <a name="l02088"></a>02088 weight(16) = 0.375238352592D+00
  2153. <a name="l02089"></a>02089 weight(17) = 0.375238352592D+00
  2154. <a name="l02090"></a>02090 weight(18) = 0.277458142302D+00
  2155. <a name="l02091"></a>02091 weight(19) = 0.151269734076D+00
  2156. <a name="l02092"></a>02092 weight(20) = 0.604581309557D-01
  2157. <a name="l02093"></a>02093 weight(21) = 0.175534288315D-01
  2158. <a name="l02094"></a>02094 weight(22) = 0.365489032664D-02
  2159. <a name="l02095"></a>02095 weight(23) = 0.536268365526D-03
  2160. <a name="l02096"></a>02096 weight(24) = 0.541658406172D-04
  2161. <a name="l02097"></a>02097 weight(25) = 0.365058512955D-05
  2162. <a name="l02098"></a>02098 weight(26) = 0.157416779254D-06
  2163. <a name="l02099"></a>02099 weight(27) = 0.409883216476D-08
  2164. <a name="l02100"></a>02100 weight(28) = 0.593329146300D-10
  2165. <a name="l02101"></a>02101 weight(29) = 0.421501021125D-12
  2166. <a name="l02102"></a>02102 weight(30) = 0.119734401709D-14
  2167. <a name="l02103"></a>02103 weight(31) = 0.923173653649D-18
  2168. <a name="l02104"></a>02104 weight(32) = 0.731067642736D-22
  2169. <a name="l02105"></a>02105
  2170. <a name="l02106"></a>02106 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 40 ) <span class="keyword">then</span>
  2171. <a name="l02107"></a>02107
  2172. <a name="l02108"></a>02108 xtab( 1) = -8.09876113925D+00
  2173. <a name="l02109"></a>02109 xtab( 2) = -7.41158253149D+00
  2174. <a name="l02110"></a>02110 xtab( 3) = -6.84023730525D+00
  2175. <a name="l02111"></a>02111 xtab( 4) = -6.32825535122D+00
  2176. <a name="l02112"></a>02112 xtab( 5) = -5.85409505603D+00
  2177. <a name="l02113"></a>02113 xtab( 6) = -5.40665424797D+00
  2178. <a name="l02114"></a>02114 xtab( 7) = -4.97926097855D+00
  2179. <a name="l02115"></a>02115 xtab( 8) = -4.56750207284D+00
  2180. <a name="l02116"></a>02116 xtab( 9) = -4.16825706683D+00
  2181. <a name="l02117"></a>02117 xtab(10) = -3.77920675344D+00
  2182. <a name="l02118"></a>02118 xtab(11) = -3.39855826586D+00
  2183. <a name="l02119"></a>02119 xtab(12) = -3.02487988390D+00
  2184. <a name="l02120"></a>02120 xtab(13) = -2.65699599844D+00
  2185. <a name="l02121"></a>02121 xtab(14) = -2.29391714188D+00
  2186. <a name="l02122"></a>02122 xtab(15) = -1.93479147228D+00
  2187. <a name="l02123"></a>02123 xtab(16) = -1.57886989493D+00
  2188. <a name="l02124"></a>02124 xtab(17) = -1.22548010905D+00
  2189. <a name="l02125"></a>02125 xtab(18) = -0.874006612357D+00
  2190. <a name="l02126"></a>02126 xtab(19) = -0.523874713832D+00
  2191. <a name="l02127"></a>02127 xtab(20) = -0.174537214598D+00
  2192. <a name="l02128"></a>02128 xtab(21) = 0.174537214598D+00
  2193. <a name="l02129"></a>02129 xtab(22) = 0.523874713832D+00
  2194. <a name="l02130"></a>02130 xtab(23) = 0.874006612357D+00
  2195. <a name="l02131"></a>02131 xtab(24) = 1.22548010905D+00
  2196. <a name="l02132"></a>02132 xtab(25) = 1.57886989493D+00
  2197. <a name="l02133"></a>02133 xtab(26) = 1.93479147228D+00
  2198. <a name="l02134"></a>02134 xtab(27) = 2.29391714188D+00
  2199. <a name="l02135"></a>02135 xtab(28) = 2.65699599844D+00
  2200. <a name="l02136"></a>02136 xtab(29) = 3.02487988390D+00
  2201. <a name="l02137"></a>02137 xtab(30) = 3.39855826586D+00
  2202. <a name="l02138"></a>02138 xtab(31) = 3.77920675344D+00
  2203. <a name="l02139"></a>02139 xtab(32) = 4.16825706683D+00
  2204. <a name="l02140"></a>02140 xtab(33) = 4.56750207284D+00
  2205. <a name="l02141"></a>02141 xtab(34) = 4.97926097855D+00
  2206. <a name="l02142"></a>02142 xtab(35) = 5.40665424797D+00
  2207. <a name="l02143"></a>02143 xtab(36) = 5.85409505603D+00
  2208. <a name="l02144"></a>02144 xtab(37) = 6.32825535122D+00
  2209. <a name="l02145"></a>02145 xtab(38) = 6.84023730525D+00
  2210. <a name="l02146"></a>02146 xtab(39) = 7.41158253149D+00
  2211. <a name="l02147"></a>02147 xtab(40) = 8.09876113925D+00
  2212. <a name="l02148"></a>02148
  2213. <a name="l02149"></a>02149 weight( 1) = 0.259104371384D-28
  2214. <a name="l02150"></a>02150 weight( 2) = 0.854405696375D-24
  2215. <a name="l02151"></a>02151 weight( 3) = 0.256759336540D-20
  2216. <a name="l02152"></a>02152 weight( 4) = 0.198918101211D-17
  2217. <a name="l02153"></a>02153 weight( 5) = 0.600835878947D-15
  2218. <a name="l02154"></a>02154 weight( 6) = 0.880570764518D-13
  2219. <a name="l02155"></a>02155 weight( 7) = 0.715652805267D-11
  2220. <a name="l02156"></a>02156 weight( 8) = 0.352562079135D-09
  2221. <a name="l02157"></a>02157 weight( 9) = 0.112123608322D-07
  2222. <a name="l02158"></a>02158 weight(10) = 0.241114416359D-06
  2223. <a name="l02159"></a>02159 weight(11) = 0.363157615067D-05
  2224. <a name="l02160"></a>02160 weight(12) = 0.393693398108D-04
  2225. <a name="l02161"></a>02161 weight(13) = 0.313853594540D-03
  2226. <a name="l02162"></a>02162 weight(14) = 0.187149682959D-02
  2227. <a name="l02163"></a>02163 weight(15) = 0.846088800823D-02
  2228. <a name="l02164"></a>02164 weight(16) = 0.293125655361D-01
  2229. <a name="l02165"></a>02165 weight(17) = 0.784746058652D-01
  2230. <a name="l02166"></a>02166 weight(18) = 0.163378732713D+00
  2231. <a name="l02167"></a>02167 weight(19) = 0.265728251876D+00
  2232. <a name="l02168"></a>02168 weight(20) = 0.338643277425D+00
  2233. <a name="l02169"></a>02169 weight(21) = 0.338643277425D+00
  2234. <a name="l02170"></a>02170 weight(22) = 0.265728251876D+00
  2235. <a name="l02171"></a>02171 weight(23) = 0.163378732713D+00
  2236. <a name="l02172"></a>02172 weight(24) = 0.784746058652D-01
  2237. <a name="l02173"></a>02173 weight(25) = 0.293125655361D-01
  2238. <a name="l02174"></a>02174 weight(26) = 0.846088800823D-02
  2239. <a name="l02175"></a>02175 weight(27) = 0.187149682959D-02
  2240. <a name="l02176"></a>02176 weight(28) = 0.313853594540D-03
  2241. <a name="l02177"></a>02177 weight(29) = 0.393693398108D-04
  2242. <a name="l02178"></a>02178 weight(30) = 0.363157615067D-05
  2243. <a name="l02179"></a>02179 weight(31) = 0.241114416359D-06
  2244. <a name="l02180"></a>02180 weight(32) = 0.112123608322D-07
  2245. <a name="l02181"></a>02181 weight(33) = 0.352562079135D-09
  2246. <a name="l02182"></a>02182 weight(34) = 0.715652805267D-11
  2247. <a name="l02183"></a>02183 weight(35) = 0.880570764518D-13
  2248. <a name="l02184"></a>02184 weight(36) = 0.600835878947D-15
  2249. <a name="l02185"></a>02185 weight(37) = 0.198918101211D-17
  2250. <a name="l02186"></a>02186 weight(38) = 0.256759336540D-20
  2251. <a name="l02187"></a>02187 weight(39) = 0.854405696375D-24
  2252. <a name="l02188"></a>02188 weight(40) = 0.259104371384D-28
  2253. <a name="l02189"></a>02189
  2254. <a name="l02190"></a>02190 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 50 ) <span class="keyword">then</span>
  2255. <a name="l02191"></a>02191
  2256. <a name="l02192"></a>02192 xtab( 1) = -9.18240695813D+00
  2257. <a name="l02193"></a>02193 xtab( 2) = -8.52277103092D+00
  2258. <a name="l02194"></a>02194 xtab( 3) = -7.97562236821D+00
  2259. <a name="l02195"></a>02195 xtab( 4) = -7.48640942986D+00
  2260. <a name="l02196"></a>02196 xtab( 5) = -7.03432350977D+00
  2261. <a name="l02197"></a>02197 xtab( 6) = -6.60864797386D+00
  2262. <a name="l02198"></a>02198 xtab( 7) = -6.20295251927D+00
  2263. <a name="l02199"></a>02199 xtab( 8) = -5.81299467542D+00
  2264. <a name="l02200"></a>02200 xtab( 9) = -5.43578608722D+00
  2265. <a name="l02201"></a>02201 xtab(10) = -5.06911758492D+00
  2266. <a name="l02202"></a>02202 xtab(11) = -4.71129366617D+00
  2267. <a name="l02203"></a>02203 xtab(12) = -4.36097316045D+00
  2268. <a name="l02204"></a>02204 xtab(13) = -4.01706817286D+00
  2269. <a name="l02205"></a>02205 xtab(14) = -3.67867706252D+00
  2270. <a name="l02206"></a>02206 xtab(15) = -3.34503831394D+00
  2271. <a name="l02207"></a>02207 xtab(16) = -3.01549776957D+00
  2272. <a name="l02208"></a>02208 xtab(17) = -2.68948470227D+00
  2273. <a name="l02209"></a>02209 xtab(18) = -2.36649390430D+00
  2274. <a name="l02210"></a>02210 xtab(19) = -2.04607196869D+00
  2275. <a name="l02211"></a>02211 xtab(20) = -1.72780654752D+00
  2276. <a name="l02212"></a>02212 xtab(21) = -1.41131775490D+00
  2277. <a name="l02213"></a>02213 xtab(22) = -1.09625112896D+00
  2278. <a name="l02214"></a>02214 xtab(23) = -0.782271729555D+00
  2279. <a name="l02215"></a>02215 xtab(24) = -0.469059056678D+00
  2280. <a name="l02216"></a>02216 xtab(25) = -0.156302546889D+00
  2281. <a name="l02217"></a>02217 xtab(26) = 0.156302546889D+00
  2282. <a name="l02218"></a>02218 xtab(27) = 0.469059056678D+00
  2283. <a name="l02219"></a>02219 xtab(28) = 0.782271729555D+00
  2284. <a name="l02220"></a>02220 xtab(29) = 1.09625112896D+00
  2285. <a name="l02221"></a>02221 xtab(30) = 1.41131775490D+00
  2286. <a name="l02222"></a>02222 xtab(31) = 1.72780654752D+00
  2287. <a name="l02223"></a>02223 xtab(32) = 2.04607196869D+00
  2288. <a name="l02224"></a>02224 xtab(33) = 2.36649390430D+00
  2289. <a name="l02225"></a>02225 xtab(34) = 2.68948470227D+00
  2290. <a name="l02226"></a>02226 xtab(35) = 3.01549776957D+00
  2291. <a name="l02227"></a>02227 xtab(36) = 3.34503831394D+00
  2292. <a name="l02228"></a>02228 xtab(37) = 3.67867706252D+00
  2293. <a name="l02229"></a>02229 xtab(38) = 4.01706817286D+00
  2294. <a name="l02230"></a>02230 xtab(39) = 4.36097316045D+00
  2295. <a name="l02231"></a>02231 xtab(40) = 4.71129366617D+00
  2296. <a name="l02232"></a>02232 xtab(41) = 5.06911758492D+00
  2297. <a name="l02233"></a>02233 xtab(42) = 5.43578608722D+00
  2298. <a name="l02234"></a>02234 xtab(43) = 5.81299467542D+00
  2299. <a name="l02235"></a>02235 xtab(44) = 6.20295251927D+00
  2300. <a name="l02236"></a>02236 xtab(45) = 6.60864797386D+00
  2301. <a name="l02237"></a>02237 xtab(46) = 7.03432350977D+00
  2302. <a name="l02238"></a>02238 xtab(47) = 7.48640942986D+00
  2303. <a name="l02239"></a>02239 xtab(48) = 7.97562236821D+00
  2304. <a name="l02240"></a>02240 xtab(49) = 8.52277103092D+00
  2305. <a name="l02241"></a>02241 xtab(50) = 9.18240695813D+00
  2306. <a name="l02242"></a>02242
  2307. <a name="l02243"></a>02243 weight( 1) = 0.183379404857D-36
  2308. <a name="l02244"></a>02244 weight( 2) = 0.167380166790D-31
  2309. <a name="l02245"></a>02245 weight( 3) = 0.121524412340D-27
  2310. <a name="l02246"></a>02246 weight( 4) = 0.213765830835D-24
  2311. <a name="l02247"></a>02247 weight( 5) = 0.141709359957D-21
  2312. <a name="l02248"></a>02248 weight( 6) = 0.447098436530D-19
  2313. <a name="l02249"></a>02249 weight( 7) = 0.774238295702D-17
  2314. <a name="l02250"></a>02250 weight( 8) = 0.809426189344D-15
  2315. <a name="l02251"></a>02251 weight( 9) = 0.546594403180D-13
  2316. <a name="l02252"></a>02252 weight(10) = 0.250665552389D-11
  2317. <a name="l02253"></a>02253 weight(11) = 0.811187736448D-10
  2318. <a name="l02254"></a>02254 weight(12) = 0.190904054379D-08
  2319. <a name="l02255"></a>02255 weight(13) = 0.334679340401D-07
  2320. <a name="l02256"></a>02256 weight(14) = 0.445702996680D-06
  2321. <a name="l02257"></a>02257 weight(15) = 0.458168270794D-05
  2322. <a name="l02258"></a>02258 weight(16) = 0.368401905377D-04
  2323. <a name="l02259"></a>02259 weight(17) = 0.234269892109D-03
  2324. <a name="l02260"></a>02260 weight(18) = 0.118901178175D-02
  2325. <a name="l02261"></a>02261 weight(19) = 0.485326382616D-02
  2326. <a name="l02262"></a>02262 weight(20) = 0.160319410684D-01
  2327. <a name="l02263"></a>02263 weight(21) = 0.430791591566D-01
  2328. <a name="l02264"></a>02264 weight(22) = 0.945489354768D-01
  2329. <a name="l02265"></a>02265 weight(23) = 0.170032455676D+00
  2330. <a name="l02266"></a>02266 weight(24) = 0.251130856331D+00
  2331. <a name="l02267"></a>02267 weight(25) = 0.305085129203D+00
  2332. <a name="l02268"></a>02268 weight(26) = 0.305085129203D+00
  2333. <a name="l02269"></a>02269 weight(27) = 0.251130856331D+00
  2334. <a name="l02270"></a>02270 weight(28) = 0.170032455676D+00
  2335. <a name="l02271"></a>02271 weight(29) = 0.945489354768D-01
  2336. <a name="l02272"></a>02272 weight(30) = 0.430791591566D-01
  2337. <a name="l02273"></a>02273 weight(31) = 0.160319410684D-01
  2338. <a name="l02274"></a>02274 weight(32) = 0.485326382616D-02
  2339. <a name="l02275"></a>02275 weight(33) = 0.118901178175D-02
  2340. <a name="l02276"></a>02276 weight(34) = 0.234269892109D-03
  2341. <a name="l02277"></a>02277 weight(35) = 0.368401905377D-04
  2342. <a name="l02278"></a>02278 weight(36) = 0.458168270794D-05
  2343. <a name="l02279"></a>02279 weight(37) = 0.445702996680D-06
  2344. <a name="l02280"></a>02280 weight(38) = 0.334679340401D-07
  2345. <a name="l02281"></a>02281 weight(39) = 0.190904054379D-08
  2346. <a name="l02282"></a>02282 weight(40) = 0.811187736448D-10
  2347. <a name="l02283"></a>02283 weight(41) = 0.250665552389D-11
  2348. <a name="l02284"></a>02284 weight(42) = 0.546594403180D-13
  2349. <a name="l02285"></a>02285 weight(43) = 0.809426189344D-15
  2350. <a name="l02286"></a>02286 weight(44) = 0.774238295702D-17
  2351. <a name="l02287"></a>02287 weight(45) = 0.447098436530D-19
  2352. <a name="l02288"></a>02288 weight(46) = 0.141709359957D-21
  2353. <a name="l02289"></a>02289 weight(47) = 0.213765830835D-24
  2354. <a name="l02290"></a>02290 weight(48) = 0.121524412340D-27
  2355. <a name="l02291"></a>02291 weight(49) = 0.167380166790D-31
  2356. <a name="l02292"></a>02292 weight(50) = 0.183379404857D-36
  2357. <a name="l02293"></a>02293
  2358. <a name="l02294"></a>02294 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 60 ) <span class="keyword">then</span>
  2359. <a name="l02295"></a>02295
  2360. <a name="l02296"></a>02296 xtab( 1) = -10.1591092462D+00
  2361. <a name="l02297"></a>02297 xtab( 2) = -9.52090367701D+00
  2362. <a name="l02298"></a>02298 xtab( 3) = -8.99239800140D+00
  2363. <a name="l02299"></a>02299 xtab( 4) = -8.52056928412D+00
  2364. <a name="l02300"></a>02300 xtab( 5) = -8.08518865425D+00
  2365. <a name="l02301"></a>02301 xtab( 6) = -7.67583993750D+00
  2366. <a name="l02302"></a>02302 xtab( 7) = -7.28627659440D+00
  2367. <a name="l02303"></a>02303 xtab( 8) = -6.91238153219D+00
  2368. <a name="l02304"></a>02304 xtab( 9) = -6.55125916706D+00
  2369. <a name="l02305"></a>02305 xtab(10) = -6.20077355799D+00
  2370. <a name="l02306"></a>02306 xtab(11) = -5.85929019639D+00
  2371. <a name="l02307"></a>02307 xtab(12) = -5.52552108614D+00
  2372. <a name="l02308"></a>02308 xtab(13) = -5.19842653458D+00
  2373. <a name="l02309"></a>02309 xtab(14) = -4.87715007747D+00
  2374. <a name="l02310"></a>02310 xtab(15) = -4.56097375794D+00
  2375. <a name="l02311"></a>02311 xtab(16) = -4.24928643596D+00
  2376. <a name="l02312"></a>02312 xtab(17) = -3.94156073393D+00
  2377. <a name="l02313"></a>02313 xtab(18) = -3.63733587617D+00
  2378. <a name="l02314"></a>02314 xtab(19) = -3.33620465355D+00
  2379. <a name="l02315"></a>02315 xtab(20) = -3.03780333823D+00
  2380. <a name="l02316"></a>02316 xtab(21) = -2.74180374807D+00
  2381. <a name="l02317"></a>02317 xtab(22) = -2.44790690231D+00
  2382. <a name="l02318"></a>02318 xtab(23) = -2.15583787123D+00
  2383. <a name="l02319"></a>02319 xtab(24) = -1.86534153123D+00
  2384. <a name="l02320"></a>02320 xtab(25) = -1.57617901198D+00
  2385. <a name="l02321"></a>02321 xtab(26) = -1.28812467487D+00
  2386. <a name="l02322"></a>02322 xtab(27) = -1.00096349956D+00
  2387. <a name="l02323"></a>02323 xtab(28) = -0.714488781673D+00
  2388. <a name="l02324"></a>02324 xtab(29) = -0.428500064221D+00
  2389. <a name="l02325"></a>02325 xtab(30) = -0.142801238703D+00
  2390. <a name="l02326"></a>02326 xtab(31) = 0.142801238703D+00
  2391. <a name="l02327"></a>02327 xtab(32) = 0.428500064221D+00
  2392. <a name="l02328"></a>02328 xtab(33) = 0.714488781673D+00
  2393. <a name="l02329"></a>02329 xtab(34) = 1.00096349956D+00
  2394. <a name="l02330"></a>02330 xtab(35) = 1.28812467487D+00
  2395. <a name="l02331"></a>02331 xtab(36) = 1.57617901198D+00
  2396. <a name="l02332"></a>02332 xtab(37) = 1.86534153123D+00
  2397. <a name="l02333"></a>02333 xtab(38) = 2.15583787123D+00
  2398. <a name="l02334"></a>02334 xtab(39) = 2.44790690231D+00
  2399. <a name="l02335"></a>02335 xtab(40) = 2.74180374807D+00
  2400. <a name="l02336"></a>02336 xtab(41) = 3.03780333823D+00
  2401. <a name="l02337"></a>02337 xtab(42) = 3.33620465355D+00
  2402. <a name="l02338"></a>02338 xtab(43) = 3.63733587617D+00
  2403. <a name="l02339"></a>02339 xtab(44) = 3.94156073393D+00
  2404. <a name="l02340"></a>02340 xtab(45) = 4.24928643596D+00
  2405. <a name="l02341"></a>02341 xtab(46) = 4.56097375794D+00
  2406. <a name="l02342"></a>02342 xtab(47) = 4.87715007747D+00
  2407. <a name="l02343"></a>02343 xtab(48) = 5.19842653458D+00
  2408. <a name="l02344"></a>02344 xtab(49) = 5.52552108614D+00
  2409. <a name="l02345"></a>02345 xtab(50) = 5.85929019639D+00
  2410. <a name="l02346"></a>02346 xtab(51) = 6.20077355799D+00
  2411. <a name="l02347"></a>02347 xtab(52) = 6.55125916706D+00
  2412. <a name="l02348"></a>02348 xtab(53) = 6.91238153219D+00
  2413. <a name="l02349"></a>02349 xtab(54) = 7.28627659440D+00
  2414. <a name="l02350"></a>02350 xtab(55) = 7.67583993750D+00
  2415. <a name="l02351"></a>02351 xtab(56) = 8.08518865425D+00
  2416. <a name="l02352"></a>02352 xtab(57) = 8.52056928412D+00
  2417. <a name="l02353"></a>02353 xtab(58) = 8.99239800140D+00
  2418. <a name="l02354"></a>02354 xtab(59) = 9.52090367701D+00
  2419. <a name="l02355"></a>02355 xtab(60) = 10.1591092462D+00
  2420. <a name="l02356"></a>02356
  2421. <a name="l02357"></a>02357 weight( 1) = 0.110958724796D-44
  2422. <a name="l02358"></a>02358 weight( 2) = 0.243974758810D-39
  2423. <a name="l02359"></a>02359 weight( 3) = 0.377162672698D-35
  2424. <a name="l02360"></a>02360 weight( 4) = 0.133255961176D-31
  2425. <a name="l02361"></a>02361 weight( 5) = 0.171557314767D-28
  2426. <a name="l02362"></a>02362 weight( 6) = 0.102940599693D-25
  2427. <a name="l02363"></a>02363 weight( 7) = 0.334575695574D-23
  2428. <a name="l02364"></a>02364 weight( 8) = 0.651256725748D-21
  2429. <a name="l02365"></a>02365 weight( 9) = 0.815364047300D-19
  2430. <a name="l02366"></a>02366 weight(10) = 0.692324790956D-17
  2431. <a name="l02367"></a>02367 weight(11) = 0.415244410968D-15
  2432. <a name="l02368"></a>02368 weight(12) = 0.181662457614D-13
  2433. <a name="l02369"></a>02369 weight(13) = 0.594843051597D-12
  2434. <a name="l02370"></a>02370 weight(14) = 0.148895734905D-10
  2435. <a name="l02371"></a>02371 weight(15) = 0.289935901280D-09
  2436. <a name="l02372"></a>02372 weight(16) = 0.445682277521D-08
  2437. <a name="l02373"></a>02373 weight(17) = 0.547555461926D-07
  2438. <a name="l02374"></a>02374 weight(18) = 0.543351613419D-06
  2439. <a name="l02375"></a>02375 weight(19) = 0.439428693625D-05
  2440. <a name="l02376"></a>02376 weight(20) = 0.291874190415D-04
  2441. <a name="l02377"></a>02377 weight(21) = 0.160277334681D-03
  2442. <a name="l02378"></a>02378 weight(22) = 0.731773556963D-03
  2443. <a name="l02379"></a>02379 weight(23) = 0.279132482894D-02
  2444. <a name="l02380"></a>02380 weight(24) = 0.893217836028D-02
  2445. <a name="l02381"></a>02381 weight(25) = 0.240612727660D-01
  2446. <a name="l02382"></a>02382 weight(26) = 0.547189709320D-01
  2447. <a name="l02383"></a>02383 weight(27) = 0.105298763697D+00
  2448. <a name="l02384"></a>02384 weight(28) = 0.171776156918D+00
  2449. <a name="l02385"></a>02385 weight(29) = 0.237868904958D+00
  2450. <a name="l02386"></a>02386 weight(30) = 0.279853117522D+00
  2451. <a name="l02387"></a>02387 weight(31) = 0.279853117522D+00
  2452. <a name="l02388"></a>02388 weight(32) = 0.237868904958D+00
  2453. <a name="l02389"></a>02389 weight(33) = 0.171776156918D+00
  2454. <a name="l02390"></a>02390 weight(34) = 0.105298763697D+00
  2455. <a name="l02391"></a>02391 weight(35) = 0.547189709320D-01
  2456. <a name="l02392"></a>02392 weight(36) = 0.240612727660D-01
  2457. <a name="l02393"></a>02393 weight(37) = 0.893217836028D-02
  2458. <a name="l02394"></a>02394 weight(38) = 0.279132482894D-02
  2459. <a name="l02395"></a>02395 weight(39) = 0.731773556963D-03
  2460. <a name="l02396"></a>02396 weight(40) = 0.160277334681D-03
  2461. <a name="l02397"></a>02397 weight(41) = 0.291874190415D-04
  2462. <a name="l02398"></a>02398 weight(42) = 0.439428693625D-05
  2463. <a name="l02399"></a>02399 weight(43) = 0.543351613419D-06
  2464. <a name="l02400"></a>02400 weight(44) = 0.547555461926D-07
  2465. <a name="l02401"></a>02401 weight(45) = 0.445682277521D-08
  2466. <a name="l02402"></a>02402 weight(46) = 0.289935901280D-09
  2467. <a name="l02403"></a>02403 weight(47) = 0.148895734905D-10
  2468. <a name="l02404"></a>02404 weight(48) = 0.594843051597D-12
  2469. <a name="l02405"></a>02405 weight(49) = 0.181662457614D-13
  2470. <a name="l02406"></a>02406 weight(50) = 0.415244410968D-15
  2471. <a name="l02407"></a>02407 weight(51) = 0.692324790956D-17
  2472. <a name="l02408"></a>02408 weight(52) = 0.815364047300D-19
  2473. <a name="l02409"></a>02409 weight(53) = 0.651256725748D-21
  2474. <a name="l02410"></a>02410 weight(54) = 0.334575695574D-23
  2475. <a name="l02411"></a>02411 weight(55) = 0.102940599693D-25
  2476. <a name="l02412"></a>02412 weight(56) = 0.171557314767D-28
  2477. <a name="l02413"></a>02413 weight(57) = 0.133255961176D-31
  2478. <a name="l02414"></a>02414 weight(58) = 0.377162672698D-35
  2479. <a name="l02415"></a>02415 weight(59) = 0.243974758810D-39
  2480. <a name="l02416"></a>02416 weight(60) = 0.110958724796D-44
  2481. <a name="l02417"></a>02417
  2482. <a name="l02418"></a>02418 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 64 ) <span class="keyword">then</span>
  2483. <a name="l02419"></a>02419
  2484. <a name="l02420"></a>02420 xtab( 1) = -10.5261231680D+00
  2485. <a name="l02421"></a>02421 xtab( 2) = -9.89528758683D+00
  2486. <a name="l02422"></a>02422 xtab( 3) = -9.37315954965D+00
  2487. <a name="l02423"></a>02423 xtab( 4) = -8.90724909996D+00
  2488. <a name="l02424"></a>02424 xtab( 5) = -8.47752908338D+00
  2489. <a name="l02425"></a>02425 xtab( 6) = -8.07368728501D+00
  2490. <a name="l02426"></a>02426 xtab( 7) = -7.68954016404D+00
  2491. <a name="l02427"></a>02427 xtab( 8) = -7.32101303278D+00
  2492. <a name="l02428"></a>02428 xtab( 9) = -6.96524112055D+00
  2493. <a name="l02429"></a>02429 xtab(10) = -6.62011226264D+00
  2494. <a name="l02430"></a>02430 xtab(11) = -6.28401122877D+00
  2495. <a name="l02431"></a>02431 xtab(12) = -5.95566632680D+00
  2496. <a name="l02432"></a>02432 xtab(13) = -5.63405216435D+00
  2497. <a name="l02433"></a>02433 xtab(14) = -5.31832522463D+00
  2498. <a name="l02434"></a>02434 xtab(15) = -5.00777960220D+00
  2499. <a name="l02435"></a>02435 xtab(16) = -4.70181564741D+00
  2500. <a name="l02436"></a>02436 xtab(17) = -4.39991716823D+00
  2501. <a name="l02437"></a>02437 xtab(18) = -4.10163447457D+00
  2502. <a name="l02438"></a>02438 xtab(19) = -3.80657151395D+00
  2503. <a name="l02439"></a>02439 xtab(20) = -3.51437593574D+00
  2504. <a name="l02440"></a>02440 xtab(21) = -3.22473129199D+00
  2505. <a name="l02441"></a>02441 xtab(22) = -2.93735082300D+00
  2506. <a name="l02442"></a>02442 xtab(23) = -2.65197243543D+00
  2507. <a name="l02443"></a>02443 xtab(24) = -2.36835458863D+00
  2508. <a name="l02444"></a>02444 xtab(25) = -2.08627287988D+00
  2509. <a name="l02445"></a>02445 xtab(26) = -1.80551717147D+00
  2510. <a name="l02446"></a>02446 xtab(27) = -1.52588914021D+00
  2511. <a name="l02447"></a>02447 xtab(28) = -1.24720015694D+00
  2512. <a name="l02448"></a>02448 xtab(29) = -0.969269423071D+00
  2513. <a name="l02449"></a>02449 xtab(30) = -0.691922305810D+00
  2514. <a name="l02450"></a>02450 xtab(31) = -0.414988824121D+00
  2515. <a name="l02451"></a>02451 xtab(32) = -0.138302244987D+00
  2516. <a name="l02452"></a>02452 xtab(33) = 0.138302244987D+00
  2517. <a name="l02453"></a>02453 xtab(34) = 0.414988824121D+00
  2518. <a name="l02454"></a>02454 xtab(35) = 0.691922305810D+00
  2519. <a name="l02455"></a>02455 xtab(36) = 0.969269423071D+00
  2520. <a name="l02456"></a>02456 xtab(37) = 1.24720015694D+00
  2521. <a name="l02457"></a>02457 xtab(38) = 1.52588914021D+00
  2522. <a name="l02458"></a>02458 xtab(39) = 1.80551717147D+00
  2523. <a name="l02459"></a>02459 xtab(40) = 2.08627287988D+00
  2524. <a name="l02460"></a>02460 xtab(41) = 2.36835458863D+00
  2525. <a name="l02461"></a>02461 xtab(42) = 2.65197243543D+00
  2526. <a name="l02462"></a>02462 xtab(43) = 2.93735082300D+00
  2527. <a name="l02463"></a>02463 xtab(44) = 3.22473129199D+00
  2528. <a name="l02464"></a>02464 xtab(45) = 3.51437593574D+00
  2529. <a name="l02465"></a>02465 xtab(46) = 3.80657151395D+00
  2530. <a name="l02466"></a>02466 xtab(47) = 4.10163447457D+00
  2531. <a name="l02467"></a>02467 xtab(48) = 4.39991716823D+00
  2532. <a name="l02468"></a>02468 xtab(49) = 4.70181564741D+00
  2533. <a name="l02469"></a>02469 xtab(50) = 5.00777960220D+00
  2534. <a name="l02470"></a>02470 xtab(51) = 5.31832522463D+00
  2535. <a name="l02471"></a>02471 xtab(52) = 5.63405216435D+00
  2536. <a name="l02472"></a>02472 xtab(53) = 5.95566632680D+00
  2537. <a name="l02473"></a>02473 xtab(54) = 6.28401122877D+00
  2538. <a name="l02474"></a>02474 xtab(55) = 6.62011226264D+00
  2539. <a name="l02475"></a>02475 xtab(56) = 6.96524112055D+00
  2540. <a name="l02476"></a>02476 xtab(57) = 7.32101303278D+00
  2541. <a name="l02477"></a>02477 xtab(58) = 7.68954016404D+00
  2542. <a name="l02478"></a>02478 xtab(59) = 8.07368728501D+00
  2543. <a name="l02479"></a>02479 xtab(60) = 8.47752908338D+00
  2544. <a name="l02480"></a>02480 xtab(61) = 8.90724909996D+00
  2545. <a name="l02481"></a>02481 xtab(62) = 9.37315954965D+00
  2546. <a name="l02482"></a>02482 xtab(63) = 9.89528758683D+00
  2547. <a name="l02483"></a>02483 xtab(64) = 10.5261231680D+00
  2548. <a name="l02484"></a>02484
  2549. <a name="l02485"></a>02485 weight( 1) = 0.553570653584D-48
  2550. <a name="l02486"></a>02486 weight( 2) = 0.167974799010D-42
  2551. <a name="l02487"></a>02487 weight( 3) = 0.342113801099D-38
  2552. <a name="l02488"></a>02488 weight( 4) = 0.155739062462D-34
  2553. <a name="l02489"></a>02489 weight( 5) = 0.254966089910D-31
  2554. <a name="l02490"></a>02490 weight( 6) = 0.192910359546D-28
  2555. <a name="l02491"></a>02491 weight( 7) = 0.786179778889D-26
  2556. <a name="l02492"></a>02492 weight( 8) = 0.191170688329D-23
  2557. <a name="l02493"></a>02493 weight( 9) = 0.298286278427D-21
  2558. <a name="l02494"></a>02494 weight(10) = 0.315225456649D-19
  2559. <a name="l02495"></a>02495 weight(11) = 0.235188471067D-17
  2560. <a name="l02496"></a>02496 weight(12) = 0.128009339117D-15
  2561. <a name="l02497"></a>02497 weight(13) = 0.521862372645D-14
  2562. <a name="l02498"></a>02498 weight(14) = 0.162834073070D-12
  2563. <a name="l02499"></a>02499 weight(15) = 0.395917776693D-11
  2564. <a name="l02500"></a>02500 weight(16) = 0.761521725012D-10
  2565. <a name="l02501"></a>02501 weight(17) = 0.117361674232D-08
  2566. <a name="l02502"></a>02502 weight(18) = 0.146512531647D-07
  2567. <a name="l02503"></a>02503 weight(19) = 0.149553293672D-06
  2568. <a name="l02504"></a>02504 weight(20) = 0.125834025103D-05
  2569. <a name="l02505"></a>02505 weight(21) = 0.878849923082D-05
  2570. <a name="l02506"></a>02506 weight(22) = 0.512592913577D-04
  2571. <a name="l02507"></a>02507 weight(23) = 0.250983698512D-03
  2572. <a name="l02508"></a>02508 weight(24) = 0.103632909950D-02
  2573. <a name="l02509"></a>02509 weight(25) = 0.362258697852D-02
  2574. <a name="l02510"></a>02510 weight(26) = 0.107560405098D-01
  2575. <a name="l02511"></a>02511 weight(27) = 0.272031289536D-01
  2576. <a name="l02512"></a>02512 weight(28) = 0.587399819634D-01
  2577. <a name="l02513"></a>02513 weight(29) = 0.108498349306D+00
  2578. <a name="l02514"></a>02514 weight(30) = 0.171685842349D+00
  2579. <a name="l02515"></a>02515 weight(31) = 0.232994786062D+00
  2580. <a name="l02516"></a>02516 weight(32) = 0.271377424940D+00
  2581. <a name="l02517"></a>02517 weight(33) = 0.271377424940D+00
  2582. <a name="l02518"></a>02518 weight(34) = 0.232994786062D+00
  2583. <a name="l02519"></a>02519 weight(35) = 0.171685842349D+00
  2584. <a name="l02520"></a>02520 weight(36) = 0.108498349306D+00
  2585. <a name="l02521"></a>02521 weight(37) = 0.587399819634D-01
  2586. <a name="l02522"></a>02522 weight(38) = 0.272031289536D-01
  2587. <a name="l02523"></a>02523 weight(39) = 0.107560405098D-01
  2588. <a name="l02524"></a>02524 weight(40) = 0.362258697852D-02
  2589. <a name="l02525"></a>02525 weight(41) = 0.103632909950D-02
  2590. <a name="l02526"></a>02526 weight(42) = 0.250983698512D-03
  2591. <a name="l02527"></a>02527 weight(43) = 0.512592913577D-04
  2592. <a name="l02528"></a>02528 weight(44) = 0.878849923082D-05
  2593. <a name="l02529"></a>02529 weight(45) = 0.125834025103D-05
  2594. <a name="l02530"></a>02530 weight(46) = 0.149553293672D-06
  2595. <a name="l02531"></a>02531 weight(47) = 0.146512531647D-07
  2596. <a name="l02532"></a>02532 weight(48) = 0.117361674232D-08
  2597. <a name="l02533"></a>02533 weight(49) = 0.761521725012D-10
  2598. <a name="l02534"></a>02534 weight(50) = 0.395917776693D-11
  2599. <a name="l02535"></a>02535 weight(51) = 0.162834073070D-12
  2600. <a name="l02536"></a>02536 weight(52) = 0.521862372645D-14
  2601. <a name="l02537"></a>02537 weight(53) = 0.128009339117D-15
  2602. <a name="l02538"></a>02538 weight(54) = 0.235188471067D-17
  2603. <a name="l02539"></a>02539 weight(55) = 0.315225456649D-19
  2604. <a name="l02540"></a>02540 weight(56) = 0.298286278427D-21
  2605. <a name="l02541"></a>02541 weight(57) = 0.191170688329D-23
  2606. <a name="l02542"></a>02542 weight(58) = 0.786179778889D-26
  2607. <a name="l02543"></a>02543 weight(59) = 0.192910359546D-28
  2608. <a name="l02544"></a>02544 weight(60) = 0.254966089910D-31
  2609. <a name="l02545"></a>02545 weight(61) = 0.155739062462D-34
  2610. <a name="l02546"></a>02546 weight(62) = 0.342113801099D-38
  2611. <a name="l02547"></a>02547 weight(63) = 0.167974799010D-42
  2612. <a name="l02548"></a>02548 weight(64) = 0.553570653584D-48
  2613. <a name="l02549"></a>02549
  2614. <a name="l02550"></a>02550 <span class="keyword">else</span>
  2615. <a name="l02551"></a>02551
  2616. <a name="l02552"></a>02552 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  2617. <a name="l02553"></a>02553 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;HERMITE_SET - Fatal error!&#39;</span>
  2618. <a name="l02554"></a>02554 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  2619. <a name="l02555"></a>02555 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; Legal values are 1 to 20,&#39;</span>
  2620. <a name="l02556"></a>02556 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; 30, 32, 40, 50, 60 and 64.&#39;</span>
  2621. <a name="l02557"></a>02557 stop
  2622. <a name="l02558"></a>02558
  2623. <a name="l02559"></a>02559 <span class="keyword">end if</span>
  2624. <a name="l02560"></a>02560
  2625. <a name="l02561"></a>02561 return
  2626. <a name="l02562"></a>02562 <span class="keyword">end</span>
  2627. <a name="l02563"></a><a class="code" href="quadrule_8f90.html#a85d3b6982259e08e48b68f923ebaf48a">02563</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a85d3b6982259e08e48b68f923ebaf48a">jacobi_com</a> ( norder, xtab, weight, alpha, beta )
  2628. <a name="l02564"></a>02564 <span class="comment">!</span>
  2629. <a name="l02565"></a>02565 <span class="comment">!*******************************************************************************</span>
  2630. <a name="l02566"></a>02566 <span class="comment">!</span>
  2631. <a name="l02567"></a>02567 <span class="comment">!! JACOBI_COM computes the abscissa and weights for Gauss-Jacobi quadrature.</span>
  2632. <a name="l02568"></a>02568 <span class="comment">!</span>
  2633. <a name="l02569"></a>02569 <span class="comment">!</span>
  2634. <a name="l02570"></a>02570 <span class="comment">! Integration interval:</span>
  2635. <a name="l02571"></a>02571 <span class="comment">!</span>
  2636. <a name="l02572"></a>02572 <span class="comment">! [ -1, 1 ]</span>
  2637. <a name="l02573"></a>02573 <span class="comment">!</span>
  2638. <a name="l02574"></a>02574 <span class="comment">! Weight function:</span>
  2639. <a name="l02575"></a>02575 <span class="comment">!</span>
  2640. <a name="l02576"></a>02576 <span class="comment">! 1.0D+00</span>
  2641. <a name="l02577"></a>02577 <span class="comment">!</span>
  2642. <a name="l02578"></a>02578 <span class="comment">! Integral to approximate:</span>
  2643. <a name="l02579"></a>02579 <span class="comment">!</span>
  2644. <a name="l02580"></a>02580 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) (1+X)**ALPHA * (1-X)**BETA * F(X) dX</span>
  2645. <a name="l02581"></a>02581 <span class="comment">!</span>
  2646. <a name="l02582"></a>02582 <span class="comment">! Approximate integral:</span>
  2647. <a name="l02583"></a>02583 <span class="comment">!</span>
  2648. <a name="l02584"></a>02584 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  2649. <a name="l02585"></a>02585 <span class="comment">!</span>
  2650. <a name="l02586"></a>02586 <span class="comment">! Reference:</span>
  2651. <a name="l02587"></a>02587 <span class="comment">!</span>
  2652. <a name="l02588"></a>02588 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  2653. <a name="l02589"></a>02589 <span class="comment">! Gaussian Quadrature Formulas,</span>
  2654. <a name="l02590"></a>02590 <span class="comment">! Prentice Hall, 1966.</span>
  2655. <a name="l02591"></a>02591 <span class="comment">!</span>
  2656. <a name="l02592"></a>02592 <span class="comment">! Modified:</span>
  2657. <a name="l02593"></a>02593 <span class="comment">!</span>
  2658. <a name="l02594"></a>02594 <span class="comment">! 09 September 2000</span>
  2659. <a name="l02595"></a>02595 <span class="comment">!</span>
  2660. <a name="l02596"></a>02596 <span class="comment">! Parameters:</span>
  2661. <a name="l02597"></a>02597 <span class="comment">!</span>
  2662. <a name="l02598"></a>02598 <span class="comment">! Input, integer NORDER, the order of the quadrature rule to be computed.</span>
  2663. <a name="l02599"></a>02599 <span class="comment">!</span>
  2664. <a name="l02600"></a>02600 <span class="comment">! Output, double precision XTAB(NORDER), the Gauss-Jacobi abscissas.</span>
  2665. <a name="l02601"></a>02601 <span class="comment">!</span>
  2666. <a name="l02602"></a>02602 <span class="comment">! Output, double precision WEIGHT(NORDER), the Gauss-Jacobi weights.</span>
  2667. <a name="l02603"></a>02603 <span class="comment">!</span>
  2668. <a name="l02604"></a>02604 <span class="comment">! Input, double precision ALPHA, BETA, the exponents of (1+X) and</span>
  2669. <a name="l02605"></a>02605 <span class="comment">! (1-X) in the quadrature rule. For simple Gauss-Legendre quadrature,</span>
  2670. <a name="l02606"></a>02606 <span class="comment">! set ALPHA = BETA = 0.0.</span>
  2671. <a name="l02607"></a>02607 <span class="comment">!</span>
  2672. <a name="l02608"></a>02608 <span class="keyword">implicit none</span>
  2673. <a name="l02609"></a>02609 <span class="comment">!</span>
  2674. <a name="l02610"></a>02610 <span class="keywordtype">integer</span> norder
  2675. <a name="l02611"></a>02611 <span class="comment">!</span>
  2676. <a name="l02612"></a>02612 <span class="keywordtype">double precision</span> alpha
  2677. <a name="l02613"></a>02613 <span class="keywordtype">double precision</span> an
  2678. <a name="l02614"></a>02614 <span class="keywordtype">double precision</span> b(norder)
  2679. <a name="l02615"></a>02615 <span class="keywordtype">double precision</span> beta
  2680. <a name="l02616"></a>02616 <span class="keywordtype">double precision</span> bn
  2681. <a name="l02617"></a>02617 <span class="keywordtype">double precision</span> c(norder)
  2682. <a name="l02618"></a>02618 <span class="keywordtype">double precision</span> cc
  2683. <a name="l02619"></a>02619 <span class="keywordtype">double precision</span> delta
  2684. <a name="l02620"></a>02620 <span class="keywordtype">double precision</span> dp2
  2685. <a name="l02621"></a>02621 <span class="keywordtype">double precision</span> log_gamma
  2686. <a name="l02622"></a>02622 <span class="keywordtype">integer</span> i
  2687. <a name="l02623"></a>02623 <span class="keywordtype">double precision</span> p1
  2688. <a name="l02624"></a>02624 <span class="keywordtype">double precision</span> r1
  2689. <a name="l02625"></a>02625 <span class="keywordtype">double precision</span> r2
  2690. <a name="l02626"></a>02626 <span class="keywordtype">double precision</span> r3
  2691. <a name="l02627"></a>02627 <span class="keywordtype">double precision</span> temp
  2692. <a name="l02628"></a>02628 <span class="keywordtype">double precision</span> weight(norder)
  2693. <a name="l02629"></a>02629 <span class="keywordtype">double precision</span> x
  2694. <a name="l02630"></a>02630 <span class="keywordtype">double precision</span> xtab(norder)
  2695. <a name="l02631"></a>02631 <span class="comment">!</span>
  2696. <a name="l02632"></a>02632 <span class="comment">! Set the recursion coefficients.</span>
  2697. <a name="l02633"></a>02633 <span class="comment">!</span>
  2698. <a name="l02634"></a>02634 <span class="keyword">do</span> i = 1, norder
  2699. <a name="l02635"></a>02635
  2700. <a name="l02636"></a>02636 <span class="keyword">if</span> ( alpha + beta == 0.0D+00 .or. beta - alpha == 0.0D+00) <span class="keyword">then</span>
  2701. <a name="l02637"></a>02637
  2702. <a name="l02638"></a>02638 b(i) = 0.0D+00
  2703. <a name="l02639"></a>02639
  2704. <a name="l02640"></a>02640 <span class="keyword">else</span>
  2705. <a name="l02641"></a>02641
  2706. <a name="l02642"></a>02642 b(i) = ( alpha + beta ) * ( beta - alpha ) / &amp;
  2707. <a name="l02643"></a>02643 ( ( alpha + beta + dble ( 2 * i ) ) &amp;
  2708. <a name="l02644"></a>02644 * ( alpha + beta + dble ( 2 * i - 2 ) ) )
  2709. <a name="l02645"></a>02645
  2710. <a name="l02646"></a>02646 <span class="keyword">end if</span>
  2711. <a name="l02647"></a>02647
  2712. <a name="l02648"></a>02648 <span class="keyword">if</span> ( i == 1 ) <span class="keyword">then</span>
  2713. <a name="l02649"></a>02649
  2714. <a name="l02650"></a>02650 c(i) = 0.0D+00
  2715. <a name="l02651"></a>02651
  2716. <a name="l02652"></a>02652 <span class="keyword">else</span>
  2717. <a name="l02653"></a>02653
  2718. <a name="l02654"></a>02654 c(i) = 4.0D+00 * dble ( i - 1 ) * ( alpha + dble ( i - 1 ) ) &amp;
  2719. <a name="l02655"></a>02655 * ( beta + dble ( i - 1 ) ) &amp;
  2720. <a name="l02656"></a>02656 * ( alpha + beta + dble ( i - 1 ) ) / &amp;
  2721. <a name="l02657"></a>02657 ( ( alpha + beta + dble ( 2 * i - 1 ) ) &amp;
  2722. <a name="l02658"></a>02658 * ( alpha + beta + dble ( 2 * i - 2 ) )**2 &amp;
  2723. <a name="l02659"></a>02659 * ( alpha + beta + dble ( 2 * i - 3 ) ) )
  2724. <a name="l02660"></a>02660
  2725. <a name="l02661"></a>02661 <span class="keyword">end if</span>
  2726. <a name="l02662"></a>02662
  2727. <a name="l02663"></a>02663 <span class="keyword">end do</span>
  2728. <a name="l02664"></a>02664
  2729. <a name="l02665"></a>02665 delta = exp ( log_gamma ( alpha + 1.0D+00 ) + log_gamma ( beta + 1.0D+00) &amp;
  2730. <a name="l02666"></a>02666 + log_gamma ( alpha + beta + 2.0D+00 ) )
  2731. <a name="l02667"></a>02667
  2732. <a name="l02668"></a>02668 cc = delta * 2.0D+00**( alpha + beta + 1.0D+00 ) * product ( c(2:norder) )
  2733. <a name="l02669"></a>02669
  2734. <a name="l02670"></a>02670 <span class="keyword">do</span> i = 1, norder
  2735. <a name="l02671"></a>02671
  2736. <a name="l02672"></a>02672 <span class="keyword">if</span> ( i == 1 ) <span class="keyword">then</span>
  2737. <a name="l02673"></a>02673
  2738. <a name="l02674"></a>02674 an = alpha / dble ( norder )
  2739. <a name="l02675"></a>02675 bn = beta / dble ( norder )
  2740. <a name="l02676"></a>02676
  2741. <a name="l02677"></a>02677 r1 = ( 1.0D+00 + alpha ) * ( 2.78D+00 / ( 4.0D+00+ dble ( norder**2 ) ) &amp;
  2742. <a name="l02678"></a>02678 + 0.768D+00 * an / dble ( norder ) )
  2743. <a name="l02679"></a>02679
  2744. <a name="l02680"></a>02680 r2 = 1.0D+00 + 1.48D+00 * an + 0.96D+00 * bn &amp;
  2745. <a name="l02681"></a>02681 + 0.452D+00 * an**2 + 0.83D+00 * an * bn
  2746. <a name="l02682"></a>02682
  2747. <a name="l02683"></a>02683 x = ( r2 - r1 ) / r2
  2748. <a name="l02684"></a>02684
  2749. <a name="l02685"></a>02685 <span class="keyword">else</span> <span class="keyword">if</span> ( i == 2 ) <span class="keyword">then</span>
  2750. <a name="l02686"></a>02686
  2751. <a name="l02687"></a>02687 r1 = ( 4.1D+00 + alpha ) / &amp;
  2752. <a name="l02688"></a>02688 ( ( 1.0D+00 + alpha ) * ( 1.0D+00 + 0.156D+00 * alpha ) )
  2753. <a name="l02689"></a>02689
  2754. <a name="l02690"></a>02690 r2 = 1.0D+00 + 0.06D+00 * ( dble ( norder ) - 8.0D+00 ) * &amp;
  2755. <a name="l02691"></a>02691 ( 1.0D+00 + 0.12D+00 * alpha ) / dble ( norder )
  2756. <a name="l02692"></a>02692
  2757. <a name="l02693"></a>02693 r3 = 1.0D+00 + 0.012D+00 * beta * &amp;
  2758. <a name="l02694"></a>02694 ( 1.0D+00 + 0.25D+00 * abs ( alpha ) ) / dble ( norder )
  2759. <a name="l02695"></a>02695
  2760. <a name="l02696"></a>02696 x = x - r1 * r2 * r3 * ( 1.0D+00 - x )
  2761. <a name="l02697"></a>02697
  2762. <a name="l02698"></a>02698 <span class="keyword">else</span> <span class="keyword">if</span> ( i == 3 ) <span class="keyword">then</span>
  2763. <a name="l02699"></a>02699
  2764. <a name="l02700"></a>02700 r1 = ( 1.67D+00 + 0.28D+00 * alpha ) / ( 1.0D+00 + 0.37D+00 * alpha )
  2765. <a name="l02701"></a>02701
  2766. <a name="l02702"></a>02702 r2 = 1.0D+00 + 0.22D+00 * ( dble ( norder ) - 8.0D+00 ) / dble ( norder )
  2767. <a name="l02703"></a>02703
  2768. <a name="l02704"></a>02704 r3 = 1.0D+00 + 8.0D+00 * beta / &amp;
  2769. <a name="l02705"></a>02705 ( ( 6.28D+00 + beta ) * dble ( norder**2 ) )
  2770. <a name="l02706"></a>02706
  2771. <a name="l02707"></a>02707 x = x - r1 * r2 * r3 * ( xtab(1) - x )
  2772. <a name="l02708"></a>02708
  2773. <a name="l02709"></a>02709 <span class="keyword">else</span> <span class="keyword">if</span> ( i &lt; norder - 1 ) <span class="keyword">then</span>
  2774. <a name="l02710"></a>02710
  2775. <a name="l02711"></a>02711 x = 3.0D+00 * xtab(i-1) - 3.0D+00 * xtab(i-2) + xtab(i-3)
  2776. <a name="l02712"></a>02712
  2777. <a name="l02713"></a>02713 <span class="keyword">else</span> <span class="keyword">if</span> ( i == norder - 1 ) <span class="keyword">then</span>
  2778. <a name="l02714"></a>02714
  2779. <a name="l02715"></a>02715 r1 = ( 1.0D+00 + 0.235D+00 * beta ) / ( 0.766D+00 + 0.119D+00 * beta )
  2780. <a name="l02716"></a>02716
  2781. <a name="l02717"></a>02717 r2 = 1.0D+00 / ( 1.0D+00 + 0.639D+00 * ( dble ( norder ) - 4.0D+00 ) &amp;
  2782. <a name="l02718"></a>02718 / ( 1.0D+00 + 0.71D+00 * ( dble ( norder ) - 4.0D+00 ) ) )
  2783. <a name="l02719"></a>02719
  2784. <a name="l02720"></a>02720 r3 = 1.0D+00 / ( 1.0D+00 + 20.0D+00 * alpha / ( ( 7.5D+00 + alpha ) * &amp;
  2785. <a name="l02721"></a>02721 dble ( norder**2 ) ) )
  2786. <a name="l02722"></a>02722
  2787. <a name="l02723"></a>02723 x = x + r1 * r2 * r3 * ( x - xtab(i-2) )
  2788. <a name="l02724"></a>02724
  2789. <a name="l02725"></a>02725 <span class="keyword">else</span> <span class="keyword">if</span> ( i == norder ) <span class="keyword">then</span>
  2790. <a name="l02726"></a>02726
  2791. <a name="l02727"></a>02727 r1 = ( 1.0D+00 + 0.37D+00 * beta ) / ( 1.67D+00 + 0.28D+00 * beta )
  2792. <a name="l02728"></a>02728
  2793. <a name="l02729"></a>02729 r2 = 1.0D+00 / &amp;
  2794. <a name="l02730"></a>02730 ( 1.0D+00 + 0.22D+00 * ( dble ( norder ) - 8.0D+00 ) / dble ( norder ) )
  2795. <a name="l02731"></a>02731
  2796. <a name="l02732"></a>02732 r3 = 1.0D+00 / ( 1.0D+00 + 8.0D+00 * alpha / &amp;
  2797. <a name="l02733"></a>02733 ( ( 6.28D+00 + alpha ) * dble ( norder**2 ) ) )
  2798. <a name="l02734"></a>02734
  2799. <a name="l02735"></a>02735 x = x + r1 * r2 * r3 * ( x - xtab(i-2) )
  2800. <a name="l02736"></a>02736
  2801. <a name="l02737"></a>02737 <span class="keyword">end if</span>
  2802. <a name="l02738"></a>02738
  2803. <a name="l02739"></a>02739 call <a class="code" href="quadrule_8f90.html#a37ab0713ac179df20db1cbade4750d7c">jacobi_root </a>( x, norder, alpha, beta, dp2, p1, b, c )
  2804. <a name="l02740"></a>02740
  2805. <a name="l02741"></a>02741 xtab(i) = x
  2806. <a name="l02742"></a>02742 weight(i) = cc / ( dp2 * p1 )
  2807. <a name="l02743"></a>02743
  2808. <a name="l02744"></a>02744 <span class="keyword">end do</span>
  2809. <a name="l02745"></a>02745 <span class="comment">!</span>
  2810. <a name="l02746"></a>02746 <span class="comment">! Reverse the order of the XTAB values.</span>
  2811. <a name="l02747"></a>02747 <span class="comment">!</span>
  2812. <a name="l02748"></a>02748 call <a class="code" href="quadrule_8f90.html#a7841cf442902dd98d08b6a4d89a9a7bf">dvec_reverse </a>( norder, xtab )
  2813. <a name="l02749"></a>02749
  2814. <a name="l02750"></a>02750 return
  2815. <a name="l02751"></a>02751 <span class="keyword">end</span>
  2816. <a name="l02752"></a><a class="code" href="quadrule_8f90.html#a23d5d91dbc68f334297c326bf251545b">02752</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a23d5d91dbc68f334297c326bf251545b">jacobi_recur</a> ( p2, dp2, p1, x, norder, alpha, beta, b, c )
  2817. <a name="l02753"></a>02753 <span class="comment">!</span>
  2818. <a name="l02754"></a>02754 <span class="comment">!*******************************************************************************</span>
  2819. <a name="l02755"></a>02755 <span class="comment">!</span>
  2820. <a name="l02756"></a>02756 <span class="comment">!! JACOBI_RECUR finds the value and derivative of a Jacobi polynomial.</span>
  2821. <a name="l02757"></a>02757 <span class="comment">!</span>
  2822. <a name="l02758"></a>02758 <span class="comment">!</span>
  2823. <a name="l02759"></a>02759 <span class="comment">! Reference:</span>
  2824. <a name="l02760"></a>02760 <span class="comment">!</span>
  2825. <a name="l02761"></a>02761 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  2826. <a name="l02762"></a>02762 <span class="comment">! Gaussian Quadrature Formulas,</span>
  2827. <a name="l02763"></a>02763 <span class="comment">! Prentice Hall, 1966.</span>
  2828. <a name="l02764"></a>02764 <span class="comment">!</span>
  2829. <a name="l02765"></a>02765 <span class="comment">! Modified:</span>
  2830. <a name="l02766"></a>02766 <span class="comment">!</span>
  2831. <a name="l02767"></a>02767 <span class="comment">! 19 September 1998</span>
  2832. <a name="l02768"></a>02768 <span class="comment">!</span>
  2833. <a name="l02769"></a>02769 <span class="comment">! Parameters:</span>
  2834. <a name="l02770"></a>02770 <span class="comment">!</span>
  2835. <a name="l02771"></a>02771 <span class="comment">! Output, double precision P2, the value of J(NORDER)(X).</span>
  2836. <a name="l02772"></a>02772 <span class="comment">!</span>
  2837. <a name="l02773"></a>02773 <span class="comment">! Output, double precision DP2, the value of J&#39;(NORDER)(X).</span>
  2838. <a name="l02774"></a>02774 <span class="comment">!</span>
  2839. <a name="l02775"></a>02775 <span class="comment">! Output, double precision P1, the value of J(NORDER-1)(X).</span>
  2840. <a name="l02776"></a>02776 <span class="comment">!</span>
  2841. <a name="l02777"></a>02777 <span class="comment">! Input, double precision X, the point at which polynomials are evaluated.</span>
  2842. <a name="l02778"></a>02778 <span class="comment">!</span>
  2843. <a name="l02779"></a>02779 <span class="comment">! Input, integer NORDER, the order of the polynomial to be computed.</span>
  2844. <a name="l02780"></a>02780 <span class="comment">!</span>
  2845. <a name="l02781"></a>02781 <span class="comment">! Input, double precision ALPHA, BETA, the exponents of (1+X) and</span>
  2846. <a name="l02782"></a>02782 <span class="comment">! (1-X) in the quadrature rule.</span>
  2847. <a name="l02783"></a>02783 <span class="comment">!</span>
  2848. <a name="l02784"></a>02784 <span class="comment">! Input, double precision B(NORDER), C(NORDER), the recursion</span>
  2849. <a name="l02785"></a>02785 <span class="comment">! coefficients.</span>
  2850. <a name="l02786"></a>02786 <span class="comment">!</span>
  2851. <a name="l02787"></a>02787 <span class="keyword">implicit none</span>
  2852. <a name="l02788"></a>02788 <span class="comment">!</span>
  2853. <a name="l02789"></a>02789 <span class="keywordtype">integer</span> norder
  2854. <a name="l02790"></a>02790 <span class="comment">!</span>
  2855. <a name="l02791"></a>02791 <span class="keywordtype">double precision</span> alpha
  2856. <a name="l02792"></a>02792 <span class="keywordtype">double precision</span> b(norder)
  2857. <a name="l02793"></a>02793 <span class="keywordtype">double precision</span> beta
  2858. <a name="l02794"></a>02794 <span class="keywordtype">double precision</span> c(norder)
  2859. <a name="l02795"></a>02795 <span class="keywordtype">double precision</span> dp0
  2860. <a name="l02796"></a>02796 <span class="keywordtype">double precision</span> dp1
  2861. <a name="l02797"></a>02797 <span class="keywordtype">double precision</span> dp2
  2862. <a name="l02798"></a>02798 <span class="keywordtype">integer</span> i
  2863. <a name="l02799"></a>02799 <span class="keywordtype">double precision</span> p0
  2864. <a name="l02800"></a>02800 <span class="keywordtype">double precision</span> p1
  2865. <a name="l02801"></a>02801 <span class="keywordtype">double precision</span> p2
  2866. <a name="l02802"></a>02802 <span class="keywordtype">double precision</span> x
  2867. <a name="l02803"></a>02803 <span class="comment">!</span>
  2868. <a name="l02804"></a>02804 p1 = 1.0D+00
  2869. <a name="l02805"></a>02805 dp1 = 0.0D+00
  2870. <a name="l02806"></a>02806
  2871. <a name="l02807"></a>02807 p2 = x + ( alpha - beta ) / ( alpha + beta + 2.0D+00 )
  2872. <a name="l02808"></a>02808 dp2 = 1.0D+00
  2873. <a name="l02809"></a>02809
  2874. <a name="l02810"></a>02810 <span class="keyword">do</span> i = 2, norder
  2875. <a name="l02811"></a>02811
  2876. <a name="l02812"></a>02812 p0 = p1
  2877. <a name="l02813"></a>02813 dp0 = dp1
  2878. <a name="l02814"></a>02814
  2879. <a name="l02815"></a>02815 p1 = p2
  2880. <a name="l02816"></a>02816 dp1 = dp2
  2881. <a name="l02817"></a>02817
  2882. <a name="l02818"></a>02818 p2 = ( x - b(i) ) * p1 - c(i) * p0
  2883. <a name="l02819"></a>02819 dp2 = ( x - b(i) ) * dp1 + p1 - c(i) * dp0
  2884. <a name="l02820"></a>02820
  2885. <a name="l02821"></a>02821 <span class="keyword">end do</span>
  2886. <a name="l02822"></a>02822
  2887. <a name="l02823"></a>02823 return
  2888. <a name="l02824"></a>02824 <span class="keyword">end</span>
  2889. <a name="l02825"></a><a class="code" href="quadrule_8f90.html#a37ab0713ac179df20db1cbade4750d7c">02825</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a37ab0713ac179df20db1cbade4750d7c">jacobi_root</a> ( x, norder, alpha, beta, dp2, p1, b, c )
  2890. <a name="l02826"></a>02826 <span class="comment">!</span>
  2891. <a name="l02827"></a>02827 <span class="comment">!*******************************************************************************</span>
  2892. <a name="l02828"></a>02828 <span class="comment">!</span>
  2893. <a name="l02829"></a>02829 <span class="comment">!! JACOBI_ROOT improves an approximate root of a Jacobi polynomial.</span>
  2894. <a name="l02830"></a>02830 <span class="comment">!</span>
  2895. <a name="l02831"></a>02831 <span class="comment">!</span>
  2896. <a name="l02832"></a>02832 <span class="comment">! Reference:</span>
  2897. <a name="l02833"></a>02833 <span class="comment">!</span>
  2898. <a name="l02834"></a>02834 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  2899. <a name="l02835"></a>02835 <span class="comment">! Gaussian Quadrature Formulas,</span>
  2900. <a name="l02836"></a>02836 <span class="comment">! Prentice Hall, 1966.</span>
  2901. <a name="l02837"></a>02837 <span class="comment">!</span>
  2902. <a name="l02838"></a>02838 <span class="comment">! Modified:</span>
  2903. <a name="l02839"></a>02839 <span class="comment">!</span>
  2904. <a name="l02840"></a>02840 <span class="comment">! 09 December 2000</span>
  2905. <a name="l02841"></a>02841 <span class="comment">!</span>
  2906. <a name="l02842"></a>02842 <span class="comment">! Parameters:</span>
  2907. <a name="l02843"></a>02843 <span class="comment">!</span>
  2908. <a name="l02844"></a>02844 <span class="comment">! Input/output, double precision X, the approximate root, which</span>
  2909. <a name="l02845"></a>02845 <span class="comment">! should be improved on output.</span>
  2910. <a name="l02846"></a>02846 <span class="comment">!</span>
  2911. <a name="l02847"></a>02847 <span class="comment">! Input, integer NORDER, the order of the polynomial to be computed.</span>
  2912. <a name="l02848"></a>02848 <span class="comment">!</span>
  2913. <a name="l02849"></a>02849 <span class="comment">! Input, double precision ALPHA, BETA, the exponents of (1+X) and</span>
  2914. <a name="l02850"></a>02850 <span class="comment">! (1-X) in the quadrature rule.</span>
  2915. <a name="l02851"></a>02851 <span class="comment">!</span>
  2916. <a name="l02852"></a>02852 <span class="comment">! Output, double precision DP2, the value of J&#39;(NORDER)(X).</span>
  2917. <a name="l02853"></a>02853 <span class="comment">!</span>
  2918. <a name="l02854"></a>02854 <span class="comment">! Output, double precision P1, the value of J(NORDER-1)(X).</span>
  2919. <a name="l02855"></a>02855 <span class="comment">!</span>
  2920. <a name="l02856"></a>02856 <span class="comment">! Input, double precision B(NORDER), C(NORDER), the recursion coefficients.</span>
  2921. <a name="l02857"></a>02857 <span class="comment">!</span>
  2922. <a name="l02858"></a>02858 <span class="keyword">implicit none</span>
  2923. <a name="l02859"></a>02859 <span class="comment">!</span>
  2924. <a name="l02860"></a>02860 <span class="keywordtype">integer</span> norder
  2925. <a name="l02861"></a>02861 <span class="comment">!</span>
  2926. <a name="l02862"></a>02862 <span class="keywordtype">double precision</span> alpha
  2927. <a name="l02863"></a>02863 <span class="keywordtype">double precision</span> b(norder)
  2928. <a name="l02864"></a>02864 <span class="keywordtype">double precision</span> beta
  2929. <a name="l02865"></a>02865 <span class="keywordtype">double precision</span> c(norder)
  2930. <a name="l02866"></a>02866 <span class="keywordtype">double precision</span> d
  2931. <a name="l02867"></a>02867 <span class="keywordtype">double precision</span> dp2
  2932. <a name="l02868"></a>02868 <span class="keywordtype">double precision</span> eps
  2933. <a name="l02869"></a>02869 <span class="keywordtype">integer</span> i
  2934. <a name="l02870"></a>02870 <span class="keywordtype">integer</span>, <span class="keywordtype">parameter</span> :: maxstep = 10
  2935. <a name="l02871"></a>02871 <span class="keywordtype">double precision</span> p1
  2936. <a name="l02872"></a>02872 <span class="keywordtype">double precision</span> p2
  2937. <a name="l02873"></a>02873 <span class="keywordtype">double precision</span> x
  2938. <a name="l02874"></a>02874 <span class="comment">!</span>
  2939. <a name="l02875"></a>02875 eps = epsilon ( x )
  2940. <a name="l02876"></a>02876
  2941. <a name="l02877"></a>02877 <span class="keyword">do</span> i = 1, maxstep
  2942. <a name="l02878"></a>02878
  2943. <a name="l02879"></a>02879 call <a class="code" href="quadrule_8f90.html#a23d5d91dbc68f334297c326bf251545b">jacobi_recur </a>( p2, dp2, p1, x, norder, alpha, beta, b, c )
  2944. <a name="l02880"></a>02880
  2945. <a name="l02881"></a>02881 d = p2 / dp2
  2946. <a name="l02882"></a>02882 x = x - d
  2947. <a name="l02883"></a>02883
  2948. <a name="l02884"></a>02884 <span class="keyword">if</span> ( abs ( d ) &lt;= eps * ( abs ( x ) + 1.0D+00 ) ) <span class="keyword">then</span>
  2949. <a name="l02885"></a>02885 return
  2950. <a name="l02886"></a>02886 <span class="keyword">end if</span>
  2951. <a name="l02887"></a>02887
  2952. <a name="l02888"></a>02888 <span class="keyword">end do</span>
  2953. <a name="l02889"></a>02889
  2954. <a name="l02890"></a>02890 return
  2955. <a name="l02891"></a>02891 <span class="keyword">end</span>
  2956. <a name="l02892"></a><a class="code" href="quadrule_8f90.html#a0fea29cd1cc25389b93d13d5680c4cc1">02892</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a0fea29cd1cc25389b93d13d5680c4cc1">kronrod_set</a> ( norder, xtab, weight )
  2957. <a name="l02893"></a>02893 <span class="comment">!</span>
  2958. <a name="l02894"></a>02894 <span class="comment">!*******************************************************************************</span>
  2959. <a name="l02895"></a>02895 <span class="comment">!</span>
  2960. <a name="l02896"></a>02896 <span class="comment">!! KRONROD_SET sets abscissas and weights for Gauss-Kronrod quadrature.</span>
  2961. <a name="l02897"></a>02897 <span class="comment">!</span>
  2962. <a name="l02898"></a>02898 <span class="comment">!</span>
  2963. <a name="l02899"></a>02899 <span class="comment">! Integration interval:</span>
  2964. <a name="l02900"></a>02900 <span class="comment">!</span>
  2965. <a name="l02901"></a>02901 <span class="comment">! [ -1, 1 ]</span>
  2966. <a name="l02902"></a>02902 <span class="comment">!</span>
  2967. <a name="l02903"></a>02903 <span class="comment">! Weight function:</span>
  2968. <a name="l02904"></a>02904 <span class="comment">!</span>
  2969. <a name="l02905"></a>02905 <span class="comment">! 1.0D+00</span>
  2970. <a name="l02906"></a>02906 <span class="comment">!</span>
  2971. <a name="l02907"></a>02907 <span class="comment">! Integral to approximate:</span>
  2972. <a name="l02908"></a>02908 <span class="comment">!</span>
  2973. <a name="l02909"></a>02909 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) F(X) dX</span>
  2974. <a name="l02910"></a>02910 <span class="comment">!</span>
  2975. <a name="l02911"></a>02911 <span class="comment">! Approximate integral:</span>
  2976. <a name="l02912"></a>02912 <span class="comment">!</span>
  2977. <a name="l02913"></a>02913 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  2978. <a name="l02914"></a>02914 <span class="comment">!</span>
  2979. <a name="l02915"></a>02915 <span class="comment">! Note:</span>
  2980. <a name="l02916"></a>02916 <span class="comment">!</span>
  2981. <a name="l02917"></a>02917 <span class="comment">! A Kronrod rule is used in conjunction with a lower order</span>
  2982. <a name="l02918"></a>02918 <span class="comment">! Gauss rule, and provides an efficient error estimation.</span>
  2983. <a name="l02919"></a>02919 <span class="comment">!</span>
  2984. <a name="l02920"></a>02920 <span class="comment">! The error may be estimated as the difference in the two integral</span>
  2985. <a name="l02921"></a>02921 <span class="comment">! approximations.</span>
  2986. <a name="l02922"></a>02922 <span class="comment">!</span>
  2987. <a name="l02923"></a>02923 <span class="comment">! The efficiency comes about because the Kronrod uses the abscissas</span>
  2988. <a name="l02924"></a>02924 <span class="comment">! of the Gauss rule, thus saving on the number of function evaluations</span>
  2989. <a name="l02925"></a>02925 <span class="comment">! necessary. If the Kronrod rule were replaced by a Gauss rule of</span>
  2990. <a name="l02926"></a>02926 <span class="comment">! the same order, a higher precision integral estimate would be</span>
  2991. <a name="l02927"></a>02927 <span class="comment">! made, but the function would have to be evaluated at many more</span>
  2992. <a name="l02928"></a>02928 <span class="comment">! points.</span>
  2993. <a name="l02929"></a>02929 <span class="comment">!</span>
  2994. <a name="l02930"></a>02930 <span class="comment">! The Gauss Kronrod pair of rules involves an ( NORDER + 1 ) / 2</span>
  2995. <a name="l02931"></a>02931 <span class="comment">! point Gauss-Legendre rule and an NORDER point Kronrod rule.</span>
  2996. <a name="l02932"></a>02932 <span class="comment">! Thus, the 15 point Kronrod rule should be paired with the</span>
  2997. <a name="l02933"></a>02933 <span class="comment">! Gauss-Legendre 7 point rule.</span>
  2998. <a name="l02934"></a>02934 <span class="comment">!</span>
  2999. <a name="l02935"></a>02935 <span class="comment">! Reference:</span>
  3000. <a name="l02936"></a>02936 <span class="comment">!</span>
  3001. <a name="l02937"></a>02937 <span class="comment">! R Piessens, E de Doncker-Kapenger, C Ueberhuber, D Kahaner,</span>
  3002. <a name="l02938"></a>02938 <span class="comment">! QUADPACK, A Subroutine Package for Automatic Integration,</span>
  3003. <a name="l02939"></a>02939 <span class="comment">! Springer Verlag, 1983.</span>
  3004. <a name="l02940"></a>02940 <span class="comment">!</span>
  3005. <a name="l02941"></a>02941 <span class="comment">! Modified:</span>
  3006. <a name="l02942"></a>02942 <span class="comment">!</span>
  3007. <a name="l02943"></a>02943 <span class="comment">! 16 September 1998</span>
  3008. <a name="l02944"></a>02944 <span class="comment">!</span>
  3009. <a name="l02945"></a>02945 <span class="comment">! Author:</span>
  3010. <a name="l02946"></a>02946 <span class="comment">!</span>
  3011. <a name="l02947"></a>02947 <span class="comment">! John Burkardt</span>
  3012. <a name="l02948"></a>02948 <span class="comment">!</span>
  3013. <a name="l02949"></a>02949 <span class="comment">! Parameters:</span>
  3014. <a name="l02950"></a>02950 <span class="comment">!</span>
  3015. <a name="l02951"></a>02951 <span class="comment">! Input, integer NORDER, the order of the rule, which may be</span>
  3016. <a name="l02952"></a>02952 <span class="comment">! 15, 21, 31 or 41, corresponding to Gauss-Legendre rules of</span>
  3017. <a name="l02953"></a>02953 <span class="comment">! order 7, 10, 15 or 20.</span>
  3018. <a name="l02954"></a>02954 <span class="comment">!</span>
  3019. <a name="l02955"></a>02955 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule, which</span>
  3020. <a name="l02956"></a>02956 <span class="comment">! are symmetrically places in [-1,1].</span>
  3021. <a name="l02957"></a>02957 <span class="comment">!</span>
  3022. <a name="l02958"></a>02958 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  3023. <a name="l02959"></a>02959 <span class="comment">! The weights are positive, symmetric, and should sum to 2.</span>
  3024. <a name="l02960"></a>02960 <span class="comment">!</span>
  3025. <a name="l02961"></a>02961 <span class="keyword">implicit none</span>
  3026. <a name="l02962"></a>02962 <span class="comment">!</span>
  3027. <a name="l02963"></a>02963 <span class="keywordtype">integer</span> norder
  3028. <a name="l02964"></a>02964 <span class="comment">!</span>
  3029. <a name="l02965"></a>02965 <span class="keywordtype">double precision</span> weight(norder)
  3030. <a name="l02966"></a>02966 <span class="keywordtype">double precision</span> xtab(norder)
  3031. <a name="l02967"></a>02967 <span class="comment">!</span>
  3032. <a name="l02968"></a>02968 <span class="keyword">if</span> ( norder == 15 ) <span class="keyword">then</span>
  3033. <a name="l02969"></a>02969
  3034. <a name="l02970"></a>02970 xtab(1) = - 0.9914553711208126D+00
  3035. <a name="l02971"></a>02971 xtab(2) = - 0.9491079123427585D+00
  3036. <a name="l02972"></a>02972 xtab(3) = - 0.8648644233597691D+00
  3037. <a name="l02973"></a>02973 xtab(4) = - 0.7415311855993944D+00
  3038. <a name="l02974"></a>02974 xtab(5) = - 0.5860872354676911D+00
  3039. <a name="l02975"></a>02975 xtab(6) = - 0.4058451513773972D+00
  3040. <a name="l02976"></a>02976 xtab(7) = - 0.2077849550789850D+00
  3041. <a name="l02977"></a>02977 xtab(8) = 0.0D+00
  3042. <a name="l02978"></a>02978 xtab(9) = 0.2077849550789850D+00
  3043. <a name="l02979"></a>02979 xtab(10) = 0.4058451513773972D+00
  3044. <a name="l02980"></a>02980 xtab(11) = 0.5860872354676911D+00
  3045. <a name="l02981"></a>02981 xtab(12) = 0.7415311855993944D+00
  3046. <a name="l02982"></a>02982 xtab(13) = 0.8648644233597691D+00
  3047. <a name="l02983"></a>02983 xtab(14) = 0.9491079123427585D+00
  3048. <a name="l02984"></a>02984 xtab(15) = 0.9914553711208126D+00
  3049. <a name="l02985"></a>02985
  3050. <a name="l02986"></a>02986 weight(1) = 0.2293532201052922D-01
  3051. <a name="l02987"></a>02987 weight(2) = 0.6309209262997855D-01
  3052. <a name="l02988"></a>02988 weight(3) = 0.1047900103222502D+00
  3053. <a name="l02989"></a>02989 weight(4) = 0.1406532597155259D+00
  3054. <a name="l02990"></a>02990 weight(5) = 0.1690047266392679D+00
  3055. <a name="l02991"></a>02991 weight(6) = 0.1903505780647854D+00
  3056. <a name="l02992"></a>02992 weight(7) = 0.2044329400752989D+00
  3057. <a name="l02993"></a>02993 weight(8) = 0.2094821410847278D+00
  3058. <a name="l02994"></a>02994 weight(9) = 0.2044329400752989D+00
  3059. <a name="l02995"></a>02995 weight(10) = 0.1903505780647854D+00
  3060. <a name="l02996"></a>02996 weight(11) = 0.1690047266392679D+00
  3061. <a name="l02997"></a>02997 weight(12) = 0.1406532597155259D+00
  3062. <a name="l02998"></a>02998 weight(13) = 0.1047900103222502D+00
  3063. <a name="l02999"></a>02999 weight(14) = 0.6309209262997855D-01
  3064. <a name="l03000"></a>03000 weight(15) = 0.2293532201052922D-01
  3065. <a name="l03001"></a>03001
  3066. <a name="l03002"></a>03002 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 21 ) <span class="keyword">then</span>
  3067. <a name="l03003"></a>03003
  3068. <a name="l03004"></a>03004 xtab(1) = - 0.9956571630258081D+00
  3069. <a name="l03005"></a>03005 xtab(2) = - 0.9739065285171717D+00
  3070. <a name="l03006"></a>03006 xtab(3) = - 0.9301574913557082D+00
  3071. <a name="l03007"></a>03007 xtab(4) = - 0.8650633666889845D+00
  3072. <a name="l03008"></a>03008 xtab(5) = - 0.7808177265864169D+00
  3073. <a name="l03009"></a>03009 xtab(6) = - 0.6794095682990244D+00
  3074. <a name="l03010"></a>03010 xtab(7) = - 0.5627571346686047D+00
  3075. <a name="l03011"></a>03011 xtab(8) = - 0.4333953941292472D+00
  3076. <a name="l03012"></a>03012 xtab(9) = - 0.2943928627014602D+00
  3077. <a name="l03013"></a>03013 xtab(10) = - 0.1488743389816312D+00
  3078. <a name="l03014"></a>03014 xtab(11) = 0.0D+00
  3079. <a name="l03015"></a>03015 xtab(12) = 0.1488743389816312D+00
  3080. <a name="l03016"></a>03016 xtab(13) = 0.2943928627014602D+00
  3081. <a name="l03017"></a>03017 xtab(14) = 0.4333953941292472D+00
  3082. <a name="l03018"></a>03018 xtab(15) = 0.5627571346686047D+00
  3083. <a name="l03019"></a>03019 xtab(16) = 0.6794095682990244D+00
  3084. <a name="l03020"></a>03020 xtab(17) = 0.7808177265864169D+00
  3085. <a name="l03021"></a>03021 xtab(18) = 0.8650633666889845D+00
  3086. <a name="l03022"></a>03022 xtab(19) = 0.9301574913557082D+00
  3087. <a name="l03023"></a>03023 xtab(20) = 0.9739065285171717D+00
  3088. <a name="l03024"></a>03024 xtab(21) = 0.9956571630258081D+00
  3089. <a name="l03025"></a>03025
  3090. <a name="l03026"></a>03026 weight(1) = 0.1169463886737187D-01
  3091. <a name="l03027"></a>03027 weight(2) = 0.3255816230796473D-01
  3092. <a name="l03028"></a>03028 weight(3) = 0.5475589657435200D-01
  3093. <a name="l03029"></a>03029 weight(4) = 0.7503967481091995D-01
  3094. <a name="l03030"></a>03030 weight(5) = 0.9312545458369761D-01
  3095. <a name="l03031"></a>03031 weight(6) = 0.1093871588022976D+00
  3096. <a name="l03032"></a>03032 weight(7) = 0.1234919762620659D+00
  3097. <a name="l03033"></a>03033 weight(8) = 0.1347092173114733D+00
  3098. <a name="l03034"></a>03034 weight(9) = 0.1427759385770601D+00
  3099. <a name="l03035"></a>03035 weight(10) = 0.1477391049013385D+00
  3100. <a name="l03036"></a>03036 weight(11) = 0.1494455540029169D+00
  3101. <a name="l03037"></a>03037 weight(12) = 0.1477391049013385D+00
  3102. <a name="l03038"></a>03038 weight(13) = 0.1427759385770601D+00
  3103. <a name="l03039"></a>03039 weight(14) = 0.1347092173114733D+00
  3104. <a name="l03040"></a>03040 weight(15) = 0.1234919762620659D+00
  3105. <a name="l03041"></a>03041 weight(16) = 0.1093871588022976D+00
  3106. <a name="l03042"></a>03042 weight(17) = 0.9312545458369761D-01
  3107. <a name="l03043"></a>03043 weight(18) = 0.7503967481091995D-01
  3108. <a name="l03044"></a>03044 weight(19) = 0.5475589657435200D-01
  3109. <a name="l03045"></a>03045 weight(20) = 0.3255816230796473D-01
  3110. <a name="l03046"></a>03046 weight(21) = 0.1169463886737187D-01
  3111. <a name="l03047"></a>03047
  3112. <a name="l03048"></a>03048 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 31 ) <span class="keyword">then</span>
  3113. <a name="l03049"></a>03049
  3114. <a name="l03050"></a>03050 xtab(1) = - 0.9980022986933971D+00
  3115. <a name="l03051"></a>03051 xtab(2) = - 0.9879925180204854D+00
  3116. <a name="l03052"></a>03052 xtab(3) = - 0.9677390756791391D+00
  3117. <a name="l03053"></a>03053 xtab(4) = - 0.9372733924007059D+00
  3118. <a name="l03054"></a>03054 xtab(5) = - 0.8972645323440819D+00
  3119. <a name="l03055"></a>03055 xtab(6) = - 0.8482065834104272D+00
  3120. <a name="l03056"></a>03056 xtab(7) = - 0.7904185014424659D+00
  3121. <a name="l03057"></a>03057 xtab(8) = - 0.7244177313601700D+00
  3122. <a name="l03058"></a>03058 xtab(9) = - 0.6509967412974170D+00
  3123. <a name="l03059"></a>03059 xtab(10) = - 0.5709721726085388D+00
  3124. <a name="l03060"></a>03060 xtab(11) = - 0.4850818636402397D+00
  3125. <a name="l03061"></a>03061 xtab(12) = - 0.3941513470775634D+00
  3126. <a name="l03062"></a>03062 xtab(13) = - 0.2991800071531688D+00
  3127. <a name="l03063"></a>03063 xtab(14) = - 0.2011940939974345D+00
  3128. <a name="l03064"></a>03064 xtab(15) = - 0.1011420669187175D+00
  3129. <a name="l03065"></a>03065 xtab(16) = 0.0D+00
  3130. <a name="l03066"></a>03066 xtab(17) = 0.1011420669187175D+00
  3131. <a name="l03067"></a>03067 xtab(18) = 0.2011940939974345D+00
  3132. <a name="l03068"></a>03068 xtab(19) = 0.2991800071531688D+00
  3133. <a name="l03069"></a>03069 xtab(20) = 0.3941513470775634D+00
  3134. <a name="l03070"></a>03070 xtab(21) = 0.4850818636402397D+00
  3135. <a name="l03071"></a>03071 xtab(22) = 0.5709721726085388D+00
  3136. <a name="l03072"></a>03072 xtab(23) = 0.6509967412974170D+00
  3137. <a name="l03073"></a>03073 xtab(24) = 0.7244177313601700D+00
  3138. <a name="l03074"></a>03074 xtab(25) = 0.7904185014424659D+00
  3139. <a name="l03075"></a>03075 xtab(26) = 0.8482065834104272D+00
  3140. <a name="l03076"></a>03076 xtab(27) = 0.8972645323440819D+00
  3141. <a name="l03077"></a>03077 xtab(28) = 0.9372733924007059D+00
  3142. <a name="l03078"></a>03078 xtab(29) = 0.9677390756791391D+00
  3143. <a name="l03079"></a>03079 xtab(30) = 0.9879925180204854D+00
  3144. <a name="l03080"></a>03080 xtab(31) = 0.9980022986933971D+00
  3145. <a name="l03081"></a>03081
  3146. <a name="l03082"></a>03082 weight(1) = 0.5377479872923349D-02
  3147. <a name="l03083"></a>03083 weight(2) = 0.1500794732931612D-01
  3148. <a name="l03084"></a>03084 weight(3) = 0.2546084732671532D-01
  3149. <a name="l03085"></a>03085 weight(4) = 0.3534636079137585D-01
  3150. <a name="l03086"></a>03086 weight(5) = 0.4458975132476488D-01
  3151. <a name="l03087"></a>03087 weight(6) = 0.5348152469092809D-01
  3152. <a name="l03088"></a>03088 weight(7) = 0.6200956780067064D-01
  3153. <a name="l03089"></a>03089 weight(8) = 0.6985412131872826D-01
  3154. <a name="l03090"></a>03090 weight(9) = 0.7684968075772038D-01
  3155. <a name="l03091"></a>03091 weight(10) = 0.8308050282313302D-01
  3156. <a name="l03092"></a>03092 weight(11) = 0.8856444305621177D-01
  3157. <a name="l03093"></a>03093 weight(12) = 0.9312659817082532D-01
  3158. <a name="l03094"></a>03094 weight(13) = 0.9664272698362368D-01
  3159. <a name="l03095"></a>03095 weight(14) = 0.9917359872179196D-01
  3160. <a name="l03096"></a>03096 weight(15) = 0.1007698455238756D+00
  3161. <a name="l03097"></a>03097 weight(16) = 0.1013300070147915D+00
  3162. <a name="l03098"></a>03098 weight(17) = 0.1007698455238756D+00
  3163. <a name="l03099"></a>03099 weight(18) = 0.9917359872179196D-01
  3164. <a name="l03100"></a>03100 weight(19) = 0.9664272698362368D-01
  3165. <a name="l03101"></a>03101 weight(20) = 0.9312659817082532D-01
  3166. <a name="l03102"></a>03102 weight(21) = 0.8856444305621177D-01
  3167. <a name="l03103"></a>03103 weight(22) = 0.8308050282313302D-01
  3168. <a name="l03104"></a>03104 weight(23) = 0.7684968075772038D-01
  3169. <a name="l03105"></a>03105 weight(24) = 0.6985412131872826D-01
  3170. <a name="l03106"></a>03106 weight(25) = 0.6200956780067064D-01
  3171. <a name="l03107"></a>03107 weight(26) = 0.5348152469092809D-01
  3172. <a name="l03108"></a>03108 weight(27) = 0.4458975132476488D-01
  3173. <a name="l03109"></a>03109 weight(28) = 0.3534636079137585D-01
  3174. <a name="l03110"></a>03110 weight(29) = 0.2546084732671532D-01
  3175. <a name="l03111"></a>03111 weight(30) = 0.1500794732931612D-01
  3176. <a name="l03112"></a>03112 weight(31) = 0.5377479872923349D-02
  3177. <a name="l03113"></a>03113
  3178. <a name="l03114"></a>03114 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 41 ) <span class="keyword">then</span>
  3179. <a name="l03115"></a>03115
  3180. <a name="l03116"></a>03116 xtab(1) = - 0.9988590315882777D+00
  3181. <a name="l03117"></a>03117 xtab(2) = - 0.9931285991850949D+00
  3182. <a name="l03118"></a>03118 xtab(3) = - 0.9815078774502503D+00
  3183. <a name="l03119"></a>03119 xtab(4) = - 0.9639719272779138D+00
  3184. <a name="l03120"></a>03120 xtab(5) = - 0.9408226338317548D+00
  3185. <a name="l03121"></a>03121 xtab(6) = - 0.9122344282513259D+00
  3186. <a name="l03122"></a>03122 xtab(7) = - 0.8782768112522820D+00
  3187. <a name="l03123"></a>03123 xtab(8) = - 0.8391169718222188D+00
  3188. <a name="l03124"></a>03124 xtab(9) = - 0.7950414288375512D+00
  3189. <a name="l03125"></a>03125 xtab(10) = - 0.7463319064601508D+00
  3190. <a name="l03126"></a>03126 xtab(11) = - 0.6932376563347514D+00
  3191. <a name="l03127"></a>03127 xtab(12) = - 0.6360536807265150D+00
  3192. <a name="l03128"></a>03128 xtab(13) = - 0.5751404468197103D+00
  3193. <a name="l03129"></a>03129 xtab(14) = - 0.5108670019508271D+00
  3194. <a name="l03130"></a>03130 xtab(15) = - 0.4435931752387251D+00
  3195. <a name="l03131"></a>03131 xtab(16) = - 0.3737060887154196D+00
  3196. <a name="l03132"></a>03132 xtab(17) = - 0.3016278681149130D+00
  3197. <a name="l03133"></a>03133 xtab(18) = - 0.2277858511416451D+00
  3198. <a name="l03134"></a>03134 xtab(19) = - 0.1526054652409227D+00
  3199. <a name="l03135"></a>03135 xtab(20) = - 0.7652652113349733D-01
  3200. <a name="l03136"></a>03136 xtab(21) = 0.0D+00
  3201. <a name="l03137"></a>03137 xtab(22) = 0.7652652113349733D-01
  3202. <a name="l03138"></a>03138 xtab(23) = 0.1526054652409227D+00
  3203. <a name="l03139"></a>03139 xtab(24) = 0.2277858511416451D+00
  3204. <a name="l03140"></a>03140 xtab(25) = 0.3016278681149130D+00
  3205. <a name="l03141"></a>03141 xtab(26) = 0.3737060887154196D+00
  3206. <a name="l03142"></a>03142 xtab(27) = 0.4435931752387251D+00
  3207. <a name="l03143"></a>03143 xtab(28) = 0.5108670019508271D+00
  3208. <a name="l03144"></a>03144 xtab(29) = 0.5751404468197103D+00
  3209. <a name="l03145"></a>03145 xtab(30) = 0.6360536807265150D+00
  3210. <a name="l03146"></a>03146 xtab(31) = 0.6932376563347514D+00
  3211. <a name="l03147"></a>03147 xtab(32) = 0.7463319064601508D+00
  3212. <a name="l03148"></a>03148 xtab(33) = 0.7950414288375512D+00
  3213. <a name="l03149"></a>03149 xtab(34) = 0.8391169718222188D+00
  3214. <a name="l03150"></a>03150 xtab(35) = 0.8782768112522820D+00
  3215. <a name="l03151"></a>03151 xtab(36) = 0.9122344282513259D+00
  3216. <a name="l03152"></a>03152 xtab(37) = 0.9408226338317548D+00
  3217. <a name="l03153"></a>03153 xtab(38) = 0.9639719272779138D+00
  3218. <a name="l03154"></a>03154 xtab(39) = 0.9815078774502503D+00
  3219. <a name="l03155"></a>03155 xtab(40) = 0.9931285991850949D+00
  3220. <a name="l03156"></a>03156 xtab(41) = 0.9988590315882777D+00
  3221. <a name="l03157"></a>03157
  3222. <a name="l03158"></a>03158 weight(1) = 0.3073583718520532D-02
  3223. <a name="l03159"></a>03159 weight(2) = 0.8600269855642942D-02
  3224. <a name="l03160"></a>03160 weight(3) = 0.1462616925697125D-01
  3225. <a name="l03161"></a>03161 weight(4) = 0.2038837346126652D-01
  3226. <a name="l03162"></a>03162 weight(5) = 0.2588213360495116D-01
  3227. <a name="l03163"></a>03163 weight(6) = 0.3128730677703280D-01
  3228. <a name="l03164"></a>03164 weight(7) = 0.3660016975820080D-01
  3229. <a name="l03165"></a>03165 weight(8) = 0.4166887332797369D-01
  3230. <a name="l03166"></a>03166 weight(9) = 0.4643482186749767D-01
  3231. <a name="l03167"></a>03167 weight(10) = 0.5094457392372869D-01
  3232. <a name="l03168"></a>03168 weight(11) = 0.5519510534828599D-01
  3233. <a name="l03169"></a>03169 weight(12) = 0.5911140088063957D-01
  3234. <a name="l03170"></a>03170 weight(13) = 0.6265323755478117D-01
  3235. <a name="l03171"></a>03171 weight(14) = 0.6583459713361842D-01
  3236. <a name="l03172"></a>03172 weight(15) = 0.6864867292852162D-01
  3237. <a name="l03173"></a>03173 weight(16) = 0.7105442355344407D-01
  3238. <a name="l03174"></a>03174 weight(17) = 0.7303069033278667D-01
  3239. <a name="l03175"></a>03175 weight(18) = 0.7458287540049919D-01
  3240. <a name="l03176"></a>03176 weight(19) = 0.7570449768455667D-01
  3241. <a name="l03177"></a>03177 weight(20) = 0.7637786767208074D-01
  3242. <a name="l03178"></a>03178 weight(21) = 0.7660071191799966D-01
  3243. <a name="l03179"></a>03179 weight(22) = 0.7637786767208074D-01
  3244. <a name="l03180"></a>03180 weight(23) = 0.7570449768455667D-01
  3245. <a name="l03181"></a>03181 weight(24) = 0.7458287540049919D-01
  3246. <a name="l03182"></a>03182 weight(25) = 0.7303069033278667D-01
  3247. <a name="l03183"></a>03183 weight(26) = 0.7105442355344407D-01
  3248. <a name="l03184"></a>03184 weight(27) = 0.6864867292852162D-01
  3249. <a name="l03185"></a>03185 weight(28) = 0.6583459713361842D-01
  3250. <a name="l03186"></a>03186 weight(29) = 0.6265323755478117D-01
  3251. <a name="l03187"></a>03187 weight(30) = 0.5911140088063957D-01
  3252. <a name="l03188"></a>03188 weight(31) = 0.5519510534828599D-01
  3253. <a name="l03189"></a>03189 weight(32) = 0.5094457392372869D-01
  3254. <a name="l03190"></a>03190 weight(33) = 0.4643482186749767D-01
  3255. <a name="l03191"></a>03191 weight(34) = 0.4166887332797369D-01
  3256. <a name="l03192"></a>03192 weight(35) = 0.3660016975820080D-01
  3257. <a name="l03193"></a>03193 weight(36) = 0.3128730677703280D-01
  3258. <a name="l03194"></a>03194 weight(37) = 0.2588213360495116D-01
  3259. <a name="l03195"></a>03195 weight(38) = 0.2038837346126652D-01
  3260. <a name="l03196"></a>03196 weight(39) = 0.1462616925697125D-01
  3261. <a name="l03197"></a>03197 weight(40) = 0.8600269855642942D-02
  3262. <a name="l03198"></a>03198 weight(41) = 0.3073583718520532D-02
  3263. <a name="l03199"></a>03199
  3264. <a name="l03200"></a>03200 <span class="keyword">else</span>
  3265. <a name="l03201"></a>03201
  3266. <a name="l03202"></a>03202 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  3267. <a name="l03203"></a>03203 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;KRONROD_SET - Fatal error!&#39;</span>
  3268. <a name="l03204"></a>03204 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  3269. <a name="l03205"></a>03205 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; Legal values are 15, 21, 31 or 41.&#39;</span>
  3270. <a name="l03206"></a>03206 stop
  3271. <a name="l03207"></a>03207
  3272. <a name="l03208"></a>03208 <span class="keyword">end if</span>
  3273. <a name="l03209"></a>03209
  3274. <a name="l03210"></a>03210 return
  3275. <a name="l03211"></a>03211 <span class="keyword">end</span>
  3276. <a name="l03212"></a><a class="code" href="quadrule_8f90.html#a5e526b2dfca36cb4303a7ac532cc7e55">03212</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a5e526b2dfca36cb4303a7ac532cc7e55">laguerre_com</a> ( norder, xtab, weight, alpha )
  3277. <a name="l03213"></a>03213 <span class="comment">!</span>
  3278. <a name="l03214"></a>03214 <span class="comment">!*******************************************************************************</span>
  3279. <a name="l03215"></a>03215 <span class="comment">!</span>
  3280. <a name="l03216"></a>03216 <span class="comment">!! LAGUERRE_COM computes the abscissa and weights for Gauss-Laguerre quadrature.</span>
  3281. <a name="l03217"></a>03217 <span class="comment">!</span>
  3282. <a name="l03218"></a>03218 <span class="comment">!</span>
  3283. <a name="l03219"></a>03219 <span class="comment">! Discussion:</span>
  3284. <a name="l03220"></a>03220 <span class="comment">!</span>
  3285. <a name="l03221"></a>03221 <span class="comment">! In the simplest case, ALPHA is 0, and we are approximating the</span>
  3286. <a name="l03222"></a>03222 <span class="comment">! integral from 0 to INFINITY of EXP(-X) * F(X). When this is so,</span>
  3287. <a name="l03223"></a>03223 <span class="comment">! it is easy to modify the rule to approximate the integral from</span>
  3288. <a name="l03224"></a>03224 <span class="comment">! A to INFINITY as well.</span>
  3289. <a name="l03225"></a>03225 <span class="comment">!</span>
  3290. <a name="l03226"></a>03226 <span class="comment">! If ALPHA is nonzero, then there is no simple way to extend the</span>
  3291. <a name="l03227"></a>03227 <span class="comment">! rule to approximate the integral from A to INFINITY. The simplest</span>
  3292. <a name="l03228"></a>03228 <span class="comment">! procedures would be to approximate the integral from 0 to A.</span>
  3293. <a name="l03229"></a>03229 <span class="comment">!</span>
  3294. <a name="l03230"></a>03230 <span class="comment">! Integration interval:</span>
  3295. <a name="l03231"></a>03231 <span class="comment">!</span>
  3296. <a name="l03232"></a>03232 <span class="comment">! [ A, +Infinity ) or [ 0, +Infinity )</span>
  3297. <a name="l03233"></a>03233 <span class="comment">!</span>
  3298. <a name="l03234"></a>03234 <span class="comment">! Weight function:</span>
  3299. <a name="l03235"></a>03235 <span class="comment">!</span>
  3300. <a name="l03236"></a>03236 <span class="comment">! EXP ( - X ) or EXP ( - X ) * X**ALPHA</span>
  3301. <a name="l03237"></a>03237 <span class="comment">!</span>
  3302. <a name="l03238"></a>03238 <span class="comment">! Integral to approximate:</span>
  3303. <a name="l03239"></a>03239 <span class="comment">!</span>
  3304. <a name="l03240"></a>03240 <span class="comment">! Integral ( A &lt;= X &lt; +INFINITY ) EXP ( - X ) * F(X) dX</span>
  3305. <a name="l03241"></a>03241 <span class="comment">! or</span>
  3306. <a name="l03242"></a>03242 <span class="comment">! Integral ( 0 &lt;= X &lt; +INFINITY ) EXP ( - X ) * X**ALPHA * F(X) dX</span>
  3307. <a name="l03243"></a>03243 <span class="comment">!</span>
  3308. <a name="l03244"></a>03244 <span class="comment">! Approximate integral:</span>
  3309. <a name="l03245"></a>03245 <span class="comment">!</span>
  3310. <a name="l03246"></a>03246 <span class="comment">! EXP ( - A ) * Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( A+XTAB(I) )</span>
  3311. <a name="l03247"></a>03247 <span class="comment">! or</span>
  3312. <a name="l03248"></a>03248 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  3313. <a name="l03249"></a>03249 <span class="comment">!</span>
  3314. <a name="l03250"></a>03250 <span class="comment">! Reference:</span>
  3315. <a name="l03251"></a>03251 <span class="comment">!</span>
  3316. <a name="l03252"></a>03252 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  3317. <a name="l03253"></a>03253 <span class="comment">! Gaussian Quadrature Formulas,</span>
  3318. <a name="l03254"></a>03254 <span class="comment">! Prentice Hall, 1966.</span>
  3319. <a name="l03255"></a>03255 <span class="comment">!</span>
  3320. <a name="l03256"></a>03256 <span class="comment">! Modified:</span>
  3321. <a name="l03257"></a>03257 <span class="comment">!</span>
  3322. <a name="l03258"></a>03258 <span class="comment">! 15 March 2000</span>
  3323. <a name="l03259"></a>03259 <span class="comment">!</span>
  3324. <a name="l03260"></a>03260 <span class="comment">! Parameters:</span>
  3325. <a name="l03261"></a>03261 <span class="comment">!</span>
  3326. <a name="l03262"></a>03262 <span class="comment">! Input, integer NORDER, the order of the quadrature rule to be computed.</span>
  3327. <a name="l03263"></a>03263 <span class="comment">! NORDER must be at least 1.</span>
  3328. <a name="l03264"></a>03264 <span class="comment">!</span>
  3329. <a name="l03265"></a>03265 <span class="comment">! Output, double precision XTAB(NORDER), the Gauss-Laguerre abscissas.</span>
  3330. <a name="l03266"></a>03266 <span class="comment">!</span>
  3331. <a name="l03267"></a>03267 <span class="comment">! Output, double precision WEIGHT(NORDER), the Gauss-Laguerre weights.</span>
  3332. <a name="l03268"></a>03268 <span class="comment">!</span>
  3333. <a name="l03269"></a>03269 <span class="comment">! Input, double precision ALPHA, the exponent of the X factor.</span>
  3334. <a name="l03270"></a>03270 <span class="comment">! Set ALPHA = 0.0D+00 for the simplest rule.</span>
  3335. <a name="l03271"></a>03271 <span class="comment">! ALPHA must be nonnegative.</span>
  3336. <a name="l03272"></a>03272 <span class="comment">!</span>
  3337. <a name="l03273"></a>03273 <span class="keyword">implicit none</span>
  3338. <a name="l03274"></a>03274 <span class="comment">!</span>
  3339. <a name="l03275"></a>03275 <span class="keywordtype">integer</span> norder
  3340. <a name="l03276"></a>03276 <span class="comment">!</span>
  3341. <a name="l03277"></a>03277 <span class="keywordtype">double precision</span> alpha
  3342. <a name="l03278"></a>03278 <span class="keywordtype">double precision</span> b(norder)
  3343. <a name="l03279"></a>03279 <span class="keywordtype">double precision</span> c(norder)
  3344. <a name="l03280"></a>03280 <span class="keywordtype">double precision</span> cc
  3345. <a name="l03281"></a>03281 <span class="keywordtype">double precision</span> dp2
  3346. <a name="l03282"></a>03282 <span class="keywordtype">double precision</span> gamma
  3347. <a name="l03283"></a>03283 <span class="keywordtype">integer</span> i
  3348. <a name="l03284"></a>03284 <span class="keywordtype">double precision</span> p1
  3349. <a name="l03285"></a>03285 <span class="keywordtype">double precision</span> r1
  3350. <a name="l03286"></a>03286 <span class="keywordtype">double precision</span> r2
  3351. <a name="l03287"></a>03287 <span class="keywordtype">double precision</span> ratio
  3352. <a name="l03288"></a>03288 <span class="keywordtype">double precision</span> weight(norder)
  3353. <a name="l03289"></a>03289 <span class="keywordtype">double precision</span> x
  3354. <a name="l03290"></a>03290 <span class="keywordtype">double precision</span> xtab(norder)
  3355. <a name="l03291"></a>03291 <span class="comment">!</span>
  3356. <a name="l03292"></a>03292 <span class="comment">! Set the recursion coefficients.</span>
  3357. <a name="l03293"></a>03293 <span class="comment">!</span>
  3358. <a name="l03294"></a>03294 <span class="keyword">do</span> i = 1, norder
  3359. <a name="l03295"></a>03295 b(i) = ( alpha + dble ( 2 * i - 1 ) )
  3360. <a name="l03296"></a>03296 <span class="keyword">end do</span>
  3361. <a name="l03297"></a>03297
  3362. <a name="l03298"></a>03298 <span class="keyword">do</span> i = 1, norder
  3363. <a name="l03299"></a>03299 c(i) = dble ( i - 1 ) * ( alpha + dble ( i - 1 ) )
  3364. <a name="l03300"></a>03300 <span class="keyword">end do</span>
  3365. <a name="l03301"></a>03301
  3366. <a name="l03302"></a>03302 cc = gamma ( alpha + 1.0D+00 ) * product ( c(2:norder) )
  3367. <a name="l03303"></a>03303
  3368. <a name="l03304"></a>03304 <span class="keyword">do</span> i = 1, norder
  3369. <a name="l03305"></a>03305 <span class="comment">!</span>
  3370. <a name="l03306"></a>03306 <span class="comment">! Compute an estimate for the root.</span>
  3371. <a name="l03307"></a>03307 <span class="comment">!</span>
  3372. <a name="l03308"></a>03308 <span class="keyword">if</span> ( i == 1 ) <span class="keyword">then</span>
  3373. <a name="l03309"></a>03309
  3374. <a name="l03310"></a>03310 x = ( 1.0D+00 + alpha ) * ( 3.0D+00+ 0.92 * alpha ) / &amp;
  3375. <a name="l03311"></a>03311 ( 1.0D+00 + 2.4D+00 * dble ( norder ) + 1.8D+00 * alpha )
  3376. <a name="l03312"></a>03312
  3377. <a name="l03313"></a>03313 <span class="keyword">else</span> <span class="keyword">if</span> ( i == 2 ) <span class="keyword">then</span>
  3378. <a name="l03314"></a>03314
  3379. <a name="l03315"></a>03315 x = x + ( 15.0D+00 + 6.25D+00 * alpha ) / &amp;
  3380. <a name="l03316"></a>03316 ( 1.0D+00 + 0.9D+00 * alpha + 2.5D+00 * dble ( norder ) )
  3381. <a name="l03317"></a>03317
  3382. <a name="l03318"></a>03318 <span class="keyword">else</span>
  3383. <a name="l03319"></a>03319
  3384. <a name="l03320"></a>03320 r1 = ( 1.0D+00 + 2.55D+00 * dble ( i - 2 ) ) / ( 1.9D+00 * dble ( i - 2 ) )
  3385. <a name="l03321"></a>03321
  3386. <a name="l03322"></a>03322 r2 = 1.26D+00 * dble ( i - 2 ) * alpha / &amp;
  3387. <a name="l03323"></a>03323 ( 1.0D+00 + 3.5D+00 * dble ( i - 2 ) )
  3388. <a name="l03324"></a>03324
  3389. <a name="l03325"></a>03325 ratio = ( r1 + r2 ) / ( 1.0D+00 + 0.3D+00 * alpha )
  3390. <a name="l03326"></a>03326
  3391. <a name="l03327"></a>03327 x = x + ratio * ( x - xtab(i-2) )
  3392. <a name="l03328"></a>03328
  3393. <a name="l03329"></a>03329 <span class="keyword">end if</span>
  3394. <a name="l03330"></a>03330 <span class="comment">!</span>
  3395. <a name="l03331"></a>03331 <span class="comment">! Use iteration to find the root.</span>
  3396. <a name="l03332"></a>03332 <span class="comment">!</span>
  3397. <a name="l03333"></a>03333 call <a class="code" href="quadrule_8f90.html#a50878552a6862bdc03e4e7d904d7b154">laguerre_root </a>( x, norder, alpha, dp2, p1, b, c )
  3398. <a name="l03334"></a>03334 <span class="comment">!</span>
  3399. <a name="l03335"></a>03335 <span class="comment">! Set the abscissa and weight.</span>
  3400. <a name="l03336"></a>03336 <span class="comment">!</span>
  3401. <a name="l03337"></a>03337 xtab(i) = x
  3402. <a name="l03338"></a>03338 weight(i) = ( cc / dp2 ) / p1
  3403. <a name="l03339"></a>03339
  3404. <a name="l03340"></a>03340 <span class="keyword">end do</span>
  3405. <a name="l03341"></a>03341
  3406. <a name="l03342"></a>03342 return
  3407. <a name="l03343"></a>03343 <span class="keyword">end</span>
  3408. <a name="l03344"></a><a class="code" href="quadrule_8f90.html#a37a4edc203821495156eaa63b1c4d7fa">03344</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a37a4edc203821495156eaa63b1c4d7fa">laguerre_recur</a> ( p2, dp2, p1, x, norder, alpha, b, c )
  3409. <a name="l03345"></a>03345 <span class="comment">!</span>
  3410. <a name="l03346"></a>03346 <span class="comment">!*******************************************************************************</span>
  3411. <a name="l03347"></a>03347 <span class="comment">!</span>
  3412. <a name="l03348"></a>03348 <span class="comment">!! LAGUERRE_RECUR finds the value and derivative of a Laguerre polynomial.</span>
  3413. <a name="l03349"></a>03349 <span class="comment">!</span>
  3414. <a name="l03350"></a>03350 <span class="comment">!</span>
  3415. <a name="l03351"></a>03351 <span class="comment">! Reference:</span>
  3416. <a name="l03352"></a>03352 <span class="comment">!</span>
  3417. <a name="l03353"></a>03353 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  3418. <a name="l03354"></a>03354 <span class="comment">! Gaussian Quadrature Formulas,</span>
  3419. <a name="l03355"></a>03355 <span class="comment">! Prentice Hall, 1966.</span>
  3420. <a name="l03356"></a>03356 <span class="comment">!</span>
  3421. <a name="l03357"></a>03357 <span class="comment">! Modified:</span>
  3422. <a name="l03358"></a>03358 <span class="comment">!</span>
  3423. <a name="l03359"></a>03359 <span class="comment">! 19 September 1998</span>
  3424. <a name="l03360"></a>03360 <span class="comment">!</span>
  3425. <a name="l03361"></a>03361 <span class="comment">! Parameters:</span>
  3426. <a name="l03362"></a>03362 <span class="comment">!</span>
  3427. <a name="l03363"></a>03363 <span class="comment">! Output, double precision P2, the value of L(NORDER)(X).</span>
  3428. <a name="l03364"></a>03364 <span class="comment">!</span>
  3429. <a name="l03365"></a>03365 <span class="comment">! Output, double precision DP2, the value of L&#39;(NORDER)(X).</span>
  3430. <a name="l03366"></a>03366 <span class="comment">!</span>
  3431. <a name="l03367"></a>03367 <span class="comment">! Output, double precision P1, the value of L(NORDER-1)(X).</span>
  3432. <a name="l03368"></a>03368 <span class="comment">!</span>
  3433. <a name="l03369"></a>03369 <span class="comment">! Input, double precision X, the point at which polynomials are evaluated.</span>
  3434. <a name="l03370"></a>03370 <span class="comment">!</span>
  3435. <a name="l03371"></a>03371 <span class="comment">! Input, integer NORDER, the order of the polynomial to be computed.</span>
  3436. <a name="l03372"></a>03372 <span class="comment">!</span>
  3437. <a name="l03373"></a>03373 <span class="comment">! Input, double precision ALPHA, the exponent of the X factor in the</span>
  3438. <a name="l03374"></a>03374 <span class="comment">! integrand.</span>
  3439. <a name="l03375"></a>03375 <span class="comment">!</span>
  3440. <a name="l03376"></a>03376 <span class="comment">! Input, double precision B(NORDER), C(NORDER), the recursion</span>
  3441. <a name="l03377"></a>03377 <span class="comment">! coefficients.</span>
  3442. <a name="l03378"></a>03378 <span class="comment">!</span>
  3443. <a name="l03379"></a>03379 <span class="keyword">implicit none</span>
  3444. <a name="l03380"></a>03380 <span class="comment">!</span>
  3445. <a name="l03381"></a>03381 <span class="keywordtype">integer</span> norder
  3446. <a name="l03382"></a>03382 <span class="comment">!</span>
  3447. <a name="l03383"></a>03383 <span class="keywordtype">double precision</span> alpha
  3448. <a name="l03384"></a>03384 <span class="keywordtype">double precision</span> b(norder)
  3449. <a name="l03385"></a>03385 <span class="keywordtype">double precision</span> c(norder)
  3450. <a name="l03386"></a>03386 <span class="keywordtype">double precision</span> dp0
  3451. <a name="l03387"></a>03387 <span class="keywordtype">double precision</span> dp1
  3452. <a name="l03388"></a>03388 <span class="keywordtype">double precision</span> dp2
  3453. <a name="l03389"></a>03389 <span class="keywordtype">integer</span> i
  3454. <a name="l03390"></a>03390 <span class="keywordtype">double precision</span> p0
  3455. <a name="l03391"></a>03391 <span class="keywordtype">double precision</span> p1
  3456. <a name="l03392"></a>03392 <span class="keywordtype">double precision</span> p2
  3457. <a name="l03393"></a>03393 <span class="keywordtype">double precision</span> x
  3458. <a name="l03394"></a>03394 <span class="comment">!</span>
  3459. <a name="l03395"></a>03395 p1 = 1.0D+00
  3460. <a name="l03396"></a>03396 dp1 = 0.0D+00
  3461. <a name="l03397"></a>03397
  3462. <a name="l03398"></a>03398 p2 = x - alpha - 1.0D+00
  3463. <a name="l03399"></a>03399 dp2 = 1.0D+00
  3464. <a name="l03400"></a>03400
  3465. <a name="l03401"></a>03401 <span class="keyword">do</span> i = 2, norder
  3466. <a name="l03402"></a>03402
  3467. <a name="l03403"></a>03403 p0 = p1
  3468. <a name="l03404"></a>03404 dp0 = dp1
  3469. <a name="l03405"></a>03405
  3470. <a name="l03406"></a>03406 p1 = p2
  3471. <a name="l03407"></a>03407 dp1 = dp2
  3472. <a name="l03408"></a>03408
  3473. <a name="l03409"></a>03409 p2 = ( x - b(i) ) * p1 - c(i) * p0
  3474. <a name="l03410"></a>03410 dp2 = ( x - b(i) ) * dp1 + p1 - c(i) * dp0
  3475. <a name="l03411"></a>03411
  3476. <a name="l03412"></a>03412 <span class="keyword">end do</span>
  3477. <a name="l03413"></a>03413
  3478. <a name="l03414"></a>03414 return
  3479. <a name="l03415"></a>03415 <span class="keyword">end</span>
  3480. <a name="l03416"></a><a class="code" href="quadrule_8f90.html#a50878552a6862bdc03e4e7d904d7b154">03416</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a50878552a6862bdc03e4e7d904d7b154">laguerre_root</a> ( x, norder, alpha, dp2, p1, b, c )
  3481. <a name="l03417"></a>03417 <span class="comment">!</span>
  3482. <a name="l03418"></a>03418 <span class="comment">!*******************************************************************************</span>
  3483. <a name="l03419"></a>03419 <span class="comment">!</span>
  3484. <a name="l03420"></a>03420 <span class="comment">!! LAGUERRE_ROOT improves an approximate root of a Laguerre polynomial.</span>
  3485. <a name="l03421"></a>03421 <span class="comment">!</span>
  3486. <a name="l03422"></a>03422 <span class="comment">!</span>
  3487. <a name="l03423"></a>03423 <span class="comment">! Reference:</span>
  3488. <a name="l03424"></a>03424 <span class="comment">!</span>
  3489. <a name="l03425"></a>03425 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  3490. <a name="l03426"></a>03426 <span class="comment">! Gaussian Quadrature Formulas,</span>
  3491. <a name="l03427"></a>03427 <span class="comment">! Prentice Hall, 1966.</span>
  3492. <a name="l03428"></a>03428 <span class="comment">!</span>
  3493. <a name="l03429"></a>03429 <span class="comment">! Modified:</span>
  3494. <a name="l03430"></a>03430 <span class="comment">!</span>
  3495. <a name="l03431"></a>03431 <span class="comment">! 09 December 2000</span>
  3496. <a name="l03432"></a>03432 <span class="comment">!</span>
  3497. <a name="l03433"></a>03433 <span class="comment">! Parameters:</span>
  3498. <a name="l03434"></a>03434 <span class="comment">!</span>
  3499. <a name="l03435"></a>03435 <span class="comment">! Input/output, double precision X, the approximate root, which</span>
  3500. <a name="l03436"></a>03436 <span class="comment">! should be improved on output.</span>
  3501. <a name="l03437"></a>03437 <span class="comment">!</span>
  3502. <a name="l03438"></a>03438 <span class="comment">! Input, integer NORDER, the order of the polynomial to be computed.</span>
  3503. <a name="l03439"></a>03439 <span class="comment">!</span>
  3504. <a name="l03440"></a>03440 <span class="comment">! Input, double precision ALPHA, the exponent of the X factor.</span>
  3505. <a name="l03441"></a>03441 <span class="comment">!</span>
  3506. <a name="l03442"></a>03442 <span class="comment">! Output, double precision DP2, the value of L&#39;(NORDER)(X).</span>
  3507. <a name="l03443"></a>03443 <span class="comment">!</span>
  3508. <a name="l03444"></a>03444 <span class="comment">! Output, double precision P1, the value of L(NORDER-1)(X).</span>
  3509. <a name="l03445"></a>03445 <span class="comment">!</span>
  3510. <a name="l03446"></a>03446 <span class="comment">! Input, double precision B(NORDER), C(NORDER), the recursion coefficients.</span>
  3511. <a name="l03447"></a>03447 <span class="comment">!</span>
  3512. <a name="l03448"></a>03448 <span class="keyword">implicit none</span>
  3513. <a name="l03449"></a>03449 <span class="comment">!</span>
  3514. <a name="l03450"></a>03450 <span class="keywordtype">integer</span> norder
  3515. <a name="l03451"></a>03451 <span class="comment">!</span>
  3516. <a name="l03452"></a>03452 <span class="keywordtype">double precision</span> alpha
  3517. <a name="l03453"></a>03453 <span class="keywordtype">double precision</span> b(norder)
  3518. <a name="l03454"></a>03454 <span class="keywordtype">double precision</span> c(norder)
  3519. <a name="l03455"></a>03455 <span class="keywordtype">double precision</span> d
  3520. <a name="l03456"></a>03456 <span class="keywordtype">double precision</span> dp2
  3521. <a name="l03457"></a>03457 <span class="keywordtype">double precision</span> eps
  3522. <a name="l03458"></a>03458 <span class="keywordtype">integer</span> i
  3523. <a name="l03459"></a>03459 <span class="keywordtype">integer</span>, <span class="keywordtype">parameter</span> :: maxstep = 10
  3524. <a name="l03460"></a>03460 <span class="keywordtype">double precision</span> p1
  3525. <a name="l03461"></a>03461 <span class="keywordtype">double precision</span> p2
  3526. <a name="l03462"></a>03462 <span class="keywordtype">double precision</span> x
  3527. <a name="l03463"></a>03463 <span class="comment">!</span>
  3528. <a name="l03464"></a>03464 eps = epsilon ( x )
  3529. <a name="l03465"></a>03465
  3530. <a name="l03466"></a>03466 <span class="keyword">do</span> i = 1, maxstep
  3531. <a name="l03467"></a>03467
  3532. <a name="l03468"></a>03468 call <a class="code" href="quadrule_8f90.html#a37a4edc203821495156eaa63b1c4d7fa">laguerre_recur </a>( p2, dp2, p1, x, norder, alpha, b, c )
  3533. <a name="l03469"></a>03469
  3534. <a name="l03470"></a>03470 d = p2 / dp2
  3535. <a name="l03471"></a>03471 x = x - d
  3536. <a name="l03472"></a>03472
  3537. <a name="l03473"></a>03473 <span class="keyword">if</span> ( abs ( d ) &lt;= eps * ( abs ( x ) + 1.0D+00 ) ) <span class="keyword">then</span>
  3538. <a name="l03474"></a>03474 return
  3539. <a name="l03475"></a>03475 <span class="keyword">end if</span>
  3540. <a name="l03476"></a>03476
  3541. <a name="l03477"></a>03477 <span class="keyword">end do</span>
  3542. <a name="l03478"></a>03478
  3543. <a name="l03479"></a>03479 return
  3544. <a name="l03480"></a>03480 <span class="keyword">end</span>
  3545. <a name="l03481"></a><a class="code" href="quadrule_8f90.html#a35fe6a5ac275303facfa7b695addee7f">03481</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a35fe6a5ac275303facfa7b695addee7f">laguerre_set</a> ( norder, xtab, weight )
  3546. <a name="l03482"></a>03482 <span class="comment">!</span>
  3547. <a name="l03483"></a>03483 <span class="comment">!*******************************************************************************</span>
  3548. <a name="l03484"></a>03484 <span class="comment">!</span>
  3549. <a name="l03485"></a>03485 <span class="comment">!! LAGUERRE_SET sets abscissas and weights for Laguerre quadrature.</span>
  3550. <a name="l03486"></a>03486 <span class="comment">!</span>
  3551. <a name="l03487"></a>03487 <span class="comment">!</span>
  3552. <a name="l03488"></a>03488 <span class="comment">! Integration interval:</span>
  3553. <a name="l03489"></a>03489 <span class="comment">!</span>
  3554. <a name="l03490"></a>03490 <span class="comment">! [ 0, +Infinity )</span>
  3555. <a name="l03491"></a>03491 <span class="comment">!</span>
  3556. <a name="l03492"></a>03492 <span class="comment">! Weight function:</span>
  3557. <a name="l03493"></a>03493 <span class="comment">!</span>
  3558. <a name="l03494"></a>03494 <span class="comment">! EXP ( - X )</span>
  3559. <a name="l03495"></a>03495 <span class="comment">!</span>
  3560. <a name="l03496"></a>03496 <span class="comment">! Integral to approximate:</span>
  3561. <a name="l03497"></a>03497 <span class="comment">!</span>
  3562. <a name="l03498"></a>03498 <span class="comment">! Integral ( 0 &lt;= X &lt; +INFINITY ) EXP ( - X ) * F(X) dX</span>
  3563. <a name="l03499"></a>03499 <span class="comment">!</span>
  3564. <a name="l03500"></a>03500 <span class="comment">! Approximate integral:</span>
  3565. <a name="l03501"></a>03501 <span class="comment">!</span>
  3566. <a name="l03502"></a>03502 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  3567. <a name="l03503"></a>03503 <span class="comment">!</span>
  3568. <a name="l03504"></a>03504 <span class="comment">! Note:</span>
  3569. <a name="l03505"></a>03505 <span class="comment">!</span>
  3570. <a name="l03506"></a>03506 <span class="comment">! The abscissas are the zeroes of the Laguerre polynomial L(NORDER)(X).</span>
  3571. <a name="l03507"></a>03507 <span class="comment">!</span>
  3572. <a name="l03508"></a>03508 <span class="comment">! Reference:</span>
  3573. <a name="l03509"></a>03509 <span class="comment">!</span>
  3574. <a name="l03510"></a>03510 <span class="comment">! Abramowitz and Stegun,</span>
  3575. <a name="l03511"></a>03511 <span class="comment">! Handbook of Mathematical Functions,</span>
  3576. <a name="l03512"></a>03512 <span class="comment">! National Bureau of Standards, 1964.</span>
  3577. <a name="l03513"></a>03513 <span class="comment">!</span>
  3578. <a name="l03514"></a>03514 <span class="comment">! Vladimir Krylov,</span>
  3579. <a name="l03515"></a>03515 <span class="comment">! Approximate Calculation of Integrals,</span>
  3580. <a name="l03516"></a>03516 <span class="comment">! MacMillan, 1962.</span>
  3581. <a name="l03517"></a>03517 <span class="comment">!</span>
  3582. <a name="l03518"></a>03518 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  3583. <a name="l03519"></a>03519 <span class="comment">! Gaussian Quadrature Formulas,</span>
  3584. <a name="l03520"></a>03520 <span class="comment">! Prentice Hall, 1966.</span>
  3585. <a name="l03521"></a>03521 <span class="comment">!</span>
  3586. <a name="l03522"></a>03522 <span class="comment">! Daniel Zwillinger, editor,</span>
  3587. <a name="l03523"></a>03523 <span class="comment">! Standard Mathematical Tables and Formulae,</span>
  3588. <a name="l03524"></a>03524 <span class="comment">! 30th Edition,</span>
  3589. <a name="l03525"></a>03525 <span class="comment">! CRC Press, 1996.</span>
  3590. <a name="l03526"></a>03526 <span class="comment">!</span>
  3591. <a name="l03527"></a>03527 <span class="comment">! Modified:</span>
  3592. <a name="l03528"></a>03528 <span class="comment">!</span>
  3593. <a name="l03529"></a>03529 <span class="comment">! 17 September 1998</span>
  3594. <a name="l03530"></a>03530 <span class="comment">!</span>
  3595. <a name="l03531"></a>03531 <span class="comment">! Author:</span>
  3596. <a name="l03532"></a>03532 <span class="comment">!</span>
  3597. <a name="l03533"></a>03533 <span class="comment">! John Burkardt</span>
  3598. <a name="l03534"></a>03534 <span class="comment">!</span>
  3599. <a name="l03535"></a>03535 <span class="comment">! Parameters:</span>
  3600. <a name="l03536"></a>03536 <span class="comment">!</span>
  3601. <a name="l03537"></a>03537 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  3602. <a name="l03538"></a>03538 <span class="comment">! NORDER must be between 1 and 20.</span>
  3603. <a name="l03539"></a>03539 <span class="comment">!</span>
  3604. <a name="l03540"></a>03540 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  3605. <a name="l03541"></a>03541 <span class="comment">!</span>
  3606. <a name="l03542"></a>03542 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  3607. <a name="l03543"></a>03543 <span class="comment">! The weights are positive, and should add to 1.</span>
  3608. <a name="l03544"></a>03544 <span class="comment">!</span>
  3609. <a name="l03545"></a>03545 <span class="keyword">implicit none</span>
  3610. <a name="l03546"></a>03546 <span class="comment">!</span>
  3611. <a name="l03547"></a>03547 <span class="keywordtype">integer</span> norder
  3612. <a name="l03548"></a>03548 <span class="comment">!</span>
  3613. <a name="l03549"></a>03549 <span class="keywordtype">double precision</span> weight(norder)
  3614. <a name="l03550"></a>03550 <span class="keywordtype">double precision</span> xtab(norder)
  3615. <a name="l03551"></a>03551 <span class="comment">!</span>
  3616. <a name="l03552"></a>03552 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  3617. <a name="l03553"></a>03553
  3618. <a name="l03554"></a>03554 xtab(1) = 1.0D+00
  3619. <a name="l03555"></a>03555 weight(1) = 1.0D+00
  3620. <a name="l03556"></a>03556
  3621. <a name="l03557"></a>03557 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  3622. <a name="l03558"></a>03558
  3623. <a name="l03559"></a>03559 xtab(1) = 0.585786437626904951198311275790D+00
  3624. <a name="l03560"></a>03560 xtab(2) = 0.341421356237309504880168872421D+01
  3625. <a name="l03561"></a>03561
  3626. <a name="l03562"></a>03562 weight(1) = 0.853553390593273762200422181052D+00
  3627. <a name="l03563"></a>03563 weight(2) = 0.146446609406726237799577818948D+00
  3628. <a name="l03564"></a>03564
  3629. <a name="l03565"></a>03565 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  3630. <a name="l03566"></a>03566
  3631. <a name="l03567"></a>03567 xtab(1) = 0.415774556783479083311533873128D+00
  3632. <a name="l03568"></a>03568 xtab(2) = 0.229428036027904171982205036136D+01
  3633. <a name="l03569"></a>03569 xtab(3) = 0.628994508293747919686641576551D+01
  3634. <a name="l03570"></a>03570
  3635. <a name="l03571"></a>03571 weight(1) = 0.711093009929173015449590191143D+00
  3636. <a name="l03572"></a>03572 weight(2) = 0.278517733569240848801444888457D+00
  3637. <a name="l03573"></a>03573 weight(3) = 0.103892565015861357489649204007D-01
  3638. <a name="l03574"></a>03574
  3639. <a name="l03575"></a>03575 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  3640. <a name="l03576"></a>03576
  3641. <a name="l03577"></a>03577 xtab(1) = 0.322547689619392311800361943361D+00
  3642. <a name="l03578"></a>03578 xtab(2) = 0.174576110115834657568681671252D+01
  3643. <a name="l03579"></a>03579 xtab(3) = 0.453662029692112798327928538496D+01
  3644. <a name="l03580"></a>03580 xtab(4) = 0.939507091230113312923353644342D+01
  3645. <a name="l03581"></a>03581
  3646. <a name="l03582"></a>03582 weight(1) = 0.603154104341633601635966023818D+00
  3647. <a name="l03583"></a>03583 weight(2) = 0.357418692437799686641492017458D+00
  3648. <a name="l03584"></a>03584 weight(3) = 0.388879085150053842724381681562D-01
  3649. <a name="l03585"></a>03585 weight(4) = 0.539294705561327450103790567621D-03
  3650. <a name="l03586"></a>03586
  3651. <a name="l03587"></a>03587 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  3652. <a name="l03588"></a>03588
  3653. <a name="l03589"></a>03589 xtab(1) = 0.263560319718140910203061943361D+00
  3654. <a name="l03590"></a>03590 xtab(2) = 0.141340305910651679221840798019D+01
  3655. <a name="l03591"></a>03591 xtab(3) = 0.359642577104072208122318658878D+01
  3656. <a name="l03592"></a>03592 xtab(4) = 0.708581000585883755692212418111D+01
  3657. <a name="l03593"></a>03593 xtab(5) = 0.126408008442757826594332193066D+02
  3658. <a name="l03594"></a>03594
  3659. <a name="l03595"></a>03595 weight(1) = 0.521755610582808652475860928792D+00
  3660. <a name="l03596"></a>03596 weight(2) = 0.398666811083175927454133348144D+00
  3661. <a name="l03597"></a>03597 weight(3) = 0.759424496817075953876533114055D-01
  3662. <a name="l03598"></a>03598 weight(4) = 0.361175867992204845446126257304D-02
  3663. <a name="l03599"></a>03599 weight(5) = 0.233699723857762278911490845516D-04
  3664. <a name="l03600"></a>03600
  3665. <a name="l03601"></a>03601 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  3666. <a name="l03602"></a>03602
  3667. <a name="l03603"></a>03603 xtab(1) = 0.222846604179260689464354826787D+00
  3668. <a name="l03604"></a>03604 xtab(2) = 0.118893210167262303074315092194D+01
  3669. <a name="l03605"></a>03605 xtab(3) = 0.299273632605931407769132528451D+01
  3670. <a name="l03606"></a>03606 xtab(4) = 0.577514356910451050183983036943D+01
  3671. <a name="l03607"></a>03607 xtab(5) = 0.983746741838258991771554702994D+01
  3672. <a name="l03608"></a>03608 xtab(6) = 0.159828739806017017825457915674D+02
  3673. <a name="l03609"></a>03609
  3674. <a name="l03610"></a>03610 weight(1) = 0.458964673949963593568284877709D+00
  3675. <a name="l03611"></a>03611 weight(2) = 0.417000830772120994113377566193D+00
  3676. <a name="l03612"></a>03612 weight(3) = 0.113373382074044975738706185098D+00
  3677. <a name="l03613"></a>03613 weight(4) = 0.103991974531490748989133028469D-01
  3678. <a name="l03614"></a>03614 weight(5) = 0.261017202814932059479242860001D-03
  3679. <a name="l03615"></a>03615 weight(6) = 0.898547906429621238825292052825D-06
  3680. <a name="l03616"></a>03616
  3681. <a name="l03617"></a>03617 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  3682. <a name="l03618"></a>03618
  3683. <a name="l03619"></a>03619 xtab(1) = 0.193043676560362413838247885004D+00
  3684. <a name="l03620"></a>03620 xtab(2) = 0.102666489533919195034519944317D+01
  3685. <a name="l03621"></a>03621 xtab(3) = 0.256787674495074620690778622666D+01
  3686. <a name="l03622"></a>03622 xtab(4) = 0.490035308452648456810171437810D+01
  3687. <a name="l03623"></a>03623 xtab(5) = 0.818215344456286079108182755123D+01
  3688. <a name="l03624"></a>03624 xtab(6) = 0.127341802917978137580126424582D+02
  3689. <a name="l03625"></a>03625 xtab(7) = 0.193957278622625403117125820576D+02
  3690. <a name="l03626"></a>03626
  3691. <a name="l03627"></a>03627 weight(1) = 0.409318951701273902130432880018D+00
  3692. <a name="l03628"></a>03628 weight(2) = 0.421831277861719779929281005417D+00
  3693. <a name="l03629"></a>03629 weight(3) = 0.147126348657505278395374184637D+00
  3694. <a name="l03630"></a>03630 weight(4) = 0.206335144687169398657056149642D-01
  3695. <a name="l03631"></a>03631 weight(5) = 0.107401014328074552213195962843D-02
  3696. <a name="l03632"></a>03632 weight(6) = 0.158654643485642012687326223234D-04
  3697. <a name="l03633"></a>03633 weight(7) = 0.317031547899558056227132215385D-07
  3698. <a name="l03634"></a>03634
  3699. <a name="l03635"></a>03635 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  3700. <a name="l03636"></a>03636
  3701. <a name="l03637"></a>03637 xtab(1) = 0.170279632305100999788861856608D+00
  3702. <a name="l03638"></a>03638 xtab(2) = 0.903701776799379912186020223555D+00
  3703. <a name="l03639"></a>03639 xtab(3) = 0.225108662986613068930711836697D+01
  3704. <a name="l03640"></a>03640 xtab(4) = 0.426670017028765879364942182690D+01
  3705. <a name="l03641"></a>03641 xtab(5) = 0.704590540239346569727932548212D+01
  3706. <a name="l03642"></a>03642 xtab(6) = 0.107585160101809952240599567880D+02
  3707. <a name="l03643"></a>03643 xtab(7) = 0.157406786412780045780287611584D+02
  3708. <a name="l03644"></a>03644 xtab(8) = 0.228631317368892641057005342974D+02
  3709. <a name="l03645"></a>03645
  3710. <a name="l03646"></a>03646 weight(1) = 0.369188589341637529920582839376D+00
  3711. <a name="l03647"></a>03647 weight(2) = 0.418786780814342956076978581333D+00
  3712. <a name="l03648"></a>03648 weight(3) = 0.175794986637171805699659866777D+00
  3713. <a name="l03649"></a>03649 weight(4) = 0.333434922612156515221325349344D-01
  3714. <a name="l03650"></a>03650 weight(5) = 0.279453623522567252493892414793D-02
  3715. <a name="l03651"></a>03651 weight(6) = 0.907650877335821310423850149336D-04
  3716. <a name="l03652"></a>03652 weight(7) = 0.848574671627253154486801830893D-06
  3717. <a name="l03653"></a>03653 weight(8) = 0.104800117487151038161508853552D-08
  3718. <a name="l03654"></a>03654
  3719. <a name="l03655"></a>03655 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 9 ) <span class="keyword">then</span>
  3720. <a name="l03656"></a>03656
  3721. <a name="l03657"></a>03657 xtab(1) = 0.152322227731808247428107073127D+00
  3722. <a name="l03658"></a>03658 xtab(2) = 0.807220022742255847741419210952D+00
  3723. <a name="l03659"></a>03659 xtab(3) = 0.200513515561934712298303324701D+01
  3724. <a name="l03660"></a>03660 xtab(4) = 0.378347397333123299167540609364D+01
  3725. <a name="l03661"></a>03661 xtab(5) = 0.620495677787661260697353521006D+01
  3726. <a name="l03662"></a>03662 xtab(6) = 0.937298525168757620180971073215D+01
  3727. <a name="l03663"></a>03663 xtab(7) = 0.134662369110920935710978818397D+02
  3728. <a name="l03664"></a>03664 xtab(8) = 0.188335977889916966141498992996D+02
  3729. <a name="l03665"></a>03665 xtab(9) = 0.263740718909273767961410072937D+02
  3730. <a name="l03666"></a>03666
  3731. <a name="l03667"></a>03667 weight(1) = 0.336126421797962519673467717606D+00
  3732. <a name="l03668"></a>03668 weight(2) = 0.411213980423984387309146942793D+00
  3733. <a name="l03669"></a>03669 weight(3) = 0.199287525370885580860575607212D+00
  3734. <a name="l03670"></a>03670 weight(4) = 0.474605627656515992621163600479D-01
  3735. <a name="l03671"></a>03671 weight(5) = 0.559962661079458317700419900556D-02
  3736. <a name="l03672"></a>03672 weight(6) = 0.305249767093210566305412824291D-03
  3737. <a name="l03673"></a>03673 weight(7) = 0.659212302607535239225572284875D-05
  3738. <a name="l03674"></a>03674 weight(8) = 0.411076933034954844290241040330D-07
  3739. <a name="l03675"></a>03675 weight(9) = 0.329087403035070757646681380323D-10
  3740. <a name="l03676"></a>03676
  3741. <a name="l03677"></a>03677 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 10 ) <span class="keyword">then</span>
  3742. <a name="l03678"></a>03678
  3743. <a name="l03679"></a>03679 xtab(1) = 0.137793470540492430830772505653D+00
  3744. <a name="l03680"></a>03680 xtab(2) = 0.729454549503170498160373121676D+00
  3745. <a name="l03681"></a>03681 xtab(3) = 0.180834290174031604823292007575D+01
  3746. <a name="l03682"></a>03682 xtab(4) = 0.340143369785489951448253222141D+01
  3747. <a name="l03683"></a>03683 xtab(5) = 0.555249614006380363241755848687D+01
  3748. <a name="l03684"></a>03684 xtab(6) = 0.833015274676449670023876719727D+01
  3749. <a name="l03685"></a>03685 xtab(7) = 0.118437858379000655649185389191D+02
  3750. <a name="l03686"></a>03686 xtab(8) = 0.162792578313781020995326539358D+02
  3751. <a name="l03687"></a>03687 xtab(9) = 0.219965858119807619512770901956D+02
  3752. <a name="l03688"></a>03688 xtab(10) = 0.299206970122738915599087933408D+02
  3753. <a name="l03689"></a>03689
  3754. <a name="l03690"></a>03690 weight(1) = 0.308441115765020141547470834678D+00
  3755. <a name="l03691"></a>03691 weight(2) = 0.401119929155273551515780309913D+00
  3756. <a name="l03692"></a>03692 weight(3) = 0.218068287611809421588648523475D+00
  3757. <a name="l03693"></a>03693 weight(4) = 0.620874560986777473929021293135D-01
  3758. <a name="l03694"></a>03694 weight(5) = 0.950151697518110055383907219417D-02
  3759. <a name="l03695"></a>03695 weight(6) = 0.753008388587538775455964353676D-03
  3760. <a name="l03696"></a>03696 weight(7) = 0.282592334959956556742256382685D-04
  3761. <a name="l03697"></a>03697 weight(8) = 0.424931398496268637258657665975D-06
  3762. <a name="l03698"></a>03698 weight(9) = 0.183956482397963078092153522436D-08
  3763. <a name="l03699"></a>03699 weight(10) = 0.991182721960900855837754728324D-12
  3764. <a name="l03700"></a>03700
  3765. <a name="l03701"></a>03701 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 11 ) <span class="keyword">then</span>
  3766. <a name="l03702"></a>03702
  3767. <a name="l03703"></a>03703 xtab(1) = 0.125796442187967522675794577516D+00
  3768. <a name="l03704"></a>03704 xtab(2) = 0.665418255839227841678127839420D+00
  3769. <a name="l03705"></a>03705 xtab(3) = 0.164715054587216930958700321365D+01
  3770. <a name="l03706"></a>03706 xtab(4) = 0.309113814303525495330195934259D+01
  3771. <a name="l03707"></a>03707 xtab(5) = 0.502928440157983321236999508366D+01
  3772. <a name="l03708"></a>03708 xtab(6) = 0.750988786380661681941099714450D+01
  3773. <a name="l03709"></a>03709 xtab(7) = 0.106059509995469677805559216457D+02
  3774. <a name="l03710"></a>03710 xtab(8) = 0.144316137580641855353200450349D+02
  3775. <a name="l03711"></a>03711 xtab(9) = 0.191788574032146786478174853989D+02
  3776. <a name="l03712"></a>03712 xtab(10) = 0.252177093396775611040909447797D+02
  3777. <a name="l03713"></a>03713 xtab(11) = 0.334971928471755372731917259395D+02
  3778. <a name="l03714"></a>03714
  3779. <a name="l03715"></a>03715 weight(1) = 0.284933212894200605056051024724D+00
  3780. <a name="l03716"></a>03716 weight(2) = 0.389720889527849377937553508048D+00
  3781. <a name="l03717"></a>03717 weight(3) = 0.232781831848991333940223795543D+00
  3782. <a name="l03718"></a>03718 weight(4) = 0.765644535461966864008541790132D-01
  3783. <a name="l03719"></a>03719 weight(5) = 0.143932827673506950918639187409D-01
  3784. <a name="l03720"></a>03720 weight(6) = 0.151888084648487306984777640042D-02
  3785. <a name="l03721"></a>03721 weight(7) = 0.851312243547192259720424170600D-04
  3786. <a name="l03722"></a>03722 weight(8) = 0.229240387957450407857683270709D-05
  3787. <a name="l03723"></a>03723 weight(9) = 0.248635370276779587373391491114D-07
  3788. <a name="l03724"></a>03724 weight(10) = 0.771262693369132047028152590222D-10
  3789. <a name="l03725"></a>03725 weight(11) = 0.288377586832362386159777761217D-13
  3790. <a name="l03726"></a>03726
  3791. <a name="l03727"></a>03727 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 12 ) <span class="keyword">then</span>
  3792. <a name="l03728"></a>03728
  3793. <a name="l03729"></a>03729 xtab(1) = 0.115722117358020675267196428240D+00
  3794. <a name="l03730"></a>03730 xtab(2) = 0.611757484515130665391630053042D+00
  3795. <a name="l03731"></a>03731 xtab(3) = 0.151261026977641878678173792687D+01
  3796. <a name="l03732"></a>03732 xtab(4) = 0.283375133774350722862747177657D+01
  3797. <a name="l03733"></a>03733 xtab(5) = 0.459922763941834848460572922485D+01
  3798. <a name="l03734"></a>03734 xtab(6) = 0.684452545311517734775433041849D+01
  3799. <a name="l03735"></a>03735 xtab(7) = 0.962131684245686704391238234923D+01
  3800. <a name="l03736"></a>03736 xtab(8) = 0.130060549933063477203460524294D+02
  3801. <a name="l03737"></a>03737 xtab(9) = 0.171168551874622557281840528008D+02
  3802. <a name="l03738"></a>03738 xtab(10) = 0.221510903793970056699218950837D+02
  3803. <a name="l03739"></a>03739 xtab(11) = 0.284879672509840003125686072325D+02
  3804. <a name="l03740"></a>03740 xtab(12) = 0.370991210444669203366389142764D+02
  3805. <a name="l03741"></a>03741
  3806. <a name="l03742"></a>03742 weight(1) = 0.264731371055443190349738892056D+00
  3807. <a name="l03743"></a>03743 weight(2) = 0.377759275873137982024490556707D+00
  3808. <a name="l03744"></a>03744 weight(3) = 0.244082011319877564254870818274D+00
  3809. <a name="l03745"></a>03745 weight(4) = 0.904492222116809307275054934667D-01
  3810. <a name="l03746"></a>03746 weight(5) = 0.201023811546340965226612867827D-01
  3811. <a name="l03747"></a>03747 weight(6) = 0.266397354186531588105415760678D-02
  3812. <a name="l03748"></a>03748 weight(7) = 0.203231592662999392121432860438D-03
  3813. <a name="l03749"></a>03749 weight(8) = 0.836505585681979874533632766396D-05
  3814. <a name="l03750"></a>03750 weight(9) = 0.166849387654091026116989532619D-06
  3815. <a name="l03751"></a>03751 weight(10) = 0.134239103051500414552392025055D-08
  3816. <a name="l03752"></a>03752 weight(11) = 0.306160163503502078142407718971D-11
  3817. <a name="l03753"></a>03753 weight(12) = 0.814807746742624168247311868103D-15
  3818. <a name="l03754"></a>03754
  3819. <a name="l03755"></a>03755 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 13 ) <span class="keyword">then</span>
  3820. <a name="l03756"></a>03756
  3821. <a name="l03757"></a>03757 xtab(1) = 0.107142388472252310648493376977D+00
  3822. <a name="l03758"></a>03758 xtab(2) = 0.566131899040401853406036347177D+00
  3823. <a name="l03759"></a>03759 xtab(3) = 0.139856433645101971792750259921D+01
  3824. <a name="l03760"></a>03760 xtab(4) = 0.261659710840641129808364008472D+01
  3825. <a name="l03761"></a>03761 xtab(5) = 0.423884592901703327937303389926D+01
  3826. <a name="l03762"></a>03762 xtab(6) = 0.629225627114007378039376523025D+01
  3827. <a name="l03763"></a>03763 xtab(7) = 0.881500194118697804733348868036D+01
  3828. <a name="l03764"></a>03764 xtab(8) = 0.118614035888112425762212021880D+02
  3829. <a name="l03765"></a>03765 xtab(9) = 0.155107620377037527818478532958D+02
  3830. <a name="l03766"></a>03766 xtab(10) = 0.198846356638802283332036594634D+02
  3831. <a name="l03767"></a>03767 xtab(11) = 0.251852638646777580842970297823D+02
  3832. <a name="l03768"></a>03768 xtab(12) = 0.318003863019472683713663283526D+02
  3833. <a name="l03769"></a>03769 xtab(13) = 0.407230086692655795658979667001D+02
  3834. <a name="l03770"></a>03770
  3835. <a name="l03771"></a>03771 weight(1) = 0.247188708429962621346249185964D+00
  3836. <a name="l03772"></a>03772 weight(2) = 0.365688822900521945306717530893D+00
  3837. <a name="l03773"></a>03773 weight(3) = 0.252562420057658502356824288815D+00
  3838. <a name="l03774"></a>03774 weight(4) = 0.103470758024183705114218631672D+00
  3839. <a name="l03775"></a>03775 weight(5) = 0.264327544155616157781587735702D-01
  3840. <a name="l03776"></a>03776 weight(6) = 0.422039604025475276555209292644D-02
  3841. <a name="l03777"></a>03777 weight(7) = 0.411881770472734774892472527082D-03
  3842. <a name="l03778"></a>03778 weight(8) = 0.235154739815532386882897300772D-04
  3843. <a name="l03779"></a>03779 weight(9) = 0.731731162024909910401047197761D-06
  3844. <a name="l03780"></a>03780 weight(10) = 0.110884162570398067979150974759D-07
  3845. <a name="l03781"></a>03781 weight(11) = 0.677082669220589884064621459082D-10
  3846. <a name="l03782"></a>03782 weight(12) = 0.115997995990507606094507145382D-12
  3847. <a name="l03783"></a>03783 weight(13) = 0.224509320389275841599187226865D-16
  3848. <a name="l03784"></a>03784
  3849. <a name="l03785"></a>03785 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 14 ) <span class="keyword">then</span>
  3850. <a name="l03786"></a>03786
  3851. <a name="l03787"></a>03787 xtab(1) = 0.997475070325975745736829452514D-01
  3852. <a name="l03788"></a>03788 xtab(2) = 0.526857648851902896404583451502D+00
  3853. <a name="l03789"></a>03789 xtab(3) = 0.130062912125149648170842022116D+01
  3854. <a name="l03790"></a>03790 xtab(4) = 0.243080107873084463616999751038D+01
  3855. <a name="l03791"></a>03791 xtab(5) = 0.393210282229321888213134366778D+01
  3856. <a name="l03792"></a>03792 xtab(6) = 0.582553621830170841933899983898D+01
  3857. <a name="l03793"></a>03793 xtab(7) = 0.814024014156514503005978046052D+01
  3858. <a name="l03794"></a>03794 xtab(8) = 0.109164995073660188408130510904D+02
  3859. <a name="l03795"></a>03795 xtab(9) = 0.142108050111612886831059780825D+02
  3860. <a name="l03796"></a>03796 xtab(10) = 0.181048922202180984125546272083D+02
  3861. <a name="l03797"></a>03797 xtab(11) = 0.227233816282696248232280886985D+02
  3862. <a name="l03798"></a>03798 xtab(12) = 0.282729817232482056954158923218D+02
  3863. <a name="l03799"></a>03799 xtab(13) = 0.351494436605924265828643121364D+02
  3864. <a name="l03800"></a>03800 xtab(14) = 0.443660817111174230416312423666D+02
  3865. <a name="l03801"></a>03801
  3866. <a name="l03802"></a>03802 weight(1) = 0.231815577144864977840774861104D+00
  3867. <a name="l03803"></a>03803 weight(2) = 0.353784691597543151802331301273D+00
  3868. <a name="l03804"></a>03804 weight(3) = 0.258734610245428085987320561144D+00
  3869. <a name="l03805"></a>03805 weight(4) = 0.115482893556923210087304988673D+00
  3870. <a name="l03806"></a>03806 weight(5) = 0.331920921593373600387499587137D-01
  3871. <a name="l03807"></a>03807 weight(6) = 0.619286943700661021678785967675D-02
  3872. <a name="l03808"></a>03808 weight(7) = 0.739890377867385942425890907080D-03
  3873. <a name="l03809"></a>03809 weight(8) = 0.549071946684169837857331777667D-04
  3874. <a name="l03810"></a>03810 weight(9) = 0.240958576408537749675775256553D-05
  3875. <a name="l03811"></a>03811 weight(10) = 0.580154398167649518088619303904D-07
  3876. <a name="l03812"></a>03812 weight(11) = 0.681931469248497411961562387084D-09
  3877. <a name="l03813"></a>03813 weight(12) = 0.322120775189484793980885399656D-11
  3878. <a name="l03814"></a>03814 weight(13) = 0.422135244051658735159797335643D-14
  3879. <a name="l03815"></a>03815 weight(14) = 0.605237502228918880839870806281D-18
  3880. <a name="l03816"></a>03816
  3881. <a name="l03817"></a>03817 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 15 ) <span class="keyword">then</span>
  3882. <a name="l03818"></a>03818
  3883. <a name="l03819"></a>03819 xtab(1) = 0.933078120172818047629030383672D-01
  3884. <a name="l03820"></a>03820 xtab(2) = 0.492691740301883908960101791412D+00
  3885. <a name="l03821"></a>03821 xtab(3) = 0.121559541207094946372992716488D+01
  3886. <a name="l03822"></a>03822 xtab(4) = 0.226994952620374320247421741375D+01
  3887. <a name="l03823"></a>03823 xtab(5) = 0.366762272175143727724905959436D+01
  3888. <a name="l03824"></a>03824 xtab(6) = 0.542533662741355316534358132596D+01
  3889. <a name="l03825"></a>03825 xtab(7) = 0.756591622661306786049739555812D+01
  3890. <a name="l03826"></a>03826 xtab(8) = 0.101202285680191127347927394568D+02
  3891. <a name="l03827"></a>03827 xtab(9) = 0.131302824821757235640991204176D+02
  3892. <a name="l03828"></a>03828 xtab(10) = 0.166544077083299578225202408430D+02
  3893. <a name="l03829"></a>03829 xtab(11) = 0.207764788994487667729157175676D+02
  3894. <a name="l03830"></a>03830 xtab(12) = 0.256238942267287801445868285977D+02
  3895. <a name="l03831"></a>03831 xtab(13) = 0.314075191697539385152432196202D+02
  3896. <a name="l03832"></a>03832 xtab(14) = 0.385306833064860094162515167595D+02
  3897. <a name="l03833"></a>03833 xtab(15) = 0.480260855726857943465734308508D+02
  3898. <a name="l03834"></a>03834
  3899. <a name="l03835"></a>03835 weight(1) = 0.218234885940086889856413236448D+00
  3900. <a name="l03836"></a>03836 weight(2) = 0.342210177922883329638948956807D+00
  3901. <a name="l03837"></a>03837 weight(3) = 0.263027577941680097414812275022D+00
  3902. <a name="l03838"></a>03838 weight(4) = 0.126425818105930535843030549378D+00
  3903. <a name="l03839"></a>03839 weight(5) = 0.402068649210009148415854789871D-01
  3904. <a name="l03840"></a>03840 weight(6) = 0.856387780361183836391575987649D-02
  3905. <a name="l03841"></a>03841 weight(7) = 0.121243614721425207621920522467D-02
  3906. <a name="l03842"></a>03842 weight(8) = 0.111674392344251941992578595518D-03
  3907. <a name="l03843"></a>03843 weight(9) = 0.645992676202290092465319025312D-05
  3908. <a name="l03844"></a>03844 weight(10) = 0.222631690709627263033182809179D-06
  3909. <a name="l03845"></a>03845 weight(11) = 0.422743038497936500735127949331D-08
  3910. <a name="l03846"></a>03846 weight(12) = 0.392189726704108929038460981949D-10
  3911. <a name="l03847"></a>03847 weight(13) = 0.145651526407312640633273963455D-12
  3912. <a name="l03848"></a>03848 weight(14) = 0.148302705111330133546164737187D-15
  3913. <a name="l03849"></a>03849 weight(15) = 0.160059490621113323104997812370D-19
  3914. <a name="l03850"></a>03850
  3915. <a name="l03851"></a>03851 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 16 ) <span class="keyword">then</span>
  3916. <a name="l03852"></a>03852
  3917. <a name="l03853"></a>03853 xtab(1) = 0.876494104789278403601980973401D-01
  3918. <a name="l03854"></a>03854 xtab(2) = 0.462696328915080831880838260664D+00
  3919. <a name="l03855"></a>03855 xtab(3) = 0.114105777483122685687794501811D+01
  3920. <a name="l03856"></a>03856 xtab(4) = 0.212928364509838061632615907066D+01
  3921. <a name="l03857"></a>03857 xtab(5) = 0.343708663389320664523510701675D+01
  3922. <a name="l03858"></a>03858 xtab(6) = 0.507801861454976791292305830814D+01
  3923. <a name="l03859"></a>03859 xtab(7) = 0.707033853504823413039598947080D+01
  3924. <a name="l03860"></a>03860 xtab(8) = 0.943831433639193878394724672911D+01
  3925. <a name="l03861"></a>03861 xtab(9) = 0.122142233688661587369391246088D+02
  3926. <a name="l03862"></a>03862 xtab(10) = 0.154415273687816170767647741622D+02
  3927. <a name="l03863"></a>03863 xtab(11) = 0.191801568567531348546631409497D+02
  3928. <a name="l03864"></a>03864 xtab(12) = 0.235159056939919085318231872752D+02
  3929. <a name="l03865"></a>03865 xtab(13) = 0.285787297428821403675206137099D+02
  3930. <a name="l03866"></a>03866 xtab(14) = 0.345833987022866258145276871778D+02
  3931. <a name="l03867"></a>03867 xtab(15) = 0.419404526476883326354722330252D+02
  3932. <a name="l03868"></a>03868 xtab(16) = 0.517011603395433183643426971197D+02
  3933. <a name="l03869"></a>03869
  3934. <a name="l03870"></a>03870 weight(1) = 0.206151714957800994334273636741D+00
  3935. <a name="l03871"></a>03871 weight(2) = 0.331057854950884165992983098710D+00
  3936. <a name="l03872"></a>03872 weight(3) = 0.265795777644214152599502020650D+00
  3937. <a name="l03873"></a>03873 weight(4) = 0.136296934296377539975547513526D+00
  3938. <a name="l03874"></a>03874 weight(5) = 0.473289286941252189780623392781D-01
  3939. <a name="l03875"></a>03875 weight(6) = 0.112999000803394532312490459701D-01
  3940. <a name="l03876"></a>03876 weight(7) = 0.184907094352631086429176783252D-02
  3941. <a name="l03877"></a>03877 weight(8) = 0.204271915308278460126018338421D-03
  3942. <a name="l03878"></a>03878 weight(9) = 0.148445868739812987713515067551D-04
  3943. <a name="l03879"></a>03879 weight(10) = 0.682831933087119956439559590327D-06
  3944. <a name="l03880"></a>03880 weight(11) = 0.188102484107967321388159920418D-07
  3945. <a name="l03881"></a>03881 weight(12) = 0.286235024297388161963062629156D-09
  3946. <a name="l03882"></a>03882 weight(13) = 0.212707903322410296739033610978D-11
  3947. <a name="l03883"></a>03883 weight(14) = 0.629796700251786778717446214552D-14
  3948. <a name="l03884"></a>03884 weight(15) = 0.505047370003551282040213233303D-17
  3949. <a name="l03885"></a>03885 weight(16) = 0.416146237037285519042648356116D-21
  3950. <a name="l03886"></a>03886
  3951. <a name="l03887"></a>03887 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 17 ) <span class="keyword">then</span>
  3952. <a name="l03888"></a>03888
  3953. <a name="l03889"></a>03889 xtab(1) = 0.826382147089476690543986151980D-01
  3954. <a name="l03890"></a>03890 xtab(2) = 0.436150323558710436375959029847D+00
  3955. <a name="l03891"></a>03891 xtab(3) = 0.107517657751142857732980316755D+01
  3956. <a name="l03892"></a>03892 xtab(4) = 0.200519353164923224070293371933D+01
  3957. <a name="l03893"></a>03893 xtab(5) = 0.323425612404744376157380120696D+01
  3958. <a name="l03894"></a>03894 xtab(6) = 0.477351351370019726480932076262D+01
  3959. <a name="l03895"></a>03895 xtab(7) = 0.663782920536495266541643929703D+01
  3960. <a name="l03896"></a>03896 xtab(8) = 0.884668551116980005369470571184D+01
  3961. <a name="l03897"></a>03897 xtab(9) = 0.114255293193733525869726151469D+02
  3962. <a name="l03898"></a>03898 xtab(10) = 0.144078230374813180021982874959D+02
  3963. <a name="l03899"></a>03899 xtab(11) = 0.178382847307011409290658752412D+02
  3964. <a name="l03900"></a>03900 xtab(12) = 0.217782682577222653261749080522D+02
  3965. <a name="l03901"></a>03901 xtab(13) = 0.263153178112487997766149598369D+02
  3966. <a name="l03902"></a>03902 xtab(14) = 0.315817716804567331343908517497D+02
  3967. <a name="l03903"></a>03903 xtab(15) = 0.377960938374771007286092846663D+02
  3968. <a name="l03904"></a>03904 xtab(16) = 0.453757165339889661829258363215D+02
  3969. <a name="l03905"></a>03905 xtab(17) = 0.553897517898396106640900199790D+02
  3970. <a name="l03906"></a>03906
  3971. <a name="l03907"></a>03907 weight(1) = 0.195332205251770832145927297697D+00
  3972. <a name="l03908"></a>03908 weight(2) = 0.320375357274540281336625631970D+00
  3973. <a name="l03909"></a>03909 weight(3) = 0.267329726357171097238809604160D+00
  3974. <a name="l03910"></a>03910 weight(4) = 0.145129854358758625407426447473D+00
  3975. <a name="l03911"></a>03911 weight(5) = 0.544369432453384577793805803066D-01
  3976. <a name="l03912"></a>03912 weight(6) = 0.143572977660618672917767247431D-01
  3977. <a name="l03913"></a>03913 weight(7) = 0.266282473557277256843236250006D-02
  3978. <a name="l03914"></a>03914 weight(8) = 0.343679727156299920611775097985D-03
  3979. <a name="l03915"></a>03915 weight(9) = 0.302755178378287010943703641131D-04
  3980. <a name="l03916"></a>03916 weight(10) = 0.176851505323167689538081156159D-05
  3981. <a name="l03917"></a>03917 weight(11) = 0.657627288681043332199222748162D-07
  3982. <a name="l03918"></a>03918 weight(12) = 0.146973093215954679034375821888D-08
  3983. <a name="l03919"></a>03919 weight(13) = 0.181691036255544979555476861323D-10
  3984. <a name="l03920"></a>03920 weight(14) = 0.109540138892868740297645078918D-12
  3985. <a name="l03921"></a>03921 weight(15) = 0.261737388222337042155132062413D-15
  3986. <a name="l03922"></a>03922 weight(16) = 0.167293569314615469085022374652D-18
  3987. <a name="l03923"></a>03923 weight(17) = 0.106562631627404278815253271162D-22
  3988. <a name="l03924"></a>03924
  3989. <a name="l03925"></a>03925 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 18 ) <span class="keyword">then</span>
  3990. <a name="l03926"></a>03926
  3991. <a name="l03927"></a>03927 xtab(1) = 0.781691666697054712986747615334D-01
  3992. <a name="l03928"></a>03928 xtab(2) = 0.412490085259129291039101536536D+00
  3993. <a name="l03929"></a>03929 xtab(3) = 0.101652017962353968919093686187D+01
  3994. <a name="l03930"></a>03930 xtab(4) = 0.189488850996976091426727831954D+01
  3995. <a name="l03931"></a>03931 xtab(5) = 0.305435311320265975115241130719D+01
  3996. <a name="l03932"></a>03932 xtab(6) = 0.450420553888989282633795571455D+01
  3997. <a name="l03933"></a>03933 xtab(7) = 0.625672507394911145274209116326D+01
  3998. <a name="l03934"></a>03934 xtab(8) = 0.832782515660563002170470261564D+01
  3999. <a name="l03935"></a>03935 xtab(9) = 0.107379900477576093352179033397D+02
  4000. <a name="l03936"></a>03936 xtab(10) = 0.135136562075550898190863812108D+02
  4001. <a name="l03937"></a>03937 xtab(11) = 0.166893062819301059378183984163D+02
  4002. <a name="l03938"></a>03938 xtab(12) = 0.203107676262677428561313764553D+02
  4003. <a name="l03939"></a>03939 xtab(13) = 0.244406813592837027656442257980D+02
  4004. <a name="l03940"></a>03940 xtab(14) = 0.291682086625796161312980677805D+02
  4005. <a name="l03941"></a>03941 xtab(15) = 0.346279270656601721454012429438D+02
  4006. <a name="l03942"></a>03942 xtab(16) = 0.410418167728087581392948614284D+02
  4007. <a name="l03943"></a>03943 xtab(17) = 0.488339227160865227486586093290D+02
  4008. <a name="l03944"></a>03944 xtab(18) = 0.590905464359012507037157810181D+02
  4009. <a name="l03945"></a>03945
  4010. <a name="l03946"></a>03946 weight(1) = 0.185588603146918805623337752284D+00
  4011. <a name="l03947"></a>03947 weight(2) = 0.310181766370225293649597595713D+00
  4012. <a name="l03948"></a>03948 weight(3) = 0.267866567148536354820854394783D+00
  4013. <a name="l03949"></a>03949 weight(4) = 0.152979747468074906553843082053D+00
  4014. <a name="l03950"></a>03950 weight(5) = 0.614349178609616527076780103487D-01
  4015. <a name="l03951"></a>03951 weight(6) = 0.176872130807729312772600233761D-01
  4016. <a name="l03952"></a>03952 weight(7) = 0.366017976775991779802657207890D-02
  4017. <a name="l03953"></a>03953 weight(8) = 0.540622787007735323128416319257D-03
  4018. <a name="l03954"></a>03954 weight(9) = 0.561696505121423113817929049294D-04
  4019. <a name="l03955"></a>03955 weight(10) = 0.401530788370115755858883625279D-05
  4020. <a name="l03956"></a>03956 weight(11) = 0.191466985667567497969210011321D-06
  4021. <a name="l03957"></a>03957 weight(12) = 0.583609526863159412918086289717D-08
  4022. <a name="l03958"></a>03958 weight(13) = 0.107171126695539012772851317562D-09
  4023. <a name="l03959"></a>03959 weight(14) = 0.108909871388883385562011298291D-11
  4024. <a name="l03960"></a>03960 weight(15) = 0.538666474837830887608094323164D-14
  4025. <a name="l03961"></a>03961 weight(16) = 0.104986597803570340877859934846D-16
  4026. <a name="l03962"></a>03962 weight(17) = 0.540539845163105364356554467358D-20
  4027. <a name="l03963"></a>03963 weight(18) = 0.269165326920102862708377715980D-24
  4028. <a name="l03964"></a>03964
  4029. <a name="l03965"></a>03965 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 19 ) <span class="keyword">then</span>
  4030. <a name="l03966"></a>03966
  4031. <a name="l03967"></a>03967 xtab(1) = 0.741587837572050877131369916024D-01
  4032. <a name="l03968"></a>03968 xtab(2) = 0.391268613319994607337648350299D+00
  4033. <a name="l03969"></a>03969 xtab(3) = 0.963957343997958058624879377130D+00
  4034. <a name="l03970"></a>03970 xtab(4) = 0.179617558206832812557725825252D+01
  4035. <a name="l03971"></a>03971 xtab(5) = 0.289365138187378399116494713237D+01
  4036. <a name="l03972"></a>03972 xtab(6) = 0.426421553962776647436040018167D+01
  4037. <a name="l03973"></a>03973 xtab(7) = 0.591814156164404855815360191408D+01
  4038. <a name="l03974"></a>03974 xtab(8) = 0.786861891533473373105668358176D+01
  4039. <a name="l03975"></a>03975 xtab(9) = 0.101324237168152659251627415800D+02
  4040. <a name="l03976"></a>03976 xtab(10) = 0.127308814638423980045092979656D+02
  4041. <a name="l03977"></a>03977 xtab(11) = 0.156912783398358885454136069861D+02
  4042. <a name="l03978"></a>03978 xtab(12) = 0.190489932098235501532136429732D+02
  4043. <a name="l03979"></a>03979 xtab(13) = 0.228508497608294829323930586693D+02
  4044. <a name="l03980"></a>03980 xtab(14) = 0.271606693274114488789963947149D+02
  4045. <a name="l03981"></a>03981 xtab(15) = 0.320691222518622423224362865906D+02
  4046. <a name="l03982"></a>03982 xtab(16) = 0.377129058012196494770647508283D+02
  4047. <a name="l03983"></a>03983 xtab(17) = 0.443173627958314961196067736013D+02
  4048. <a name="l03984"></a>03984 xtab(18) = 0.523129024574043831658644222420D+02
  4049. <a name="l03985"></a>03985 xtab(19) = 0.628024231535003758413504690673D+02
  4050. <a name="l03986"></a>03986
  4051. <a name="l03987"></a>03987 weight(1) = 0.176768474915912502251035479815D+00
  4052. <a name="l03988"></a>03988 weight(2) = 0.300478143607254379482156807712D+00
  4053. <a name="l03989"></a>03989 weight(3) = 0.267599547038175030772695440648D+00
  4054. <a name="l03990"></a>03990 weight(4) = 0.159913372135580216785512147895D+00
  4055. <a name="l03991"></a>03991 weight(5) = 0.682493799761491134552355368344D-01
  4056. <a name="l03992"></a>03992 weight(6) = 0.212393076065443249244062193091D-01
  4057. <a name="l03993"></a>03993 weight(7) = 0.484162735114839596725013121019D-02
  4058. <a name="l03994"></a>03994 weight(8) = 0.804912747381366766594647138204D-03
  4059. <a name="l03995"></a>03995 weight(9) = 0.965247209315350170843161738801D-04
  4060. <a name="l03996"></a>03996 weight(10) = 0.820730525805103054408982992869D-05
  4061. <a name="l03997"></a>03997 weight(11) = 0.483056672473077253944806671560D-06
  4062. <a name="l03998"></a>03998 weight(12) = 0.190499136112328569993615674552D-07
  4063. <a name="l03999"></a>03999 weight(13) = 0.481668463092806155766936380273D-09
  4064. <a name="l04000"></a>04000 weight(14) = 0.734825883955114437684376840171D-11
  4065. <a name="l04001"></a>04001 weight(15) = 0.620227538757261639893719012423D-13
  4066. <a name="l04002"></a>04002 weight(16) = 0.254143084301542272371866857954D-15
  4067. <a name="l04003"></a>04003 weight(17) = 0.407886129682571235007187465134D-18
  4068. <a name="l04004"></a>04004 weight(18) = 0.170775018759383706100412325084D-21
  4069. <a name="l04005"></a>04005 weight(19) = 0.671506464990818995998969111749D-26
  4070. <a name="l04006"></a>04006
  4071. <a name="l04007"></a>04007 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 20 ) <span class="keyword">then</span>
  4072. <a name="l04008"></a>04008
  4073. <a name="l04009"></a>04009 xtab(1) = 0.705398896919887533666890045842D-01
  4074. <a name="l04010"></a>04010 xtab(2) = 0.372126818001611443794241388761D+00
  4075. <a name="l04011"></a>04011 xtab(3) = 0.916582102483273564667716277074D+00
  4076. <a name="l04012"></a>04012 xtab(4) = 0.170730653102834388068768966741D+01
  4077. <a name="l04013"></a>04013 xtab(5) = 0.274919925530943212964503046049D+01
  4078. <a name="l04014"></a>04014 xtab(6) = 0.404892531385088692237495336913D+01
  4079. <a name="l04015"></a>04015 xtab(7) = 0.561517497086161651410453988565D+01
  4080. <a name="l04016"></a>04016 xtab(8) = 0.745901745367106330976886021837D+01
  4081. <a name="l04017"></a>04017 xtab(9) = 0.959439286958109677247367273428D+01
  4082. <a name="l04018"></a>04018 xtab(10) = 0.120388025469643163096234092989D+02
  4083. <a name="l04019"></a>04019 xtab(11) = 0.148142934426307399785126797100D+02
  4084. <a name="l04020"></a>04020 xtab(12) = 0.179488955205193760173657909926D+02
  4085. <a name="l04021"></a>04021 xtab(13) = 0.214787882402850109757351703696D+02
  4086. <a name="l04022"></a>04022 xtab(14) = 0.254517027931869055035186774846D+02
  4087. <a name="l04023"></a>04023 xtab(15) = 0.299325546317006120067136561352D+02
  4088. <a name="l04024"></a>04024 xtab(16) = 0.350134342404790000062849359067D+02
  4089. <a name="l04025"></a>04025 xtab(17) = 0.408330570567285710620295677078D+02
  4090. <a name="l04026"></a>04026 xtab(18) = 0.476199940473465021399416271529D+02
  4091. <a name="l04027"></a>04027 xtab(19) = 0.558107957500638988907507734445D+02
  4092. <a name="l04028"></a>04028 xtab(20) = 0.665244165256157538186403187915D+02
  4093. <a name="l04029"></a>04029
  4094. <a name="l04030"></a>04030 weight(1) = 0.168746801851113862149223899689D+00
  4095. <a name="l04031"></a>04031 weight(2) = 0.291254362006068281716795323812D+00
  4096. <a name="l04032"></a>04032 weight(3) = 0.266686102867001288549520868998D+00
  4097. <a name="l04033"></a>04033 weight(4) = 0.166002453269506840031469127816D+00
  4098. <a name="l04034"></a>04034 weight(5) = 0.748260646687923705400624639615D-01
  4099. <a name="l04035"></a>04035 weight(6) = 0.249644173092832210728227383234D-01
  4100. <a name="l04036"></a>04036 weight(7) = 0.620255084457223684744754785395D-02
  4101. <a name="l04037"></a>04037 weight(8) = 0.114496238647690824203955356969D-02
  4102. <a name="l04038"></a>04038 weight(9) = 0.155741773027811974779809513214D-03
  4103. <a name="l04039"></a>04039 weight(10) = 0.154014408652249156893806714048D-04
  4104. <a name="l04040"></a>04040 weight(11) = 0.108648636651798235147970004439D-05
  4105. <a name="l04041"></a>04041 weight(12) = 0.533012090955671475092780244305D-07
  4106. <a name="l04042"></a>04042 weight(13) = 0.175798117905058200357787637840D-08
  4107. <a name="l04043"></a>04043 weight(14) = 0.372550240251232087262924585338D-10
  4108. <a name="l04044"></a>04044 weight(15) = 0.476752925157819052449488071613D-12
  4109. <a name="l04045"></a>04045 weight(16) = 0.337284424336243841236506064991D-14
  4110. <a name="l04046"></a>04046 weight(17) = 0.115501433950039883096396247181D-16
  4111. <a name="l04047"></a>04047 weight(18) = 0.153952214058234355346383319667D-19
  4112. <a name="l04048"></a>04048 weight(19) = 0.528644272556915782880273587683D-23
  4113. <a name="l04049"></a>04049 weight(20) = 0.165645661249902329590781908529D-27
  4114. <a name="l04050"></a>04050
  4115. <a name="l04051"></a>04051 <span class="keyword">else</span>
  4116. <a name="l04052"></a>04052
  4117. <a name="l04053"></a>04053 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  4118. <a name="l04054"></a>04054 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;LAGUERRE_SET - Fatal error!&#39;</span>
  4119. <a name="l04055"></a>04055 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  4120. <a name="l04056"></a>04056 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; Legal values are 1 to 20.&#39;</span>
  4121. <a name="l04057"></a>04057 stop
  4122. <a name="l04058"></a>04058
  4123. <a name="l04059"></a>04059 <span class="keyword">end if</span>
  4124. <a name="l04060"></a>04060
  4125. <a name="l04061"></a>04061 return
  4126. <a name="l04062"></a>04062 <span class="keyword">end</span>
  4127. <a name="l04063"></a><a class="code" href="quadrule_8f90.html#a5b2ffde45facf187cd2716ab11d0dbef">04063</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a5b2ffde45facf187cd2716ab11d0dbef">laguerre_sum</a> ( func, a, norder, xtab, weight, result )
  4128. <a name="l04064"></a>04064 <span class="comment">!</span>
  4129. <a name="l04065"></a>04065 <span class="comment">!*******************************************************************************</span>
  4130. <a name="l04066"></a>04066 <span class="comment">!</span>
  4131. <a name="l04067"></a>04067 <span class="comment">!! LAGUERRE_SUM carries out Laguerre quadrature over [ A, +Infinity ).</span>
  4132. <a name="l04068"></a>04068 <span class="comment">!</span>
  4133. <a name="l04069"></a>04069 <span class="comment">!</span>
  4134. <a name="l04070"></a>04070 <span class="comment">! Discussion:</span>
  4135. <a name="l04071"></a>04071 <span class="comment">!</span>
  4136. <a name="l04072"></a>04072 <span class="comment">! The simplest Laguerre integral to approximate is the</span>
  4137. <a name="l04073"></a>04073 <span class="comment">! integral from 0 to INFINITY of EXP(-X) * F(X). When this is so,</span>
  4138. <a name="l04074"></a>04074 <span class="comment">! it is easy to modify the rule to approximate the integral from</span>
  4139. <a name="l04075"></a>04075 <span class="comment">! A to INFINITY as well.</span>
  4140. <a name="l04076"></a>04076 <span class="comment">!</span>
  4141. <a name="l04077"></a>04077 <span class="comment">! Another common Laguerre integral to approximate is the</span>
  4142. <a name="l04078"></a>04078 <span class="comment">! integral from 0 to Infinity of EXP(-X) * X**ALPHA * F(X).</span>
  4143. <a name="l04079"></a>04079 <span class="comment">! This routine may be used to sum up the terms of the Laguerre</span>
  4144. <a name="l04080"></a>04080 <span class="comment">! rule for such an integral as well. However, if ALPHA is nonzero,</span>
  4145. <a name="l04081"></a>04081 <span class="comment">! then there is no simple way to extend the rule to approximate the</span>
  4146. <a name="l04082"></a>04082 <span class="comment">! integral from A to INFINITY. The simplest procedures would be</span>
  4147. <a name="l04083"></a>04083 <span class="comment">! to approximate the integral from 0 to A.</span>
  4148. <a name="l04084"></a>04084 <span class="comment">!</span>
  4149. <a name="l04085"></a>04085 <span class="comment">! Integration interval:</span>
  4150. <a name="l04086"></a>04086 <span class="comment">!</span>
  4151. <a name="l04087"></a>04087 <span class="comment">! [ A, +Infinity ) or [ 0, +Infinity )</span>
  4152. <a name="l04088"></a>04088 <span class="comment">!</span>
  4153. <a name="l04089"></a>04089 <span class="comment">! Weight function:</span>
  4154. <a name="l04090"></a>04090 <span class="comment">!</span>
  4155. <a name="l04091"></a>04091 <span class="comment">! EXP ( - X ) or EXP ( - X ) * X**ALPHA</span>
  4156. <a name="l04092"></a>04092 <span class="comment">!</span>
  4157. <a name="l04093"></a>04093 <span class="comment">! Integral to approximate:</span>
  4158. <a name="l04094"></a>04094 <span class="comment">!</span>
  4159. <a name="l04095"></a>04095 <span class="comment">! Integral ( A &lt;= X &lt;= +Infinity ) EXP ( -X ) * F(X) dX or</span>
  4160. <a name="l04096"></a>04096 <span class="comment">! Integral ( 0 &lt;= X &lt;= +Infinity ) EXP ( -X ) * X**ALPHA * F(X) dX</span>
  4161. <a name="l04097"></a>04097 <span class="comment">!</span>
  4162. <a name="l04098"></a>04098 <span class="comment">! Approximate integral:</span>
  4163. <a name="l04099"></a>04099 <span class="comment">!</span>
  4164. <a name="l04100"></a>04100 <span class="comment">! EXP ( - A ) * Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) + A ) </span>
  4165. <a name="l04101"></a>04101 <span class="comment">!</span>
  4166. <a name="l04102"></a>04102 <span class="comment">! or</span>
  4167. <a name="l04103"></a>04103 <span class="comment">!</span>
  4168. <a name="l04104"></a>04104 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  4169. <a name="l04105"></a>04105 <span class="comment">!</span>
  4170. <a name="l04106"></a>04106 <span class="comment">! Reference:</span>
  4171. <a name="l04107"></a>04107 <span class="comment">!</span>
  4172. <a name="l04108"></a>04108 <span class="comment">! Abramowitz and Stegun,</span>
  4173. <a name="l04109"></a>04109 <span class="comment">! Handbook of Mathematical Functions,</span>
  4174. <a name="l04110"></a>04110 <span class="comment">! National Bureau of Standards, 1964.</span>
  4175. <a name="l04111"></a>04111 <span class="comment">!</span>
  4176. <a name="l04112"></a>04112 <span class="comment">! Daniel Zwillinger, editor,</span>
  4177. <a name="l04113"></a>04113 <span class="comment">! Standard Mathematical Tables and Formulae,</span>
  4178. <a name="l04114"></a>04114 <span class="comment">! 30th Edition,</span>
  4179. <a name="l04115"></a>04115 <span class="comment">! CRC Press, 1996.</span>
  4180. <a name="l04116"></a>04116 <span class="comment">!</span>
  4181. <a name="l04117"></a>04117 <span class="comment">! Modified:</span>
  4182. <a name="l04118"></a>04118 <span class="comment">!</span>
  4183. <a name="l04119"></a>04119 <span class="comment">! 15 March 2000</span>
  4184. <a name="l04120"></a>04120 <span class="comment">!</span>
  4185. <a name="l04121"></a>04121 <span class="comment">! Author:</span>
  4186. <a name="l04122"></a>04122 <span class="comment">!</span>
  4187. <a name="l04123"></a>04123 <span class="comment">! John Burkardt</span>
  4188. <a name="l04124"></a>04124 <span class="comment">!</span>
  4189. <a name="l04125"></a>04125 <span class="comment">! Parameters:</span>
  4190. <a name="l04126"></a>04126 <span class="comment">!</span>
  4191. <a name="l04127"></a>04127 <span class="comment">! Input, external FUNC, the name of the FORTRAN function which</span>
  4192. <a name="l04128"></a>04128 <span class="comment">! evaluates the integrand. The function must have the form</span>
  4193. <a name="l04129"></a>04129 <span class="comment">! double precision func ( x ).</span>
  4194. <a name="l04130"></a>04130 <span class="comment">!</span>
  4195. <a name="l04131"></a>04131 <span class="comment">! Input, double precision A, the beginning of the integration interval.</span>
  4196. <a name="l04132"></a>04132 <span class="comment">!</span>
  4197. <a name="l04133"></a>04133 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  4198. <a name="l04134"></a>04134 <span class="comment">!</span>
  4199. <a name="l04135"></a>04135 <span class="comment">! Input, double precision XTAB(NORDER), the abscissas of the rule.</span>
  4200. <a name="l04136"></a>04136 <span class="comment">!</span>
  4201. <a name="l04137"></a>04137 <span class="comment">! Input, double precision WEIGHT(NORDER), the weights of the rule.</span>
  4202. <a name="l04138"></a>04138 <span class="comment">!</span>
  4203. <a name="l04139"></a>04139 <span class="comment">! Output, double precision RESULT, the approximate value of the integral.</span>
  4204. <a name="l04140"></a>04140 <span class="comment">!</span>
  4205. <a name="l04141"></a>04141 <span class="keyword">implicit none</span>
  4206. <a name="l04142"></a>04142 <span class="comment">!</span>
  4207. <a name="l04143"></a>04143 <span class="keywordtype">integer</span> norder
  4208. <a name="l04144"></a>04144 <span class="comment">!</span>
  4209. <a name="l04145"></a>04145 <span class="keywordtype">double precision</span> a
  4210. <a name="l04146"></a>04146 <span class="keywordtype">double precision</span>, <span class="keywordtype">external</span> :: func
  4211. <a name="l04147"></a>04147 <span class="keywordtype">integer</span> i
  4212. <a name="l04148"></a>04148 <span class="keywordtype">double precision</span> result
  4213. <a name="l04149"></a>04149 <span class="keywordtype">double precision</span> xtab(norder)
  4214. <a name="l04150"></a>04150 <span class="keywordtype">double precision</span> weight(norder)
  4215. <a name="l04151"></a>04151 <span class="comment">!</span>
  4216. <a name="l04152"></a>04152 <span class="keyword">if</span> ( norder &lt; 1 ) <span class="keyword">then</span>
  4217. <a name="l04153"></a>04153 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  4218. <a name="l04154"></a>04154 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;LAGUERRE_SUM - Fatal error!&#39;</span>
  4219. <a name="l04155"></a>04155 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Nonpositive NORDER = &#39;</span>, norder
  4220. <a name="l04156"></a>04156 stop
  4221. <a name="l04157"></a>04157 <span class="keyword">end if</span>
  4222. <a name="l04158"></a>04158
  4223. <a name="l04159"></a>04159 result = 0.0D+00
  4224. <a name="l04160"></a>04160 <span class="keyword">do</span> i = 1, norder
  4225. <a name="l04161"></a>04161 result = result + weight(i) * func ( xtab(i) + a )
  4226. <a name="l04162"></a>04162 <span class="keyword">end do</span>
  4227. <a name="l04163"></a>04163 result = exp ( - a ) * result
  4228. <a name="l04164"></a>04164
  4229. <a name="l04165"></a>04165 return
  4230. <a name="l04166"></a>04166 <span class="keyword">end</span>
  4231. <a name="l04167"></a><a class="code" href="quadrule_8f90.html#a0a7d1ce74b60aacdf3cab1fe515cb484">04167</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a0a7d1ce74b60aacdf3cab1fe515cb484">legendre_com</a> ( norder, xtab, weight )
  4232. <a name="l04168"></a>04168 <span class="comment">!</span>
  4233. <a name="l04169"></a>04169 <span class="comment">!*******************************************************************************</span>
  4234. <a name="l04170"></a>04170 <span class="comment">!</span>
  4235. <a name="l04171"></a>04171 <span class="comment">!! LEGENDRE_COM computes abscissas and weights for Gauss-Legendre quadrature.</span>
  4236. <a name="l04172"></a>04172 <span class="comment">!</span>
  4237. <a name="l04173"></a>04173 <span class="comment">!</span>
  4238. <a name="l04174"></a>04174 <span class="comment">! Integration interval:</span>
  4239. <a name="l04175"></a>04175 <span class="comment">!</span>
  4240. <a name="l04176"></a>04176 <span class="comment">! [ -1, 1 ]</span>
  4241. <a name="l04177"></a>04177 <span class="comment">!</span>
  4242. <a name="l04178"></a>04178 <span class="comment">! Weight function:</span>
  4243. <a name="l04179"></a>04179 <span class="comment">!</span>
  4244. <a name="l04180"></a>04180 <span class="comment">! 1.0D+00</span>
  4245. <a name="l04181"></a>04181 <span class="comment">!</span>
  4246. <a name="l04182"></a>04182 <span class="comment">! Integral to approximate:</span>
  4247. <a name="l04183"></a>04183 <span class="comment">!</span>
  4248. <a name="l04184"></a>04184 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) F(X) dX</span>
  4249. <a name="l04185"></a>04185 <span class="comment">!</span>
  4250. <a name="l04186"></a>04186 <span class="comment">! Approximate integral:</span>
  4251. <a name="l04187"></a>04187 <span class="comment">!</span>
  4252. <a name="l04188"></a>04188 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  4253. <a name="l04189"></a>04189 <span class="comment">!</span>
  4254. <a name="l04190"></a>04190 <span class="comment">! Modified:</span>
  4255. <a name="l04191"></a>04191 <span class="comment">!</span>
  4256. <a name="l04192"></a>04192 <span class="comment">! 16 September 1998</span>
  4257. <a name="l04193"></a>04193 <span class="comment">!</span>
  4258. <a name="l04194"></a>04194 <span class="comment">! Parameters:</span>
  4259. <a name="l04195"></a>04195 <span class="comment">!</span>
  4260. <a name="l04196"></a>04196 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  4261. <a name="l04197"></a>04197 <span class="comment">! NORDER must be greater than 0.</span>
  4262. <a name="l04198"></a>04198 <span class="comment">!</span>
  4263. <a name="l04199"></a>04199 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  4264. <a name="l04200"></a>04200 <span class="comment">!</span>
  4265. <a name="l04201"></a>04201 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  4266. <a name="l04202"></a>04202 <span class="comment">! The weights are positive, symmetric, and should sum to 2.</span>
  4267. <a name="l04203"></a>04203 <span class="comment">!</span>
  4268. <a name="l04204"></a>04204 <span class="keyword">implicit none</span>
  4269. <a name="l04205"></a>04205 <span class="comment">!</span>
  4270. <a name="l04206"></a>04206 <span class="keywordtype">integer</span> norder
  4271. <a name="l04207"></a>04207 <span class="comment">!</span>
  4272. <a name="l04208"></a>04208 <span class="keywordtype">double precision</span> d1
  4273. <a name="l04209"></a>04209 <span class="keywordtype">double precision</span> d2pn
  4274. <a name="l04210"></a>04210 <span class="keywordtype">double precision</span> d3pn
  4275. <a name="l04211"></a>04211 <span class="keywordtype">double precision</span> d4pn
  4276. <a name="l04212"></a>04212 <span class="keywordtype">double precision</span> dp
  4277. <a name="l04213"></a>04213 <span class="keywordtype">double precision</span> d_pi
  4278. <a name="l04214"></a>04214 <span class="keywordtype">double precision</span> dpn
  4279. <a name="l04215"></a>04215 <span class="keywordtype">double precision</span> e1
  4280. <a name="l04216"></a>04216 <span class="keywordtype">double precision</span> fx
  4281. <a name="l04217"></a>04217 <span class="keywordtype">double precision</span> h
  4282. <a name="l04218"></a>04218 <span class="keywordtype">integer</span> i
  4283. <a name="l04219"></a>04219 <span class="keywordtype">integer</span> iback
  4284. <a name="l04220"></a>04220 <span class="keywordtype">integer</span> k
  4285. <a name="l04221"></a>04221 <span class="keywordtype">integer</span> m
  4286. <a name="l04222"></a>04222 <span class="keywordtype">integer</span> mp1mi
  4287. <a name="l04223"></a>04223 <span class="keywordtype">integer</span> ncopy
  4288. <a name="l04224"></a>04224 <span class="keywordtype">integer</span> nmove
  4289. <a name="l04225"></a>04225 <span class="keywordtype">double precision</span> p
  4290. <a name="l04226"></a>04226 <span class="keywordtype">double precision</span> pk
  4291. <a name="l04227"></a>04227 <span class="keywordtype">double precision</span> pkm1
  4292. <a name="l04228"></a>04228 <span class="keywordtype">double precision</span> pkp1
  4293. <a name="l04229"></a>04229 <span class="keywordtype">double precision</span> t
  4294. <a name="l04230"></a>04230 <span class="keywordtype">double precision</span> u
  4295. <a name="l04231"></a>04231 <span class="keywordtype">double precision</span> v
  4296. <a name="l04232"></a>04232 <span class="keywordtype">double precision</span> x0
  4297. <a name="l04233"></a>04233 <span class="keywordtype">double precision</span> xtab(norder)
  4298. <a name="l04234"></a>04234 <span class="keywordtype">double precision</span> xtemp
  4299. <a name="l04235"></a>04235 <span class="keywordtype">double precision</span> weight(norder)
  4300. <a name="l04236"></a>04236 <span class="comment">!</span>
  4301. <a name="l04237"></a>04237 <span class="keyword">if</span> ( norder &lt; 1 ) <span class="keyword">then</span>
  4302. <a name="l04238"></a>04238 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  4303. <a name="l04239"></a>04239 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;LEGENDRE_COM - Fatal error!&#39;</span>
  4304. <a name="l04240"></a>04240 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  4305. <a name="l04241"></a>04241 stop
  4306. <a name="l04242"></a>04242 <span class="keyword">end if</span>
  4307. <a name="l04243"></a>04243
  4308. <a name="l04244"></a>04244 e1 = dble ( norder * ( norder + 1 ) )
  4309. <a name="l04245"></a>04245
  4310. <a name="l04246"></a>04246 m = ( norder + 1 ) / 2
  4311. <a name="l04247"></a>04247
  4312. <a name="l04248"></a>04248 <span class="keyword">do</span> i = 1, ( norder + 1 ) / 2
  4313. <a name="l04249"></a>04249
  4314. <a name="l04250"></a>04250 mp1mi = m + 1 - i
  4315. <a name="l04251"></a>04251 t = dble ( 4 * i - 1 ) * d_pi ( ) / dble ( 4 * norder + 2 )
  4316. <a name="l04252"></a>04252 x0 = cos(t) * ( 1.0D+00 - ( 1.0D+00 - 1.0D+00 / dble ( norder ) ) &amp;
  4317. <a name="l04253"></a>04253 / dble ( 8 * norder**2 ) )
  4318. <a name="l04254"></a>04254
  4319. <a name="l04255"></a>04255 pkm1 = 1.0D+00
  4320. <a name="l04256"></a>04256 pk = x0
  4321. <a name="l04257"></a>04257
  4322. <a name="l04258"></a>04258 <span class="keyword">do</span> k = 2, norder
  4323. <a name="l04259"></a>04259 pkp1 = 2.0D+00 * x0 * pk - pkm1 - ( x0 * pk - pkm1 ) / dble ( k )
  4324. <a name="l04260"></a>04260 pkm1 = pk
  4325. <a name="l04261"></a>04261 pk = pkp1
  4326. <a name="l04262"></a>04262 <span class="keyword">end do</span>
  4327. <a name="l04263"></a>04263
  4328. <a name="l04264"></a>04264 d1 = dble ( norder ) * ( pkm1 - x0 * pk )
  4329. <a name="l04265"></a>04265
  4330. <a name="l04266"></a>04266 dpn = d1 / ( 1.0D+00 - x0**2 )
  4331. <a name="l04267"></a>04267
  4332. <a name="l04268"></a>04268 d2pn = ( 2.0D+00 * x0 * dpn - e1 * pk ) / ( 1.0D+00 - x0**2 )
  4333. <a name="l04269"></a>04269
  4334. <a name="l04270"></a>04270 d3pn = ( 4.0D+00 * x0 * d2pn + ( 2.0D+00 - e1 ) * dpn ) &amp;
  4335. <a name="l04271"></a>04271 / ( 1.0D+00 - x0**2 )
  4336. <a name="l04272"></a>04272
  4337. <a name="l04273"></a>04273 d4pn = ( 6.0D+00 * x0 * d3pn + ( 6.0D+00 - e1 ) * d2pn ) / &amp;
  4338. <a name="l04274"></a>04274 ( 1.0D+00 - x0**2 )
  4339. <a name="l04275"></a>04275
  4340. <a name="l04276"></a>04276 u = pk / dpn
  4341. <a name="l04277"></a>04277 v = d2pn / dpn
  4342. <a name="l04278"></a>04278 <span class="comment">!</span>
  4343. <a name="l04279"></a>04279 <span class="comment">! Initial approximation H:</span>
  4344. <a name="l04280"></a>04280 <span class="comment">!</span>
  4345. <a name="l04281"></a>04281 h = - u * ( 1.0D+00 + 0.5D+00 * u * ( v + u * ( v**2 - d3pn / &amp;
  4346. <a name="l04282"></a>04282 ( 3.0D+00 * dpn ) ) ) )
  4347. <a name="l04283"></a>04283 <span class="comment">!</span>
  4348. <a name="l04284"></a>04284 <span class="comment">! Refine H using one step of Newton&#39;s method:</span>
  4349. <a name="l04285"></a>04285 <span class="comment">!</span>
  4350. <a name="l04286"></a>04286 p = pk + h * ( dpn + 0.5D+00 * h * ( d2pn + h / 3.0D+00 &amp;
  4351. <a name="l04287"></a>04287 * ( d3pn + 0.25D+00 * h * d4pn ) ) )
  4352. <a name="l04288"></a>04288
  4353. <a name="l04289"></a>04289 dp = dpn + h * ( d2pn + 0.5D+00 * h * ( d3pn + h * d4pn / 3.0D+00 ) )
  4354. <a name="l04290"></a>04290
  4355. <a name="l04291"></a>04291 h = h - p / dp
  4356. <a name="l04292"></a>04292
  4357. <a name="l04293"></a>04293 xtemp = x0 + h
  4358. <a name="l04294"></a>04294
  4359. <a name="l04295"></a>04295 xtab(mp1mi) = xtemp
  4360. <a name="l04296"></a>04296
  4361. <a name="l04297"></a>04297 fx = d1 - h * e1 * ( pk + 0.5D+00 * h * ( dpn + h / 3.0D+00 &amp;
  4362. <a name="l04298"></a>04298 * ( d2pn + 0.25D+00 * h * ( d3pn + 0.2D+00 * h * d4pn ) ) ) )
  4363. <a name="l04299"></a>04299
  4364. <a name="l04300"></a>04300 weight(mp1mi) = 2.0D+00 * ( 1.0D+00 - xtemp**2 ) / fx**2
  4365. <a name="l04301"></a>04301
  4366. <a name="l04302"></a>04302 <span class="keyword">end do</span>
  4367. <a name="l04303"></a>04303
  4368. <a name="l04304"></a>04304 <span class="keyword">if</span> ( mod ( norder, 2 ) == 1 ) <span class="keyword">then</span>
  4369. <a name="l04305"></a>04305 xtab(1) = 0.0D+00
  4370. <a name="l04306"></a>04306 <span class="keyword">end if</span>
  4371. <a name="l04307"></a>04307 <span class="comment">!</span>
  4372. <a name="l04308"></a>04308 <span class="comment">! Shift the data up.</span>
  4373. <a name="l04309"></a>04309 <span class="comment">!</span>
  4374. <a name="l04310"></a>04310 nmove = ( norder + 1 ) / 2
  4375. <a name="l04311"></a>04311 ncopy = norder - nmove
  4376. <a name="l04312"></a>04312
  4377. <a name="l04313"></a>04313 <span class="keyword">do</span> i = 1, nmove
  4378. <a name="l04314"></a>04314 iback = norder + 1 - i
  4379. <a name="l04315"></a>04315 xtab(iback) = xtab(iback-ncopy)
  4380. <a name="l04316"></a>04316 weight(iback) = weight(iback-ncopy)
  4381. <a name="l04317"></a>04317 <span class="keyword">end do</span>
  4382. <a name="l04318"></a>04318 <span class="comment">!</span>
  4383. <a name="l04319"></a>04319 <span class="comment">! Reflect values for the negative abscissas.</span>
  4384. <a name="l04320"></a>04320 <span class="comment">!</span>
  4385. <a name="l04321"></a>04321 <span class="keyword">do</span> i = 1, norder - nmove
  4386. <a name="l04322"></a>04322 xtab(i) = - xtab(norder+1-i)
  4387. <a name="l04323"></a>04323 weight(i) = weight(norder+1-i)
  4388. <a name="l04324"></a>04324 <span class="keyword">end do</span>
  4389. <a name="l04325"></a>04325
  4390. <a name="l04326"></a>04326 return
  4391. <a name="l04327"></a>04327 <span class="keyword">end</span>
  4392. <a name="l04328"></a><a class="code" href="quadrule_8f90.html#a0204938f840315c0ede180bd7ddf3d7a">04328</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a0204938f840315c0ede180bd7ddf3d7a">legendre_recur</a> ( p2, dp2, p1, x, norder )
  4393. <a name="l04329"></a>04329 <span class="comment">!</span>
  4394. <a name="l04330"></a>04330 <span class="comment">!*******************************************************************************</span>
  4395. <a name="l04331"></a>04331 <span class="comment">!</span>
  4396. <a name="l04332"></a>04332 <span class="comment">!! LEGENDRE_RECUR finds the value and derivative of a Legendre polynomial.</span>
  4397. <a name="l04333"></a>04333 <span class="comment">!</span>
  4398. <a name="l04334"></a>04334 <span class="comment">!</span>
  4399. <a name="l04335"></a>04335 <span class="comment">! Reference:</span>
  4400. <a name="l04336"></a>04336 <span class="comment">!</span>
  4401. <a name="l04337"></a>04337 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  4402. <a name="l04338"></a>04338 <span class="comment">! Gaussian Quadrature Formulas,</span>
  4403. <a name="l04339"></a>04339 <span class="comment">! Prentice Hall, 1966.</span>
  4404. <a name="l04340"></a>04340 <span class="comment">!</span>
  4405. <a name="l04341"></a>04341 <span class="comment">! Modified:</span>
  4406. <a name="l04342"></a>04342 <span class="comment">!</span>
  4407. <a name="l04343"></a>04343 <span class="comment">! 19 September 1998</span>
  4408. <a name="l04344"></a>04344 <span class="comment">!</span>
  4409. <a name="l04345"></a>04345 <span class="comment">! Parameters:</span>
  4410. <a name="l04346"></a>04346 <span class="comment">!</span>
  4411. <a name="l04347"></a>04347 <span class="comment">! Output, double precision P2, the value of P(NORDER)(X).</span>
  4412. <a name="l04348"></a>04348 <span class="comment">!</span>
  4413. <a name="l04349"></a>04349 <span class="comment">! Output, double precision DP2, the value of P&#39;(NORDER)(X).</span>
  4414. <a name="l04350"></a>04350 <span class="comment">!</span>
  4415. <a name="l04351"></a>04351 <span class="comment">! Output, double precision P1, the value of P(NORDER-1)(X).</span>
  4416. <a name="l04352"></a>04352 <span class="comment">!</span>
  4417. <a name="l04353"></a>04353 <span class="comment">! Input, double precision X, the point at which polynomials are evaluated.</span>
  4418. <a name="l04354"></a>04354 <span class="comment">!</span>
  4419. <a name="l04355"></a>04355 <span class="comment">! Input, integer NORDER, the order of the polynomial to be computed.</span>
  4420. <a name="l04356"></a>04356 <span class="comment">!</span>
  4421. <a name="l04357"></a>04357 <span class="keyword">implicit none</span>
  4422. <a name="l04358"></a>04358 <span class="comment">!</span>
  4423. <a name="l04359"></a>04359 <span class="keywordtype">integer</span> norder
  4424. <a name="l04360"></a>04360 <span class="comment">!</span>
  4425. <a name="l04361"></a>04361 <span class="keywordtype">double precision</span> dp0
  4426. <a name="l04362"></a>04362 <span class="keywordtype">double precision</span> dp1
  4427. <a name="l04363"></a>04363 <span class="keywordtype">double precision</span> dp2
  4428. <a name="l04364"></a>04364 <span class="keywordtype">integer</span> i
  4429. <a name="l04365"></a>04365 <span class="keywordtype">double precision</span> p0
  4430. <a name="l04366"></a>04366 <span class="keywordtype">double precision</span> p1
  4431. <a name="l04367"></a>04367 <span class="keywordtype">double precision</span> p2
  4432. <a name="l04368"></a>04368 <span class="keywordtype">double precision</span> x
  4433. <a name="l04369"></a>04369 <span class="comment">!</span>
  4434. <a name="l04370"></a>04370 p1 = 1.0D+00
  4435. <a name="l04371"></a>04371 dp1 = 0.0D+00
  4436. <a name="l04372"></a>04372
  4437. <a name="l04373"></a>04373 p2 = x
  4438. <a name="l04374"></a>04374 dp2 = 1.0D+00
  4439. <a name="l04375"></a>04375
  4440. <a name="l04376"></a>04376 <span class="keyword">do</span> i = 2, norder
  4441. <a name="l04377"></a>04377
  4442. <a name="l04378"></a>04378 p0 = p1
  4443. <a name="l04379"></a>04379 dp0 = dp1
  4444. <a name="l04380"></a>04380
  4445. <a name="l04381"></a>04381 p1 = p2
  4446. <a name="l04382"></a>04382 dp1 = dp2
  4447. <a name="l04383"></a>04383
  4448. <a name="l04384"></a>04384 p2 = ( dble ( 2 * i - 1 ) * x * p1 - dble ( i - 1 ) * p0 ) / dble ( i )
  4449. <a name="l04385"></a>04385
  4450. <a name="l04386"></a>04386 dp2 = ( dble ( 2 * i - 1 ) * ( p1 + x * dp1 ) - dble ( i - 1 ) * dp0 ) &amp;
  4451. <a name="l04387"></a>04387 / dble ( i )
  4452. <a name="l04388"></a>04388
  4453. <a name="l04389"></a>04389 <span class="keyword">end do</span>
  4454. <a name="l04390"></a>04390
  4455. <a name="l04391"></a>04391 return
  4456. <a name="l04392"></a>04392 <span class="keyword">end</span>
  4457. <a name="l04393"></a><a class="code" href="quadrule_8f90.html#a68e328951e712e3b7e2bc9f6dcf8fc6a">04393</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a68e328951e712e3b7e2bc9f6dcf8fc6a">legendre_set</a> ( norder, xtab, weight )
  4458. <a name="l04394"></a>04394 <span class="comment">!</span>
  4459. <a name="l04395"></a>04395 <span class="comment">!*******************************************************************************</span>
  4460. <a name="l04396"></a>04396 <span class="comment">!</span>
  4461. <a name="l04397"></a>04397 <span class="comment">!! LEGENDRE_SET sets abscissas and weights for Gauss-Legendre quadrature.</span>
  4462. <a name="l04398"></a>04398 <span class="comment">!</span>
  4463. <a name="l04399"></a>04399 <span class="comment">!</span>
  4464. <a name="l04400"></a>04400 <span class="comment">! Integration interval:</span>
  4465. <a name="l04401"></a>04401 <span class="comment">!</span>
  4466. <a name="l04402"></a>04402 <span class="comment">! [ -1, 1 ]</span>
  4467. <a name="l04403"></a>04403 <span class="comment">!</span>
  4468. <a name="l04404"></a>04404 <span class="comment">! Weight function:</span>
  4469. <a name="l04405"></a>04405 <span class="comment">!</span>
  4470. <a name="l04406"></a>04406 <span class="comment">! 1.0D+00</span>
  4471. <a name="l04407"></a>04407 <span class="comment">!</span>
  4472. <a name="l04408"></a>04408 <span class="comment">! Integral to approximate:</span>
  4473. <a name="l04409"></a>04409 <span class="comment">!</span>
  4474. <a name="l04410"></a>04410 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) F(X) dX</span>
  4475. <a name="l04411"></a>04411 <span class="comment">!</span>
  4476. <a name="l04412"></a>04412 <span class="comment">! Approximate integral:</span>
  4477. <a name="l04413"></a>04413 <span class="comment">!</span>
  4478. <a name="l04414"></a>04414 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  4479. <a name="l04415"></a>04415 <span class="comment">!</span>
  4480. <a name="l04416"></a>04416 <span class="comment">! Precision:</span>
  4481. <a name="l04417"></a>04417 <span class="comment">!</span>
  4482. <a name="l04418"></a>04418 <span class="comment">! The quadrature rule will integrate exactly all polynomials up to</span>
  4483. <a name="l04419"></a>04419 <span class="comment">! X**(2*NORDER-1).</span>
  4484. <a name="l04420"></a>04420 <span class="comment">!</span>
  4485. <a name="l04421"></a>04421 <span class="comment">! Note:</span>
  4486. <a name="l04422"></a>04422 <span class="comment">!</span>
  4487. <a name="l04423"></a>04423 <span class="comment">! The abscissas of the rule are the zeroes of the Legendre polynomial</span>
  4488. <a name="l04424"></a>04424 <span class="comment">! P(NORDER)(X).</span>
  4489. <a name="l04425"></a>04425 <span class="comment">!</span>
  4490. <a name="l04426"></a>04426 <span class="comment">! The integral produced by a Gauss-Legendre rule is equal to the</span>
  4491. <a name="l04427"></a>04427 <span class="comment">! integral of the unique polynomial of degree NORDER-1 which</span>
  4492. <a name="l04428"></a>04428 <span class="comment">! agrees with the function at the NORDER abscissas of the rule.</span>
  4493. <a name="l04429"></a>04429 <span class="comment">!</span>
  4494. <a name="l04430"></a>04430 <span class="comment">! Reference:</span>
  4495. <a name="l04431"></a>04431 <span class="comment">!</span>
  4496. <a name="l04432"></a>04432 <span class="comment">! Abramowitz and Stegun,</span>
  4497. <a name="l04433"></a>04433 <span class="comment">! Handbook of Mathematical Functions,</span>
  4498. <a name="l04434"></a>04434 <span class="comment">! National Bureau of Standards, 1964.</span>
  4499. <a name="l04435"></a>04435 <span class="comment">!</span>
  4500. <a name="l04436"></a>04436 <span class="comment">! Vladimir Krylov,</span>
  4501. <a name="l04437"></a>04437 <span class="comment">! Approximate Calculation of Integrals,</span>
  4502. <a name="l04438"></a>04438 <span class="comment">! MacMillan, 1962.</span>
  4503. <a name="l04439"></a>04439 <span class="comment">!</span>
  4504. <a name="l04440"></a>04440 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  4505. <a name="l04441"></a>04441 <span class="comment">! Gaussian Quadrature Formulas,</span>
  4506. <a name="l04442"></a>04442 <span class="comment">! Prentice Hall, 1966.</span>
  4507. <a name="l04443"></a>04443 <span class="comment">!</span>
  4508. <a name="l04444"></a>04444 <span class="comment">! Daniel Zwillinger, editor,</span>
  4509. <a name="l04445"></a>04445 <span class="comment">! Standard Mathematical Tables and Formulae,</span>
  4510. <a name="l04446"></a>04446 <span class="comment">! 30th Edition,</span>
  4511. <a name="l04447"></a>04447 <span class="comment">! CRC Press, 1996.</span>
  4512. <a name="l04448"></a>04448 <span class="comment">!</span>
  4513. <a name="l04449"></a>04449 <span class="comment">! Modified:</span>
  4514. <a name="l04450"></a>04450 <span class="comment">!</span>
  4515. <a name="l04451"></a>04451 <span class="comment">! 18 December 2000</span>
  4516. <a name="l04452"></a>04452 <span class="comment">!</span>
  4517. <a name="l04453"></a>04453 <span class="comment">! Author:</span>
  4518. <a name="l04454"></a>04454 <span class="comment">!</span>
  4519. <a name="l04455"></a>04455 <span class="comment">! John Burkardt</span>
  4520. <a name="l04456"></a>04456 <span class="comment">!</span>
  4521. <a name="l04457"></a>04457 <span class="comment">! Parameters:</span>
  4522. <a name="l04458"></a>04458 <span class="comment">!</span>
  4523. <a name="l04459"></a>04459 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  4524. <a name="l04460"></a>04460 <span class="comment">! NORDER must be between 1 and 20, 32 or 64.</span>
  4525. <a name="l04461"></a>04461 <span class="comment">!</span>
  4526. <a name="l04462"></a>04462 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  4527. <a name="l04463"></a>04463 <span class="comment">!</span>
  4528. <a name="l04464"></a>04464 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  4529. <a name="l04465"></a>04465 <span class="comment">! The weights are positive, symmetric and should sum to 2.</span>
  4530. <a name="l04466"></a>04466 <span class="comment">!</span>
  4531. <a name="l04467"></a>04467 <span class="keyword">implicit none</span>
  4532. <a name="l04468"></a>04468 <span class="comment">!</span>
  4533. <a name="l04469"></a>04469 <span class="keywordtype">integer</span> norder
  4534. <a name="l04470"></a>04470 <span class="comment">!</span>
  4535. <a name="l04471"></a>04471 <span class="keywordtype">double precision</span> xtab(norder)
  4536. <a name="l04472"></a>04472 <span class="keywordtype">double precision</span> weight(norder)
  4537. <a name="l04473"></a>04473 <span class="comment">!</span>
  4538. <a name="l04474"></a>04474 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  4539. <a name="l04475"></a>04475
  4540. <a name="l04476"></a>04476 xtab(1) = 0.0D+00
  4541. <a name="l04477"></a>04477
  4542. <a name="l04478"></a>04478 weight(1) = 2.0D+00
  4543. <a name="l04479"></a>04479
  4544. <a name="l04480"></a>04480 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  4545. <a name="l04481"></a>04481
  4546. <a name="l04482"></a>04482 xtab(1) = - 0.577350269189625764509148780502D+00
  4547. <a name="l04483"></a>04483 xtab(2) = 0.577350269189625764509148780502D+00
  4548. <a name="l04484"></a>04484
  4549. <a name="l04485"></a>04485 weight(1) = 1.0D+00
  4550. <a name="l04486"></a>04486 weight(2) = 1.0D+00
  4551. <a name="l04487"></a>04487
  4552. <a name="l04488"></a>04488 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  4553. <a name="l04489"></a>04489
  4554. <a name="l04490"></a>04490 xtab(1) = - 0.774596669241483377035853079956D+00
  4555. <a name="l04491"></a>04491 xtab(2) = 0.0D+00
  4556. <a name="l04492"></a>04492 xtab(3) = 0.774596669241483377035853079956D+00
  4557. <a name="l04493"></a>04493
  4558. <a name="l04494"></a>04494 weight(1) = 5.0D+00 / 9.0D+00
  4559. <a name="l04495"></a>04495 weight(2) = 8.0D+00 / 9.0D+00
  4560. <a name="l04496"></a>04496 weight(3) = 5.0D+00 / 9.0D+00
  4561. <a name="l04497"></a>04497
  4562. <a name="l04498"></a>04498 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  4563. <a name="l04499"></a>04499
  4564. <a name="l04500"></a>04500 xtab(1) = - 0.861136311594052575223946488893D+00
  4565. <a name="l04501"></a>04501 xtab(2) = - 0.339981043584856264802665759103D+00
  4566. <a name="l04502"></a>04502 xtab(3) = 0.339981043584856264802665759103D+00
  4567. <a name="l04503"></a>04503 xtab(4) = 0.861136311594052575223946488893D+00
  4568. <a name="l04504"></a>04504
  4569. <a name="l04505"></a>04505 weight(1) = 0.347854845137453857373063949222D+00
  4570. <a name="l04506"></a>04506 weight(2) = 0.652145154862546142626936050778D+00
  4571. <a name="l04507"></a>04507 weight(3) = 0.652145154862546142626936050778D+00
  4572. <a name="l04508"></a>04508 weight(4) = 0.347854845137453857373063949222D+00
  4573. <a name="l04509"></a>04509
  4574. <a name="l04510"></a>04510 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  4575. <a name="l04511"></a>04511
  4576. <a name="l04512"></a>04512 xtab(1) = - 0.906179845938663992797626878299D+00
  4577. <a name="l04513"></a>04513 xtab(2) = - 0.538469310105683091036314420700D+00
  4578. <a name="l04514"></a>04514 xtab(3) = 0.0D+00
  4579. <a name="l04515"></a>04515 xtab(4) = 0.538469310105683091036314420700D+00
  4580. <a name="l04516"></a>04516 xtab(5) = 0.906179845938663992797626878299D+00
  4581. <a name="l04517"></a>04517
  4582. <a name="l04518"></a>04518 weight(1) = 0.236926885056189087514264040720D+00
  4583. <a name="l04519"></a>04519 weight(2) = 0.478628670499366468041291514836D+00
  4584. <a name="l04520"></a>04520 weight(3) = 0.568888888888888888888888888889D+00
  4585. <a name="l04521"></a>04521 weight(4) = 0.478628670499366468041291514836D+00
  4586. <a name="l04522"></a>04522 weight(5) = 0.236926885056189087514264040720D+00
  4587. <a name="l04523"></a>04523
  4588. <a name="l04524"></a>04524 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  4589. <a name="l04525"></a>04525
  4590. <a name="l04526"></a>04526 xtab(1) = - 0.932469514203152027812301554494D+00
  4591. <a name="l04527"></a>04527 xtab(2) = - 0.661209386466264513661399595020D+00
  4592. <a name="l04528"></a>04528 xtab(3) = - 0.238619186083196908630501721681D+00
  4593. <a name="l04529"></a>04529 xtab(4) = 0.238619186083196908630501721681D+00
  4594. <a name="l04530"></a>04530 xtab(5) = 0.661209386466264513661399595020D+00
  4595. <a name="l04531"></a>04531 xtab(6) = 0.932469514203152027812301554494D+00
  4596. <a name="l04532"></a>04532
  4597. <a name="l04533"></a>04533 weight(1) = 0.171324492379170345040296142173D+00
  4598. <a name="l04534"></a>04534 weight(2) = 0.360761573048138607569833513838D+00
  4599. <a name="l04535"></a>04535 weight(3) = 0.467913934572691047389870343990D+00
  4600. <a name="l04536"></a>04536 weight(4) = 0.467913934572691047389870343990D+00
  4601. <a name="l04537"></a>04537 weight(5) = 0.360761573048138607569833513838D+00
  4602. <a name="l04538"></a>04538 weight(6) = 0.171324492379170345040296142173D+00
  4603. <a name="l04539"></a>04539
  4604. <a name="l04540"></a>04540 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  4605. <a name="l04541"></a>04541
  4606. <a name="l04542"></a>04542 xtab(1) = - 0.949107912342758524526189684048D+00
  4607. <a name="l04543"></a>04543 xtab(2) = - 0.741531185599394439863864773281D+00
  4608. <a name="l04544"></a>04544 xtab(3) = - 0.405845151377397166906606412077D+00
  4609. <a name="l04545"></a>04545 xtab(4) = 0.0D+00
  4610. <a name="l04546"></a>04546 xtab(5) = 0.405845151377397166906606412077D+00
  4611. <a name="l04547"></a>04547 xtab(6) = 0.741531185599394439863864773281D+00
  4612. <a name="l04548"></a>04548 xtab(7) = 0.949107912342758524526189684048D+00
  4613. <a name="l04549"></a>04549
  4614. <a name="l04550"></a>04550 weight(1) = 0.129484966168869693270611432679D+00
  4615. <a name="l04551"></a>04551 weight(2) = 0.279705391489276667901467771424D+00
  4616. <a name="l04552"></a>04552 weight(3) = 0.381830050505118944950369775489D+00
  4617. <a name="l04553"></a>04553 weight(4) = 0.417959183673469387755102040816D+00
  4618. <a name="l04554"></a>04554 weight(5) = 0.381830050505118944950369775489D+00
  4619. <a name="l04555"></a>04555 weight(6) = 0.279705391489276667901467771424D+00
  4620. <a name="l04556"></a>04556 weight(7) = 0.129484966168869693270611432679D+00
  4621. <a name="l04557"></a>04557
  4622. <a name="l04558"></a>04558 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  4623. <a name="l04559"></a>04559
  4624. <a name="l04560"></a>04560 xtab(1) = - 0.960289856497536231683560868569D+00
  4625. <a name="l04561"></a>04561 xtab(2) = - 0.796666477413626739591553936476D+00
  4626. <a name="l04562"></a>04562 xtab(3) = - 0.525532409916328985817739049189D+00
  4627. <a name="l04563"></a>04563 xtab(4) = - 0.183434642495649804939476142360D+00
  4628. <a name="l04564"></a>04564 xtab(5) = 0.183434642495649804939476142360D+00
  4629. <a name="l04565"></a>04565 xtab(6) = 0.525532409916328985817739049189D+00
  4630. <a name="l04566"></a>04566 xtab(7) = 0.796666477413626739591553936476D+00
  4631. <a name="l04567"></a>04567 xtab(8) = 0.960289856497536231683560868569D+00
  4632. <a name="l04568"></a>04568
  4633. <a name="l04569"></a>04569 weight(1) = 0.101228536290376259152531354310D+00
  4634. <a name="l04570"></a>04570 weight(2) = 0.222381034453374470544355994426D+00
  4635. <a name="l04571"></a>04571 weight(3) = 0.313706645877887287337962201987D+00
  4636. <a name="l04572"></a>04572 weight(4) = 0.362683783378361982965150449277D+00
  4637. <a name="l04573"></a>04573 weight(5) = 0.362683783378361982965150449277D+00
  4638. <a name="l04574"></a>04574 weight(6) = 0.313706645877887287337962201987D+00
  4639. <a name="l04575"></a>04575 weight(7) = 0.222381034453374470544355994426D+00
  4640. <a name="l04576"></a>04576 weight(8) = 0.101228536290376259152531354310D+00
  4641. <a name="l04577"></a>04577
  4642. <a name="l04578"></a>04578 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 9 ) <span class="keyword">then</span>
  4643. <a name="l04579"></a>04579
  4644. <a name="l04580"></a>04580 xtab(1) = - 0.968160239507626089835576202904D+00
  4645. <a name="l04581"></a>04581 xtab(2) = - 0.836031107326635794299429788070D+00
  4646. <a name="l04582"></a>04582 xtab(3) = - 0.613371432700590397308702039341D+00
  4647. <a name="l04583"></a>04583 xtab(4) = - 0.324253423403808929038538014643D+00
  4648. <a name="l04584"></a>04584 xtab(5) = 0.0D+00
  4649. <a name="l04585"></a>04585 xtab(6) = 0.324253423403808929038538014643D+00
  4650. <a name="l04586"></a>04586 xtab(7) = 0.613371432700590397308702039341D+00
  4651. <a name="l04587"></a>04587 xtab(8) = 0.836031107326635794299429788070D+00
  4652. <a name="l04588"></a>04588 xtab(9) = 0.968160239507626089835576202904D+00
  4653. <a name="l04589"></a>04589
  4654. <a name="l04590"></a>04590 weight(1) = 0.812743883615744119718921581105D-01
  4655. <a name="l04591"></a>04591 weight(2) = 0.180648160694857404058472031243D+00
  4656. <a name="l04592"></a>04592 weight(3) = 0.260610696402935462318742869419D+00
  4657. <a name="l04593"></a>04593 weight(4) = 0.312347077040002840068630406584D+00
  4658. <a name="l04594"></a>04594 weight(5) = 0.330239355001259763164525069287D+00
  4659. <a name="l04595"></a>04595 weight(6) = 0.312347077040002840068630406584D+00
  4660. <a name="l04596"></a>04596 weight(7) = 0.260610696402935462318742869419D+00
  4661. <a name="l04597"></a>04597 weight(8) = 0.180648160694857404058472031243D+00
  4662. <a name="l04598"></a>04598 weight(9) = 0.812743883615744119718921581105D-01
  4663. <a name="l04599"></a>04599
  4664. <a name="l04600"></a>04600 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 10 ) <span class="keyword">then</span>
  4665. <a name="l04601"></a>04601
  4666. <a name="l04602"></a>04602 xtab(1) = - 0.973906528517171720077964012084D+00
  4667. <a name="l04603"></a>04603 xtab(2) = - 0.865063366688984510732096688423D+00
  4668. <a name="l04604"></a>04604 xtab(3) = - 0.679409568299024406234327365115D+00
  4669. <a name="l04605"></a>04605 xtab(4) = - 0.433395394129247190799265943166D+00
  4670. <a name="l04606"></a>04606 xtab(5) = - 0.148874338981631210884826001130D+00
  4671. <a name="l04607"></a>04607 xtab(6) = 0.148874338981631210884826001130D+00
  4672. <a name="l04608"></a>04608 xtab(7) = 0.433395394129247190799265943166D+00
  4673. <a name="l04609"></a>04609 xtab(8) = 0.679409568299024406234327365115D+00
  4674. <a name="l04610"></a>04610 xtab(9) = 0.865063366688984510732096688423D+00
  4675. <a name="l04611"></a>04611 xtab(10) = 0.973906528517171720077964012084D+00
  4676. <a name="l04612"></a>04612
  4677. <a name="l04613"></a>04613 weight(1) = 0.666713443086881375935688098933D-01
  4678. <a name="l04614"></a>04614 weight(2) = 0.149451349150580593145776339658D+00
  4679. <a name="l04615"></a>04615 weight(3) = 0.219086362515982043995534934228D+00
  4680. <a name="l04616"></a>04616 weight(4) = 0.269266719309996355091226921569D+00
  4681. <a name="l04617"></a>04617 weight(5) = 0.295524224714752870173892994651D+00
  4682. <a name="l04618"></a>04618 weight(6) = 0.295524224714752870173892994651D+00
  4683. <a name="l04619"></a>04619 weight(7) = 0.269266719309996355091226921569D+00
  4684. <a name="l04620"></a>04620 weight(8) = 0.219086362515982043995534934228D+00
  4685. <a name="l04621"></a>04621 weight(9) = 0.149451349150580593145776339658D+00
  4686. <a name="l04622"></a>04622 weight(10) = 0.666713443086881375935688098933D-01
  4687. <a name="l04623"></a>04623
  4688. <a name="l04624"></a>04624 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 11 ) <span class="keyword">then</span>
  4689. <a name="l04625"></a>04625
  4690. <a name="l04626"></a>04626 xtab(1) = - 0.978228658146056992803938001123D+00
  4691. <a name="l04627"></a>04627 xtab(2) = - 0.887062599768095299075157769304D+00
  4692. <a name="l04628"></a>04628 xtab(3) = - 0.730152005574049324093416252031D+00
  4693. <a name="l04629"></a>04629 xtab(4) = - 0.519096129206811815925725669459D+00
  4694. <a name="l04630"></a>04630 xtab(5) = - 0.269543155952344972331531985401D+00
  4695. <a name="l04631"></a>04631 xtab(6) = 0.0D+00
  4696. <a name="l04632"></a>04632 xtab(7) = 0.269543155952344972331531985401D+00
  4697. <a name="l04633"></a>04633 xtab(8) = 0.519096129206811815925725669459D+00
  4698. <a name="l04634"></a>04634 xtab(9) = 0.730152005574049324093416252031D+00
  4699. <a name="l04635"></a>04635 xtab(10) = 0.887062599768095299075157769304D+00
  4700. <a name="l04636"></a>04636 xtab(11) = 0.978228658146056992803938001123D+00
  4701. <a name="l04637"></a>04637
  4702. <a name="l04638"></a>04638 weight(1) = 0.556685671161736664827537204425D-01
  4703. <a name="l04639"></a>04639 weight(2) = 0.125580369464904624634694299224D+00
  4704. <a name="l04640"></a>04640 weight(3) = 0.186290210927734251426097641432D+00
  4705. <a name="l04641"></a>04641 weight(4) = 0.233193764591990479918523704843D+00
  4706. <a name="l04642"></a>04642 weight(5) = 0.262804544510246662180688869891D+00
  4707. <a name="l04643"></a>04643 weight(6) = 0.272925086777900630714483528336D+00
  4708. <a name="l04644"></a>04644 weight(7) = 0.262804544510246662180688869891D+00
  4709. <a name="l04645"></a>04645 weight(8) = 0.233193764591990479918523704843D+00
  4710. <a name="l04646"></a>04646 weight(9) = 0.186290210927734251426097641432D+00
  4711. <a name="l04647"></a>04647 weight(10) = 0.125580369464904624634694299224D+00
  4712. <a name="l04648"></a>04648 weight(11) = 0.556685671161736664827537204425D-01
  4713. <a name="l04649"></a>04649
  4714. <a name="l04650"></a>04650 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 12 ) <span class="keyword">then</span>
  4715. <a name="l04651"></a>04651
  4716. <a name="l04652"></a>04652 xtab(1) = - 0.981560634246719250690549090149D+00
  4717. <a name="l04653"></a>04653 xtab(2) = - 0.904117256370474856678465866119D+00
  4718. <a name="l04654"></a>04654 xtab(3) = - 0.769902674194304687036893833213D+00
  4719. <a name="l04655"></a>04655 xtab(4) = - 0.587317954286617447296702418941D+00
  4720. <a name="l04656"></a>04656 xtab(5) = - 0.367831498998180193752691536644D+00
  4721. <a name="l04657"></a>04657 xtab(6) = - 0.125233408511468915472441369464D+00
  4722. <a name="l04658"></a>04658 xtab(7) = 0.125233408511468915472441369464D+00
  4723. <a name="l04659"></a>04659 xtab(8) = 0.367831498998180193752691536644D+00
  4724. <a name="l04660"></a>04660 xtab(9) = 0.587317954286617447296702418941D+00
  4725. <a name="l04661"></a>04661 xtab(10) = 0.769902674194304687036893833213D+00
  4726. <a name="l04662"></a>04662 xtab(11) = 0.904117256370474856678465866119D+00
  4727. <a name="l04663"></a>04663 xtab(12) = 0.981560634246719250690549090149D+00
  4728. <a name="l04664"></a>04664
  4729. <a name="l04665"></a>04665 weight(1) = 0.471753363865118271946159614850D-01
  4730. <a name="l04666"></a>04666 weight(2) = 0.106939325995318430960254718194D+00
  4731. <a name="l04667"></a>04667 weight(3) = 0.160078328543346226334652529543D+00
  4732. <a name="l04668"></a>04668 weight(4) = 0.203167426723065921749064455810D+00
  4733. <a name="l04669"></a>04669 weight(5) = 0.233492536538354808760849898925D+00
  4734. <a name="l04670"></a>04670 weight(6) = 0.249147045813402785000562436043D+00
  4735. <a name="l04671"></a>04671 weight(7) = 0.249147045813402785000562436043D+00
  4736. <a name="l04672"></a>04672 weight(8) = 0.233492536538354808760849898925D+00
  4737. <a name="l04673"></a>04673 weight(9) = 0.203167426723065921749064455810D+00
  4738. <a name="l04674"></a>04674 weight(10) = 0.160078328543346226334652529543D+00
  4739. <a name="l04675"></a>04675 weight(11) = 0.106939325995318430960254718194D+00
  4740. <a name="l04676"></a>04676 weight(12) = 0.471753363865118271946159614850D-01
  4741. <a name="l04677"></a>04677
  4742. <a name="l04678"></a>04678 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 13 ) <span class="keyword">then</span>
  4743. <a name="l04679"></a>04679
  4744. <a name="l04680"></a>04680 xtab(1) = - 0.984183054718588149472829448807D+00
  4745. <a name="l04681"></a>04681 xtab(2) = - 0.917598399222977965206547836501D+00
  4746. <a name="l04682"></a>04682 xtab(3) = - 0.801578090733309912794206489583D+00
  4747. <a name="l04683"></a>04683 xtab(4) = - 0.642349339440340220643984606996D+00
  4748. <a name="l04684"></a>04684 xtab(5) = - 0.448492751036446852877912852128D+00
  4749. <a name="l04685"></a>04685 xtab(6) = - 0.230458315955134794065528121098D+00
  4750. <a name="l04686"></a>04686 xtab(7) = 0.0D+00
  4751. <a name="l04687"></a>04687 xtab(8) = 0.230458315955134794065528121098D+00
  4752. <a name="l04688"></a>04688 xtab(9) = 0.448492751036446852877912852128D+00
  4753. <a name="l04689"></a>04689 xtab(10) = 0.642349339440340220643984606996D+00
  4754. <a name="l04690"></a>04690 xtab(11) = 0.801578090733309912794206489583D+00
  4755. <a name="l04691"></a>04691 xtab(12) = 0.917598399222977965206547836501D+00
  4756. <a name="l04692"></a>04692 xtab(13) = 0.984183054718588149472829448807D+00
  4757. <a name="l04693"></a>04693
  4758. <a name="l04694"></a>04694 weight(1) = 0.404840047653158795200215922010D-01
  4759. <a name="l04695"></a>04695 weight(2) = 0.921214998377284479144217759538D-01
  4760. <a name="l04696"></a>04696 weight(3) = 0.138873510219787238463601776869D+00
  4761. <a name="l04697"></a>04697 weight(4) = 0.178145980761945738280046691996D+00
  4762. <a name="l04698"></a>04698 weight(5) = 0.207816047536888502312523219306D+00
  4763. <a name="l04699"></a>04699 weight(6) = 0.226283180262897238412090186040D+00
  4764. <a name="l04700"></a>04700 weight(7) = 0.232551553230873910194589515269D+00
  4765. <a name="l04701"></a>04701 weight(8) = 0.226283180262897238412090186040D+00
  4766. <a name="l04702"></a>04702 weight(9) = 0.207816047536888502312523219306D+00
  4767. <a name="l04703"></a>04703 weight(10) = 0.178145980761945738280046691996D+00
  4768. <a name="l04704"></a>04704 weight(11) = 0.138873510219787238463601776869D+00
  4769. <a name="l04705"></a>04705 weight(12) = 0.921214998377284479144217759538D-01
  4770. <a name="l04706"></a>04706 weight(13) = 0.404840047653158795200215922010D-01
  4771. <a name="l04707"></a>04707
  4772. <a name="l04708"></a>04708 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 14 ) <span class="keyword">then</span>
  4773. <a name="l04709"></a>04709
  4774. <a name="l04710"></a>04710 xtab(1) = - 0.986283808696812338841597266704D+00
  4775. <a name="l04711"></a>04711 xtab(2) = - 0.928434883663573517336391139378D+00
  4776. <a name="l04712"></a>04712 xtab(3) = - 0.827201315069764993189794742650D+00
  4777. <a name="l04713"></a>04713 xtab(4) = - 0.687292904811685470148019803019D+00
  4778. <a name="l04714"></a>04714 xtab(5) = - 0.515248636358154091965290718551D+00
  4779. <a name="l04715"></a>04715 xtab(6) = - 0.319112368927889760435671824168D+00
  4780. <a name="l04716"></a>04716 xtab(7) = - 0.108054948707343662066244650220D+00
  4781. <a name="l04717"></a>04717 xtab(8) = 0.108054948707343662066244650220D+00
  4782. <a name="l04718"></a>04718 xtab(9) = 0.319112368927889760435671824168D+00
  4783. <a name="l04719"></a>04719 xtab(10) = 0.515248636358154091965290718551D+00
  4784. <a name="l04720"></a>04720 xtab(11) = 0.687292904811685470148019803019D+00
  4785. <a name="l04721"></a>04721 xtab(12) = 0.827201315069764993189794742650D+00
  4786. <a name="l04722"></a>04722 xtab(13) = 0.928434883663573517336391139378D+00
  4787. <a name="l04723"></a>04723 xtab(14) = 0.986283808696812338841597266704D+00
  4788. <a name="l04724"></a>04724
  4789. <a name="l04725"></a>04725 weight(1) = 0.351194603317518630318328761382D-01
  4790. <a name="l04726"></a>04726 weight(2) = 0.801580871597602098056332770629D-01
  4791. <a name="l04727"></a>04727 weight(3) = 0.121518570687903184689414809072D+00
  4792. <a name="l04728"></a>04728 weight(4) = 0.157203167158193534569601938624D+00
  4793. <a name="l04729"></a>04729 weight(5) = 0.185538397477937813741716590125D+00
  4794. <a name="l04730"></a>04730 weight(6) = 0.205198463721295603965924065661D+00
  4795. <a name="l04731"></a>04731 weight(7) = 0.215263853463157790195876443316D+00
  4796. <a name="l04732"></a>04732 weight(8) = 0.215263853463157790195876443316D+00
  4797. <a name="l04733"></a>04733 weight(9) = 0.205198463721295603965924065661D+00
  4798. <a name="l04734"></a>04734 weight(10) = 0.185538397477937813741716590125D+00
  4799. <a name="l04735"></a>04735 weight(11) = 0.157203167158193534569601938624D+00
  4800. <a name="l04736"></a>04736 weight(12) = 0.121518570687903184689414809072D+00
  4801. <a name="l04737"></a>04737 weight(13) = 0.801580871597602098056332770629D-01
  4802. <a name="l04738"></a>04738 weight(14) = 0.351194603317518630318328761382D-01
  4803. <a name="l04739"></a>04739
  4804. <a name="l04740"></a>04740 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 15 ) <span class="keyword">then</span>
  4805. <a name="l04741"></a>04741
  4806. <a name="l04742"></a>04742 xtab(1) = - 0.987992518020485428489565718587D+00
  4807. <a name="l04743"></a>04743 xtab(2) = - 0.937273392400705904307758947710D+00
  4808. <a name="l04744"></a>04744 xtab(3) = - 0.848206583410427216200648320774D+00
  4809. <a name="l04745"></a>04745 xtab(4) = - 0.724417731360170047416186054614D+00
  4810. <a name="l04746"></a>04746 xtab(5) = - 0.570972172608538847537226737254D+00
  4811. <a name="l04747"></a>04747 xtab(6) = - 0.394151347077563369897207370981D+00
  4812. <a name="l04748"></a>04748 xtab(7) = - 0.201194093997434522300628303395D+00
  4813. <a name="l04749"></a>04749 xtab(8) = 0.0D+00
  4814. <a name="l04750"></a>04750 xtab(9) = 0.201194093997434522300628303395D+00
  4815. <a name="l04751"></a>04751 xtab(10) = 0.394151347077563369897207370981D+00
  4816. <a name="l04752"></a>04752 xtab(11) = 0.570972172608538847537226737254D+00
  4817. <a name="l04753"></a>04753 xtab(12) = 0.724417731360170047416186054614D+00
  4818. <a name="l04754"></a>04754 xtab(13) = 0.848206583410427216200648320774D+00
  4819. <a name="l04755"></a>04755 xtab(14) = 0.937273392400705904307758947710D+00
  4820. <a name="l04756"></a>04756 xtab(15) = 0.987992518020485428489565718587D+00
  4821. <a name="l04757"></a>04757
  4822. <a name="l04758"></a>04758 weight(1) = 0.307532419961172683546283935772D-01
  4823. <a name="l04759"></a>04759 weight(2) = 0.703660474881081247092674164507D-01
  4824. <a name="l04760"></a>04760 weight(3) = 0.107159220467171935011869546686D+00
  4825. <a name="l04761"></a>04761 weight(4) = 0.139570677926154314447804794511D+00
  4826. <a name="l04762"></a>04762 weight(5) = 0.166269205816993933553200860481D+00
  4827. <a name="l04763"></a>04763 weight(6) = 0.186161000015562211026800561866D+00
  4828. <a name="l04764"></a>04764 weight(7) = 0.198431485327111576456118326444D+00
  4829. <a name="l04765"></a>04765 weight(8) = 0.202578241925561272880620199968D+00
  4830. <a name="l04766"></a>04766 weight(9) = 0.198431485327111576456118326444D+00
  4831. <a name="l04767"></a>04767 weight(10) = 0.186161000015562211026800561866D+00
  4832. <a name="l04768"></a>04768 weight(11) = 0.166269205816993933553200860481D+00
  4833. <a name="l04769"></a>04769 weight(12) = 0.139570677926154314447804794511D+00
  4834. <a name="l04770"></a>04770 weight(13) = 0.107159220467171935011869546686D+00
  4835. <a name="l04771"></a>04771 weight(14) = 0.703660474881081247092674164507D-01
  4836. <a name="l04772"></a>04772 weight(15) = 0.307532419961172683546283935772D-01
  4837. <a name="l04773"></a>04773
  4838. <a name="l04774"></a>04774 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 16 ) <span class="keyword">then</span>
  4839. <a name="l04775"></a>04775
  4840. <a name="l04776"></a>04776 xtab(1) = - 0.989400934991649932596154173450D+00
  4841. <a name="l04777"></a>04777 xtab(2) = - 0.944575023073232576077988415535D+00
  4842. <a name="l04778"></a>04778 xtab(3) = - 0.865631202387831743880467897712D+00
  4843. <a name="l04779"></a>04779 xtab(4) = - 0.755404408355003033895101194847D+00
  4844. <a name="l04780"></a>04780 xtab(5) = - 0.617876244402643748446671764049D+00
  4845. <a name="l04781"></a>04781 xtab(6) = - 0.458016777657227386342419442984D+00
  4846. <a name="l04782"></a>04782 xtab(7) = - 0.281603550779258913230460501460D+00
  4847. <a name="l04783"></a>04783 xtab(8) = - 0.950125098376374401853193354250D-01
  4848. <a name="l04784"></a>04784 xtab(9) = 0.950125098376374401853193354250D-01
  4849. <a name="l04785"></a>04785 xtab(10) = 0.281603550779258913230460501460D+00
  4850. <a name="l04786"></a>04786 xtab(11) = 0.458016777657227386342419442984D+00
  4851. <a name="l04787"></a>04787 xtab(12) = 0.617876244402643748446671764049D+00
  4852. <a name="l04788"></a>04788 xtab(13) = 0.755404408355003033895101194847D+00
  4853. <a name="l04789"></a>04789 xtab(14) = 0.865631202387831743880467897712D+00
  4854. <a name="l04790"></a>04790 xtab(15) = 0.944575023073232576077988415535D+00
  4855. <a name="l04791"></a>04791 xtab(16) = 0.989400934991649932596154173450D+00
  4856. <a name="l04792"></a>04792
  4857. <a name="l04793"></a>04793 weight(1) = 0.271524594117540948517805724560D-01
  4858. <a name="l04794"></a>04794 weight(2) = 0.622535239386478928628438369944D-01
  4859. <a name="l04795"></a>04795 weight(3) = 0.951585116824927848099251076022D-01
  4860. <a name="l04796"></a>04796 weight(4) = 0.124628971255533872052476282192D+00
  4861. <a name="l04797"></a>04797 weight(5) = 0.149595988816576732081501730547D+00
  4862. <a name="l04798"></a>04798 weight(6) = 0.169156519395002538189312079030D+00
  4863. <a name="l04799"></a>04799 weight(7) = 0.182603415044923588866763667969D+00
  4864. <a name="l04800"></a>04800 weight(8) = 0.189450610455068496285396723208D+00
  4865. <a name="l04801"></a>04801 weight(9) = 0.189450610455068496285396723208D+00
  4866. <a name="l04802"></a>04802 weight(10) = 0.182603415044923588866763667969D+00
  4867. <a name="l04803"></a>04803 weight(11) = 0.169156519395002538189312079030D+00
  4868. <a name="l04804"></a>04804 weight(12) = 0.149595988816576732081501730547D+00
  4869. <a name="l04805"></a>04805 weight(13) = 0.124628971255533872052476282192D+00
  4870. <a name="l04806"></a>04806 weight(14) = 0.951585116824927848099251076022D-01
  4871. <a name="l04807"></a>04807 weight(15) = 0.622535239386478928628438369944D-01
  4872. <a name="l04808"></a>04808 weight(16) = 0.271524594117540948517805724560D-01
  4873. <a name="l04809"></a>04809
  4874. <a name="l04810"></a>04810 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 17 ) <span class="keyword">then</span>
  4875. <a name="l04811"></a>04811
  4876. <a name="l04812"></a>04812 xtab(1) = - 0.990575475314417335675434019941D+00
  4877. <a name="l04813"></a>04813 xtab(2) = - 0.950675521768767761222716957896D+00
  4878. <a name="l04814"></a>04814 xtab(3) = - 0.880239153726985902122955694488D+00
  4879. <a name="l04815"></a>04815 xtab(4) = - 0.781514003896801406925230055520D+00
  4880. <a name="l04816"></a>04816 xtab(5) = - 0.657671159216690765850302216643D+00
  4881. <a name="l04817"></a>04817 xtab(6) = - 0.512690537086476967886246568630D+00
  4882. <a name="l04818"></a>04818 xtab(7) = - 0.351231763453876315297185517095D+00
  4883. <a name="l04819"></a>04819 xtab(8) = - 0.178484181495847855850677493654D+00
  4884. <a name="l04820"></a>04820 xtab(9) = 0.0D+00
  4885. <a name="l04821"></a>04821 xtab(10) = 0.178484181495847855850677493654D+00
  4886. <a name="l04822"></a>04822 xtab(11) = 0.351231763453876315297185517095D+00
  4887. <a name="l04823"></a>04823 xtab(12) = 0.512690537086476967886246568630D+00
  4888. <a name="l04824"></a>04824 xtab(13) = 0.657671159216690765850302216643D+00
  4889. <a name="l04825"></a>04825 xtab(14) = 0.781514003896801406925230055520D+00
  4890. <a name="l04826"></a>04826 xtab(15) = 0.880239153726985902122955694488D+00
  4891. <a name="l04827"></a>04827 xtab(16) = 0.950675521768767761222716957896D+00
  4892. <a name="l04828"></a>04828 xtab(17) = 0.990575475314417335675434019941D+00
  4893. <a name="l04829"></a>04829
  4894. <a name="l04830"></a>04830 weight(1) = 0.241483028685479319601100262876D-01
  4895. <a name="l04831"></a>04831 weight(2) = 0.554595293739872011294401653582D-01
  4896. <a name="l04832"></a>04832 weight(3) = 0.850361483171791808835353701911D-01
  4897. <a name="l04833"></a>04833 weight(4) = 0.111883847193403971094788385626D+00
  4898. <a name="l04834"></a>04834 weight(5) = 0.135136368468525473286319981702D+00
  4899. <a name="l04835"></a>04835 weight(6) = 0.154045761076810288081431594802D+00
  4900. <a name="l04836"></a>04836 weight(7) = 0.168004102156450044509970663788D+00
  4901. <a name="l04837"></a>04837 weight(8) = 0.176562705366992646325270990113D+00
  4902. <a name="l04838"></a>04838 weight(9) = 0.179446470356206525458265644262D+00
  4903. <a name="l04839"></a>04839 weight(10) = 0.176562705366992646325270990113D+00
  4904. <a name="l04840"></a>04840 weight(11) = 0.168004102156450044509970663788D+00
  4905. <a name="l04841"></a>04841 weight(12) = 0.154045761076810288081431594802D+00
  4906. <a name="l04842"></a>04842 weight(13) = 0.135136368468525473286319981702D+00
  4907. <a name="l04843"></a>04843 weight(14) = 0.111883847193403971094788385626D+00
  4908. <a name="l04844"></a>04844 weight(15) = 0.850361483171791808835353701911D-01
  4909. <a name="l04845"></a>04845 weight(16) = 0.554595293739872011294401653582D-01
  4910. <a name="l04846"></a>04846 weight(17) = 0.241483028685479319601100262876D-01
  4911. <a name="l04847"></a>04847
  4912. <a name="l04848"></a>04848 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 18 ) <span class="keyword">then</span>
  4913. <a name="l04849"></a>04849
  4914. <a name="l04850"></a>04850 xtab(1) = - 0.991565168420930946730016004706D+00
  4915. <a name="l04851"></a>04851 xtab(2) = - 0.955823949571397755181195892930D+00
  4916. <a name="l04852"></a>04852 xtab(3) = - 0.892602466497555739206060591127D+00
  4917. <a name="l04853"></a>04853 xtab(4) = - 0.803704958972523115682417455015D+00
  4918. <a name="l04854"></a>04854 xtab(5) = - 0.691687043060353207874891081289D+00
  4919. <a name="l04855"></a>04855 xtab(6) = - 0.559770831073947534607871548525D+00
  4920. <a name="l04856"></a>04856 xtab(7) = - 0.411751161462842646035931793833D+00
  4921. <a name="l04857"></a>04857 xtab(8) = - 0.251886225691505509588972854878D+00
  4922. <a name="l04858"></a>04858 xtab(9) = - 0.847750130417353012422618529358D-01
  4923. <a name="l04859"></a>04859 xtab(10) = 0.847750130417353012422618529358D-01
  4924. <a name="l04860"></a>04860 xtab(11) = 0.251886225691505509588972854878D+00
  4925. <a name="l04861"></a>04861 xtab(12) = 0.411751161462842646035931793833D+00
  4926. <a name="l04862"></a>04862 xtab(13) = 0.559770831073947534607871548525D+00
  4927. <a name="l04863"></a>04863 xtab(14) = 0.691687043060353207874891081289D+00
  4928. <a name="l04864"></a>04864 xtab(15) = 0.803704958972523115682417455015D+00
  4929. <a name="l04865"></a>04865 xtab(16) = 0.892602466497555739206060591127D+00
  4930. <a name="l04866"></a>04866 xtab(17) = 0.955823949571397755181195892930D+00
  4931. <a name="l04867"></a>04867 xtab(18) = 0.991565168420930946730016004706D+00
  4932. <a name="l04868"></a>04868
  4933. <a name="l04869"></a>04869 weight(1) = 0.216160135264833103133427102665D-01
  4934. <a name="l04870"></a>04870 weight(2) = 0.497145488949697964533349462026D-01
  4935. <a name="l04871"></a>04871 weight(3) = 0.764257302548890565291296776166D-01
  4936. <a name="l04872"></a>04872 weight(4) = 0.100942044106287165562813984925D+00
  4937. <a name="l04873"></a>04873 weight(5) = 0.122555206711478460184519126800D+00
  4938. <a name="l04874"></a>04874 weight(6) = 0.140642914670650651204731303752D+00
  4939. <a name="l04875"></a>04875 weight(7) = 0.154684675126265244925418003836D+00
  4940. <a name="l04876"></a>04876 weight(8) = 0.164276483745832722986053776466D+00
  4941. <a name="l04877"></a>04877 weight(9) = 0.169142382963143591840656470135D+00
  4942. <a name="l04878"></a>04878 weight(10) = 0.169142382963143591840656470135D+00
  4943. <a name="l04879"></a>04879 weight(11) = 0.164276483745832722986053776466D+00
  4944. <a name="l04880"></a>04880 weight(12) = 0.154684675126265244925418003836D+00
  4945. <a name="l04881"></a>04881 weight(13) = 0.140642914670650651204731303752D+00
  4946. <a name="l04882"></a>04882 weight(14) = 0.122555206711478460184519126800D+00
  4947. <a name="l04883"></a>04883 weight(15) = 0.100942044106287165562813984925D+00
  4948. <a name="l04884"></a>04884 weight(16) = 0.764257302548890565291296776166D-01
  4949. <a name="l04885"></a>04885 weight(17) = 0.497145488949697964533349462026D-01
  4950. <a name="l04886"></a>04886 weight(18) = 0.216160135264833103133427102665D-01
  4951. <a name="l04887"></a>04887
  4952. <a name="l04888"></a>04888 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 19 ) <span class="keyword">then</span>
  4953. <a name="l04889"></a>04889
  4954. <a name="l04890"></a>04890 xtab(1) = - 0.992406843843584403189017670253D+00
  4955. <a name="l04891"></a>04891 xtab(2) = - 0.960208152134830030852778840688D+00
  4956. <a name="l04892"></a>04892 xtab(3) = - 0.903155903614817901642660928532D+00
  4957. <a name="l04893"></a>04893 xtab(4) = - 0.822714656537142824978922486713D+00
  4958. <a name="l04894"></a>04894 xtab(5) = - 0.720966177335229378617095860824D+00
  4959. <a name="l04895"></a>04895 xtab(6) = - 0.600545304661681023469638164946D+00
  4960. <a name="l04896"></a>04896 xtab(7) = - 0.464570741375960945717267148104D+00
  4961. <a name="l04897"></a>04897 xtab(8) = - 0.316564099963629831990117328850D+00
  4962. <a name="l04898"></a>04898 xtab(9) = - 0.160358645640225375868096115741D+00
  4963. <a name="l04899"></a>04899 xtab(10) = 0.0D+00
  4964. <a name="l04900"></a>04900 xtab(11) = 0.160358645640225375868096115741D+00
  4965. <a name="l04901"></a>04901 xtab(12) = 0.316564099963629831990117328850D+00
  4966. <a name="l04902"></a>04902 xtab(13) = 0.464570741375960945717267148104D+00
  4967. <a name="l04903"></a>04903 xtab(14) = 0.600545304661681023469638164946D+00
  4968. <a name="l04904"></a>04904 xtab(15) = 0.720966177335229378617095860824D+00
  4969. <a name="l04905"></a>04905 xtab(16) = 0.822714656537142824978922486713D+00
  4970. <a name="l04906"></a>04906 xtab(17) = 0.903155903614817901642660928532D+00
  4971. <a name="l04907"></a>04907 xtab(18) = 0.960208152134830030852778840688D+00
  4972. <a name="l04908"></a>04908 xtab(19) = 0.992406843843584403189017670253D+00
  4973. <a name="l04909"></a>04909
  4974. <a name="l04910"></a>04910 weight(1) = 0.194617882297264770363120414644D-01
  4975. <a name="l04911"></a>04911 weight(2) = 0.448142267656996003328381574020D-01
  4976. <a name="l04912"></a>04912 weight(3) = 0.690445427376412265807082580060D-01
  4977. <a name="l04913"></a>04913 weight(4) = 0.914900216224499994644620941238D-01
  4978. <a name="l04914"></a>04914 weight(5) = 0.111566645547333994716023901682D+00
  4979. <a name="l04915"></a>04915 weight(6) = 0.128753962539336227675515784857D+00
  4980. <a name="l04916"></a>04916 weight(7) = 0.142606702173606611775746109442D+00
  4981. <a name="l04917"></a>04917 weight(8) = 0.152766042065859666778855400898D+00
  4982. <a name="l04918"></a>04918 weight(9) = 0.158968843393954347649956439465D+00
  4983. <a name="l04919"></a>04919 weight(10) = 0.161054449848783695979163625321D+00
  4984. <a name="l04920"></a>04920 weight(11) = 0.158968843393954347649956439465D+00
  4985. <a name="l04921"></a>04921 weight(12) = 0.152766042065859666778855400898D+00
  4986. <a name="l04922"></a>04922 weight(13) = 0.142606702173606611775746109442D+00
  4987. <a name="l04923"></a>04923 weight(14) = 0.128753962539336227675515784857D+00
  4988. <a name="l04924"></a>04924 weight(15) = 0.111566645547333994716023901682D+00
  4989. <a name="l04925"></a>04925 weight(16) = 0.914900216224499994644620941238D-01
  4990. <a name="l04926"></a>04926 weight(17) = 0.690445427376412265807082580060D-01
  4991. <a name="l04927"></a>04927 weight(18) = 0.448142267656996003328381574020D-01
  4992. <a name="l04928"></a>04928 weight(19) = 0.194617882297264770363120414644D-01
  4993. <a name="l04929"></a>04929
  4994. <a name="l04930"></a>04930 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 20 ) <span class="keyword">then</span>
  4995. <a name="l04931"></a>04931
  4996. <a name="l04932"></a>04932 xtab(1) = - 0.993128599185094924786122388471D+00
  4997. <a name="l04933"></a>04933 xtab(2) = - 0.963971927277913791267666131197D+00
  4998. <a name="l04934"></a>04934 xtab(3) = - 0.912234428251325905867752441203D+00
  4999. <a name="l04935"></a>04935 xtab(4) = - 0.839116971822218823394529061702D+00
  5000. <a name="l04936"></a>04936 xtab(5) = - 0.746331906460150792614305070356D+00
  5001. <a name="l04937"></a>04937 xtab(6) = - 0.636053680726515025452836696226D+00
  5002. <a name="l04938"></a>04938 xtab(7) = - 0.510867001950827098004364050955D+00
  5003. <a name="l04939"></a>04939 xtab(8) = - 0.373706088715419560672548177025D+00
  5004. <a name="l04940"></a>04940 xtab(9) = - 0.227785851141645078080496195369D+00
  5005. <a name="l04941"></a>04941 xtab(10) = - 0.765265211334973337546404093988D-01
  5006. <a name="l04942"></a>04942 xtab(11) = 0.765265211334973337546404093988D-01
  5007. <a name="l04943"></a>04943 xtab(12) = 0.227785851141645078080496195369D+00
  5008. <a name="l04944"></a>04944 xtab(13) = 0.373706088715419560672548177025D+00
  5009. <a name="l04945"></a>04945 xtab(14) = 0.510867001950827098004364050955D+00
  5010. <a name="l04946"></a>04946 xtab(15) = 0.636053680726515025452836696226D+00
  5011. <a name="l04947"></a>04947 xtab(16) = 0.746331906460150792614305070356D+00
  5012. <a name="l04948"></a>04948 xtab(17) = 0.839116971822218823394529061702D+00
  5013. <a name="l04949"></a>04949 xtab(18) = 0.912234428251325905867752441203D+00
  5014. <a name="l04950"></a>04950 xtab(19) = 0.963971927277913791267666131197D+00
  5015. <a name="l04951"></a>04951 xtab(20) = 0.993128599185094924786122388471D+00
  5016. <a name="l04952"></a>04952
  5017. <a name="l04953"></a>04953 weight(1) = 0.176140071391521183118619623519D-01
  5018. <a name="l04954"></a>04954 weight(2) = 0.406014298003869413310399522749D-01
  5019. <a name="l04955"></a>04955 weight(3) = 0.626720483341090635695065351870D-01
  5020. <a name="l04956"></a>04956 weight(4) = 0.832767415767047487247581432220D-01
  5021. <a name="l04957"></a>04957 weight(5) = 0.101930119817240435036750135480D+00
  5022. <a name="l04958"></a>04958 weight(6) = 0.118194531961518417312377377711D+00
  5023. <a name="l04959"></a>04959 weight(7) = 0.131688638449176626898494499748D+00
  5024. <a name="l04960"></a>04960 weight(8) = 0.142096109318382051329298325067D+00
  5025. <a name="l04961"></a>04961 weight(9) = 0.149172986472603746787828737002D+00
  5026. <a name="l04962"></a>04962 weight(10) = 0.152753387130725850698084331955D+00
  5027. <a name="l04963"></a>04963 weight(11) = 0.152753387130725850698084331955D+00
  5028. <a name="l04964"></a>04964 weight(12) = 0.149172986472603746787828737002D+00
  5029. <a name="l04965"></a>04965 weight(13) = 0.142096109318382051329298325067D+00
  5030. <a name="l04966"></a>04966 weight(14) = 0.131688638449176626898494499748D+00
  5031. <a name="l04967"></a>04967 weight(15) = 0.118194531961518417312377377711D+00
  5032. <a name="l04968"></a>04968 weight(16) = 0.101930119817240435036750135480D+00
  5033. <a name="l04969"></a>04969 weight(17) = 0.832767415767047487247581432220D-01
  5034. <a name="l04970"></a>04970 weight(18) = 0.626720483341090635695065351870D-01
  5035. <a name="l04971"></a>04971 weight(19) = 0.406014298003869413310399522749D-01
  5036. <a name="l04972"></a>04972 weight(20) = 0.176140071391521183118619623519D-01
  5037. <a name="l04973"></a>04973
  5038. <a name="l04974"></a>04974 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 32 ) <span class="keyword">then</span>
  5039. <a name="l04975"></a>04975
  5040. <a name="l04976"></a>04976 xtab(1) = - 0.997263861849481563544981128665D+00
  5041. <a name="l04977"></a>04977 xtab(2) = - 0.985611511545268335400175044631D+00
  5042. <a name="l04978"></a>04978 xtab(3) = - 0.964762255587506430773811928118D+00
  5043. <a name="l04979"></a>04979 xtab(4) = - 0.934906075937739689170919134835D+00
  5044. <a name="l04980"></a>04980 xtab(5) = - 0.896321155766052123965307243719D+00
  5045. <a name="l04981"></a>04981 xtab(6) = - 0.849367613732569970133693004968D+00
  5046. <a name="l04982"></a>04982 xtab(7) = - 0.794483795967942406963097298970D+00
  5047. <a name="l04983"></a>04983 xtab(8) = - 0.732182118740289680387426665091D+00
  5048. <a name="l04984"></a>04984 xtab(9) = - 0.663044266930215200975115168663D+00
  5049. <a name="l04985"></a>04985 xtab(10) = - 0.587715757240762329040745476402D+00
  5050. <a name="l04986"></a>04986 xtab(11) = - 0.506899908932229390023747474378D+00
  5051. <a name="l04987"></a>04987 xtab(12) = - 0.421351276130635345364119436172D+00
  5052. <a name="l04988"></a>04988 xtab(13) = - 0.331868602282127649779916805730D+00
  5053. <a name="l04989"></a>04989 xtab(14) = - 0.239287362252137074544603209166D+00
  5054. <a name="l04990"></a>04990 xtab(15) = - 0.144471961582796493485186373599D+00
  5055. <a name="l04991"></a>04991 xtab(16) = - 0.483076656877383162348125704405D-01
  5056. <a name="l04992"></a>04992 xtab(17) = 0.483076656877383162348125704405D-01
  5057. <a name="l04993"></a>04993 xtab(18) = 0.144471961582796493485186373599D+00
  5058. <a name="l04994"></a>04994 xtab(19) = 0.239287362252137074544603209166D+00
  5059. <a name="l04995"></a>04995 xtab(20) = 0.331868602282127649779916805730D+00
  5060. <a name="l04996"></a>04996 xtab(21) = 0.421351276130635345364119436172D+00
  5061. <a name="l04997"></a>04997 xtab(22) = 0.506899908932229390023747474378D+00
  5062. <a name="l04998"></a>04998 xtab(23) = 0.587715757240762329040745476402D+00
  5063. <a name="l04999"></a>04999 xtab(24) = 0.663044266930215200975115168663D+00
  5064. <a name="l05000"></a>05000 xtab(25) = 0.732182118740289680387426665091D+00
  5065. <a name="l05001"></a>05001 xtab(26) = 0.794483795967942406963097298970D+00
  5066. <a name="l05002"></a>05002 xtab(27) = 0.849367613732569970133693004968D+00
  5067. <a name="l05003"></a>05003 xtab(28) = 0.896321155766052123965307243719D+00
  5068. <a name="l05004"></a>05004 xtab(29) = 0.934906075937739689170919134835D+00
  5069. <a name="l05005"></a>05005 xtab(30) = 0.964762255587506430773811928118D+00
  5070. <a name="l05006"></a>05006 xtab(31) = 0.985611511545268335400175044631D+00
  5071. <a name="l05007"></a>05007 xtab(32) = 0.997263861849481563544981128665D+00
  5072. <a name="l05008"></a>05008
  5073. <a name="l05009"></a>05009 weight(1) = 0.701861000947009660040706373885D-02
  5074. <a name="l05010"></a>05010 weight(2) = 0.162743947309056706051705622064D-01
  5075. <a name="l05011"></a>05011 weight(3) = 0.253920653092620594557525897892D-01
  5076. <a name="l05012"></a>05012 weight(4) = 0.342738629130214331026877322524D-01
  5077. <a name="l05013"></a>05013 weight(5) = 0.428358980222266806568786466061D-01
  5078. <a name="l05014"></a>05014 weight(6) = 0.509980592623761761961632446895D-01
  5079. <a name="l05015"></a>05015 weight(7) = 0.586840934785355471452836373002D-01
  5080. <a name="l05016"></a>05016 weight(8) = 0.658222227763618468376500637069D-01
  5081. <a name="l05017"></a>05017 weight(9) = 0.723457941088485062253993564785D-01
  5082. <a name="l05018"></a>05018 weight(10) = 0.781938957870703064717409188283D-01
  5083. <a name="l05019"></a>05019 weight(11) = 0.833119242269467552221990746043D-01
  5084. <a name="l05020"></a>05020 weight(12) = 0.876520930044038111427714627518D-01
  5085. <a name="l05021"></a>05021 weight(13) = 0.911738786957638847128685771116D-01
  5086. <a name="l05022"></a>05022 weight(14) = 0.938443990808045656391802376681D-01
  5087. <a name="l05023"></a>05023 weight(15) = 0.956387200792748594190820022041D-01
  5088. <a name="l05024"></a>05024 weight(16) = 0.965400885147278005667648300636D-01
  5089. <a name="l05025"></a>05025 weight(17) = 0.965400885147278005667648300636D-01
  5090. <a name="l05026"></a>05026 weight(18) = 0.956387200792748594190820022041D-01
  5091. <a name="l05027"></a>05027 weight(19) = 0.938443990808045656391802376681D-01
  5092. <a name="l05028"></a>05028 weight(20) = 0.911738786957638847128685771116D-01
  5093. <a name="l05029"></a>05029 weight(21) = 0.876520930044038111427714627518D-01
  5094. <a name="l05030"></a>05030 weight(22) = 0.833119242269467552221990746043D-01
  5095. <a name="l05031"></a>05031 weight(23) = 0.781938957870703064717409188283D-01
  5096. <a name="l05032"></a>05032 weight(24) = 0.723457941088485062253993564785D-01
  5097. <a name="l05033"></a>05033 weight(25) = 0.658222227763618468376500637069D-01
  5098. <a name="l05034"></a>05034 weight(26) = 0.586840934785355471452836373002D-01
  5099. <a name="l05035"></a>05035 weight(27) = 0.509980592623761761961632446895D-01
  5100. <a name="l05036"></a>05036 weight(28) = 0.428358980222266806568786466061D-01
  5101. <a name="l05037"></a>05037 weight(29) = 0.342738629130214331026877322524D-01
  5102. <a name="l05038"></a>05038 weight(30) = 0.253920653092620594557525897892D-01
  5103. <a name="l05039"></a>05039 weight(31) = 0.162743947309056706051705622064D-01
  5104. <a name="l05040"></a>05040 weight(32) = 0.701861000947009660040706373885D-02
  5105. <a name="l05041"></a>05041
  5106. <a name="l05042"></a>05042 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 64 ) <span class="keyword">then</span>
  5107. <a name="l05043"></a>05043
  5108. <a name="l05044"></a>05044 xtab(1) = - 0.999305041735772139456905624346D+00
  5109. <a name="l05045"></a>05045 xtab(2) = - 0.996340116771955279346924500676D+00
  5110. <a name="l05046"></a>05046 xtab(3) = - 0.991013371476744320739382383443D+00
  5111. <a name="l05047"></a>05047 xtab(4) = - 0.983336253884625956931299302157D+00
  5112. <a name="l05048"></a>05048 xtab(5) = - 0.973326827789910963741853507352D+00
  5113. <a name="l05049"></a>05049 xtab(6) = - 0.961008799652053718918614121897D+00
  5114. <a name="l05050"></a>05050 xtab(7) = - 0.946411374858402816062481491347D+00
  5115. <a name="l05051"></a>05051 xtab(8) = - 0.929569172131939575821490154559D+00
  5116. <a name="l05052"></a>05052 xtab(9) = - 0.910522137078502805756380668008D+00
  5117. <a name="l05053"></a>05053 xtab(10) = - 0.889315445995114105853404038273D+00
  5118. <a name="l05054"></a>05054 xtab(11) = - 0.865999398154092819760783385070D+00
  5119. <a name="l05055"></a>05055 xtab(12) = - 0.840629296252580362751691544696D+00
  5120. <a name="l05056"></a>05056 xtab(13) = - 0.813265315122797559741923338086D+00
  5121. <a name="l05057"></a>05057 xtab(14) = - 0.783972358943341407610220525214D+00
  5122. <a name="l05058"></a>05058 xtab(15) = - 0.752819907260531896611863774886D+00
  5123. <a name="l05059"></a>05059 xtab(16) = - 0.719881850171610826848940217832D+00
  5124. <a name="l05060"></a>05060 xtab(17) = - 0.685236313054233242563558371031D+00
  5125. <a name="l05061"></a>05061 xtab(18) = - 0.648965471254657339857761231993D+00
  5126. <a name="l05062"></a>05062 xtab(19) = - 0.611155355172393250248852971019D+00
  5127. <a name="l05063"></a>05063 xtab(20) = - 0.571895646202634034283878116659D+00
  5128. <a name="l05064"></a>05064 xtab(21) = - 0.531279464019894545658013903544D+00
  5129. <a name="l05065"></a>05065 xtab(22) = - 0.489403145707052957478526307022D+00
  5130. <a name="l05066"></a>05066 xtab(23) = - 0.446366017253464087984947714759D+00
  5131. <a name="l05067"></a>05067 xtab(24) = - 0.402270157963991603695766771260D+00
  5132. <a name="l05068"></a>05068 xtab(25) = - 0.357220158337668115950442615046D+00
  5133. <a name="l05069"></a>05069 xtab(26) = - 0.311322871990210956157512698560D+00
  5134. <a name="l05070"></a>05070 xtab(27) = - 0.264687162208767416373964172510D+00
  5135. <a name="l05071"></a>05071 xtab(28) = - 0.217423643740007084149648748989D+00
  5136. <a name="l05072"></a>05072 xtab(29) = - 0.169644420423992818037313629748D+00
  5137. <a name="l05073"></a>05073 xtab(30) = - 0.121462819296120554470376463492D+00
  5138. <a name="l05074"></a>05074 xtab(31) = - 0.729931217877990394495429419403D-01
  5139. <a name="l05075"></a>05075 xtab(32) = - 0.243502926634244325089558428537D-01
  5140. <a name="l05076"></a>05076 xtab(33) = 0.243502926634244325089558428537D-01
  5141. <a name="l05077"></a>05077 xtab(34) = 0.729931217877990394495429419403D-01
  5142. <a name="l05078"></a>05078 xtab(35) = 0.121462819296120554470376463492D+00
  5143. <a name="l05079"></a>05079 xtab(36) = 0.169644420423992818037313629748D+00
  5144. <a name="l05080"></a>05080 xtab(37) = 0.217423643740007084149648748989D+00
  5145. <a name="l05081"></a>05081 xtab(38) = 0.264687162208767416373964172510D+00
  5146. <a name="l05082"></a>05082 xtab(39) = 0.311322871990210956157512698560D+00
  5147. <a name="l05083"></a>05083 xtab(40) = 0.357220158337668115950442615046D+00
  5148. <a name="l05084"></a>05084 xtab(41) = 0.402270157963991603695766771260D+00
  5149. <a name="l05085"></a>05085 xtab(42) = 0.446366017253464087984947714759D+00
  5150. <a name="l05086"></a>05086 xtab(43) = 0.489403145707052957478526307022D+00
  5151. <a name="l05087"></a>05087 xtab(44) = 0.531279464019894545658013903544D+00
  5152. <a name="l05088"></a>05088 xtab(45) = 0.571895646202634034283878116659D+00
  5153. <a name="l05089"></a>05089 xtab(46) = 0.611155355172393250248852971019D+00
  5154. <a name="l05090"></a>05090 xtab(47) = 0.648965471254657339857761231993D+00
  5155. <a name="l05091"></a>05091 xtab(48) = 0.685236313054233242563558371031D+00
  5156. <a name="l05092"></a>05092 xtab(49) = 0.719881850171610826848940217832D+00
  5157. <a name="l05093"></a>05093 xtab(50) = 0.752819907260531896611863774886D+00
  5158. <a name="l05094"></a>05094 xtab(51) = 0.783972358943341407610220525214D+00
  5159. <a name="l05095"></a>05095 xtab(52) = 0.813265315122797559741923338086D+00
  5160. <a name="l05096"></a>05096 xtab(53) = 0.840629296252580362751691544696D+00
  5161. <a name="l05097"></a>05097 xtab(54) = 0.865999398154092819760783385070D+00
  5162. <a name="l05098"></a>05098 xtab(55) = 0.889315445995114105853404038273D+00
  5163. <a name="l05099"></a>05099 xtab(56) = 0.910522137078502805756380668008D+00
  5164. <a name="l05100"></a>05100 xtab(57) = 0.929569172131939575821490154559D+00
  5165. <a name="l05101"></a>05101 xtab(58) = 0.946411374858402816062481491347D+00
  5166. <a name="l05102"></a>05102 xtab(59) = 0.961008799652053718918614121897D+00
  5167. <a name="l05103"></a>05103 xtab(60) = 0.973326827789910963741853507352D+00
  5168. <a name="l05104"></a>05104 xtab(61) = 0.983336253884625956931299302157D+00
  5169. <a name="l05105"></a>05105 xtab(62) = 0.991013371476744320739382383443D+00
  5170. <a name="l05106"></a>05106 xtab(63) = 0.996340116771955279346924500676D+00
  5171. <a name="l05107"></a>05107 xtab(64) = 0.999305041735772139456905624346D+00
  5172. <a name="l05108"></a>05108
  5173. <a name="l05109"></a>05109 weight(1) = 0.178328072169643294729607914497D-02
  5174. <a name="l05110"></a>05110 weight(2) = 0.414703326056246763528753572855D-02
  5175. <a name="l05111"></a>05111 weight(3) = 0.650445796897836285611736039998D-02
  5176. <a name="l05112"></a>05112 weight(4) = 0.884675982636394772303091465973D-02
  5177. <a name="l05113"></a>05113 weight(5) = 0.111681394601311288185904930192D-01
  5178. <a name="l05114"></a>05114 weight(6) = 0.134630478967186425980607666860D-01
  5179. <a name="l05115"></a>05115 weight(7) = 0.157260304760247193219659952975D-01
  5180. <a name="l05116"></a>05116 weight(8) = 0.179517157756973430850453020011D-01
  5181. <a name="l05117"></a>05117 weight(9) = 0.201348231535302093723403167285D-01
  5182. <a name="l05118"></a>05118 weight(10) = 0.222701738083832541592983303842D-01
  5183. <a name="l05119"></a>05119 weight(11) = 0.243527025687108733381775504091D-01
  5184. <a name="l05120"></a>05120 weight(12) = 0.263774697150546586716917926252D-01
  5185. <a name="l05121"></a>05121 weight(13) = 0.283396726142594832275113052002D-01
  5186. <a name="l05122"></a>05122 weight(14) = 0.302346570724024788679740598195D-01
  5187. <a name="l05123"></a>05123 weight(15) = 0.320579283548515535854675043479D-01
  5188. <a name="l05124"></a>05124 weight(16) = 0.338051618371416093915654821107D-01
  5189. <a name="l05125"></a>05125 weight(17) = 0.354722132568823838106931467152D-01
  5190. <a name="l05126"></a>05126 weight(18) = 0.370551285402400460404151018096D-01
  5191. <a name="l05127"></a>05127 weight(19) = 0.385501531786156291289624969468D-01
  5192. <a name="l05128"></a>05128 weight(20) = 0.399537411327203413866569261283D-01
  5193. <a name="l05129"></a>05129 weight(21) = 0.412625632426235286101562974736D-01
  5194. <a name="l05130"></a>05130 weight(22) = 0.424735151236535890073397679088D-01
  5195. <a name="l05131"></a>05131 weight(23) = 0.435837245293234533768278609737D-01
  5196. <a name="l05132"></a>05132 weight(24) = 0.445905581637565630601347100309D-01
  5197. <a name="l05133"></a>05133 weight(25) = 0.454916279274181444797709969713D-01
  5198. <a name="l05134"></a>05134 weight(26) = 0.462847965813144172959532492323D-01
  5199. <a name="l05135"></a>05135 weight(27) = 0.469681828162100173253262857546D-01
  5200. <a name="l05136"></a>05136 weight(28) = 0.475401657148303086622822069442D-01
  5201. <a name="l05137"></a>05137 weight(29) = 0.479993885964583077281261798713D-01
  5202. <a name="l05138"></a>05138 weight(30) = 0.483447622348029571697695271580D-01
  5203. <a name="l05139"></a>05139 weight(31) = 0.485754674415034269347990667840D-01
  5204. <a name="l05140"></a>05140 weight(32) = 0.486909570091397203833653907347D-01
  5205. <a name="l05141"></a>05141 weight(33) = 0.486909570091397203833653907347D-01
  5206. <a name="l05142"></a>05142 weight(34) = 0.485754674415034269347990667840D-01
  5207. <a name="l05143"></a>05143 weight(35) = 0.483447622348029571697695271580D-01
  5208. <a name="l05144"></a>05144 weight(36) = 0.479993885964583077281261798713D-01
  5209. <a name="l05145"></a>05145 weight(37) = 0.475401657148303086622822069442D-01
  5210. <a name="l05146"></a>05146 weight(38) = 0.469681828162100173253262857546D-01
  5211. <a name="l05147"></a>05147 weight(39) = 0.462847965813144172959532492323D-01
  5212. <a name="l05148"></a>05148 weight(40) = 0.454916279274181444797709969713D-01
  5213. <a name="l05149"></a>05149 weight(41) = 0.445905581637565630601347100309D-01
  5214. <a name="l05150"></a>05150 weight(42) = 0.435837245293234533768278609737D-01
  5215. <a name="l05151"></a>05151 weight(43) = 0.424735151236535890073397679088D-01
  5216. <a name="l05152"></a>05152 weight(44) = 0.412625632426235286101562974736D-01
  5217. <a name="l05153"></a>05153 weight(45) = 0.399537411327203413866569261283D-01
  5218. <a name="l05154"></a>05154 weight(46) = 0.385501531786156291289624969468D-01
  5219. <a name="l05155"></a>05155 weight(47) = 0.370551285402400460404151018096D-01
  5220. <a name="l05156"></a>05156 weight(48) = 0.354722132568823838106931467152D-01
  5221. <a name="l05157"></a>05157 weight(49) = 0.338051618371416093915654821107D-01
  5222. <a name="l05158"></a>05158 weight(50) = 0.320579283548515535854675043479D-01
  5223. <a name="l05159"></a>05159 weight(51) = 0.302346570724024788679740598195D-01
  5224. <a name="l05160"></a>05160 weight(52) = 0.283396726142594832275113052002D-01
  5225. <a name="l05161"></a>05161 weight(53) = 0.263774697150546586716917926252D-01
  5226. <a name="l05162"></a>05162 weight(54) = 0.243527025687108733381775504091D-01
  5227. <a name="l05163"></a>05163 weight(55) = 0.222701738083832541592983303842D-01
  5228. <a name="l05164"></a>05164 weight(56) = 0.201348231535302093723403167285D-01
  5229. <a name="l05165"></a>05165 weight(57) = 0.179517157756973430850453020011D-01
  5230. <a name="l05166"></a>05166 weight(58) = 0.157260304760247193219659952975D-01
  5231. <a name="l05167"></a>05167 weight(59) = 0.134630478967186425980607666860D-01
  5232. <a name="l05168"></a>05168 weight(60) = 0.111681394601311288185904930192D-01
  5233. <a name="l05169"></a>05169 weight(61) = 0.884675982636394772303091465973D-02
  5234. <a name="l05170"></a>05170 weight(62) = 0.650445796897836285611736039998D-02
  5235. <a name="l05171"></a>05171 weight(63) = 0.414703326056246763528753572855D-02
  5236. <a name="l05172"></a>05172 weight(64) = 0.178328072169643294729607914497D-02
  5237. <a name="l05173"></a>05173
  5238. <a name="l05174"></a>05174 <span class="keyword">else</span>
  5239. <a name="l05175"></a>05175
  5240. <a name="l05176"></a>05176 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  5241. <a name="l05177"></a>05177 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;LEGENDRE_SET - Fatal error!&#39;</span>
  5242. <a name="l05178"></a>05178 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  5243. <a name="l05179"></a>05179 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; Legal values are 1 to 20, 32 or 64.&#39;</span>
  5244. <a name="l05180"></a>05180 stop
  5245. <a name="l05181"></a>05181
  5246. <a name="l05182"></a>05182 <span class="keyword">end if</span>
  5247. <a name="l05183"></a>05183
  5248. <a name="l05184"></a>05184 return
  5249. <a name="l05185"></a>05185 <span class="keyword">end</span>
  5250. <a name="l05186"></a><a class="code" href="quadrule_8f90.html#a5bc99575d37146760cfa51cfccd5b400">05186</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a5bc99575d37146760cfa51cfccd5b400">legendre_set_cos</a> ( norder, xtab, weight )
  5251. <a name="l05187"></a>05187 <span class="comment">!</span>
  5252. <a name="l05188"></a>05188 <span class="comment">!*******************************************************************************</span>
  5253. <a name="l05189"></a>05189 <span class="comment">!</span>
  5254. <a name="l05190"></a>05190 <span class="comment">!! LEGENDRE_SET_COS sets a Gauss-Legendre rule for COS(X) * F(X) on [-PI/2,PI/2].</span>
  5255. <a name="l05191"></a>05191 <span class="comment">!</span>
  5256. <a name="l05192"></a>05192 <span class="comment">!</span>
  5257. <a name="l05193"></a>05193 <span class="comment">! Integration interval:</span>
  5258. <a name="l05194"></a>05194 <span class="comment">!</span>
  5259. <a name="l05195"></a>05195 <span class="comment">! [ -PI/2, PI/2 ]</span>
  5260. <a name="l05196"></a>05196 <span class="comment">!</span>
  5261. <a name="l05197"></a>05197 <span class="comment">! Weight function:</span>
  5262. <a name="l05198"></a>05198 <span class="comment">!</span>
  5263. <a name="l05199"></a>05199 <span class="comment">! COS(X) * F(X)</span>
  5264. <a name="l05200"></a>05200 <span class="comment">!</span>
  5265. <a name="l05201"></a>05201 <span class="comment">! Integral to approximate:</span>
  5266. <a name="l05202"></a>05202 <span class="comment">!</span>
  5267. <a name="l05203"></a>05203 <span class="comment">! Integral ( -PI/2 &lt;= X &lt;= PI/2 ) COS(X) * F(X) dX</span>
  5268. <a name="l05204"></a>05204 <span class="comment">!</span>
  5269. <a name="l05205"></a>05205 <span class="comment">! Approximate integral:</span>
  5270. <a name="l05206"></a>05206 <span class="comment">!</span>
  5271. <a name="l05207"></a>05207 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  5272. <a name="l05208"></a>05208 <span class="comment">!</span>
  5273. <a name="l05209"></a>05209 <span class="comment">! Discussion:</span>
  5274. <a name="l05210"></a>05210 <span class="comment">!</span>
  5275. <a name="l05211"></a>05211 <span class="comment">! The same rule can be used to approximate</span>
  5276. <a name="l05212"></a>05212 <span class="comment">!</span>
  5277. <a name="l05213"></a>05213 <span class="comment">! Integral ( 0 &lt;= X &lt;= PI ) SIN(X) * F(X) dX</span>
  5278. <a name="l05214"></a>05214 <span class="comment">!</span>
  5279. <a name="l05215"></a>05215 <span class="comment">! as</span>
  5280. <a name="l05216"></a>05216 <span class="comment">!</span>
  5281. <a name="l05217"></a>05217 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) + PI/2 )</span>
  5282. <a name="l05218"></a>05218 <span class="comment">!</span>
  5283. <a name="l05219"></a>05219 <span class="comment">! Reference:</span>
  5284. <a name="l05220"></a>05220 <span class="comment">!</span>
  5285. <a name="l05221"></a>05221 <span class="comment">! Gwynne Evans,</span>
  5286. <a name="l05222"></a>05222 <span class="comment">! Practical Numerical Integration,</span>
  5287. <a name="l05223"></a>05223 <span class="comment">! Wiley, 1993, QA299.3E93, page 310.</span>
  5288. <a name="l05224"></a>05224 <span class="comment">!</span>
  5289. <a name="l05225"></a>05225 <span class="comment">! Modified:</span>
  5290. <a name="l05226"></a>05226 <span class="comment">!</span>
  5291. <a name="l05227"></a>05227 <span class="comment">! 23 November 2000</span>
  5292. <a name="l05228"></a>05228 <span class="comment">!</span>
  5293. <a name="l05229"></a>05229 <span class="comment">! Author:</span>
  5294. <a name="l05230"></a>05230 <span class="comment">!</span>
  5295. <a name="l05231"></a>05231 <span class="comment">! John Burkardt</span>
  5296. <a name="l05232"></a>05232 <span class="comment">!</span>
  5297. <a name="l05233"></a>05233 <span class="comment">! Parameters:</span>
  5298. <a name="l05234"></a>05234 <span class="comment">!</span>
  5299. <a name="l05235"></a>05235 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  5300. <a name="l05236"></a>05236 <span class="comment">! NORDER must be between 1, 2, 4, 8 or 16.</span>
  5301. <a name="l05237"></a>05237 <span class="comment">!</span>
  5302. <a name="l05238"></a>05238 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  5303. <a name="l05239"></a>05239 <span class="comment">!</span>
  5304. <a name="l05240"></a>05240 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  5305. <a name="l05241"></a>05241 <span class="comment">!</span>
  5306. <a name="l05242"></a>05242 <span class="keyword">implicit none</span>
  5307. <a name="l05243"></a>05243 <span class="comment">!</span>
  5308. <a name="l05244"></a>05244 <span class="keywordtype">integer</span> norder
  5309. <a name="l05245"></a>05245 <span class="comment">!</span>
  5310. <a name="l05246"></a>05246 <span class="keywordtype">double precision</span> xtab(norder)
  5311. <a name="l05247"></a>05247 <span class="keywordtype">double precision</span> weight(norder)
  5312. <a name="l05248"></a>05248 <span class="comment">!</span>
  5313. <a name="l05249"></a>05249 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  5314. <a name="l05250"></a>05250
  5315. <a name="l05251"></a>05251 xtab(1) = 0.0D+00
  5316. <a name="l05252"></a>05252
  5317. <a name="l05253"></a>05253 weight(1) = 2.0D+00
  5318. <a name="l05254"></a>05254
  5319. <a name="l05255"></a>05255 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  5320. <a name="l05256"></a>05256
  5321. <a name="l05257"></a>05257 xtab(1) = - 0.68366739008990304094D+00
  5322. <a name="l05258"></a>05258 xtab(2) = 0.68366739008990304094D+00
  5323. <a name="l05259"></a>05259
  5324. <a name="l05260"></a>05260 weight(1) = 1.0D+00
  5325. <a name="l05261"></a>05261 weight(2) = 1.0D+00
  5326. <a name="l05262"></a>05262
  5327. <a name="l05263"></a>05263 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  5328. <a name="l05264"></a>05264
  5329. <a name="l05265"></a>05265 xtab(1) = - 1.1906765638948557415D+00
  5330. <a name="l05266"></a>05266 xtab(2) = - 0.43928746686001514756D+00
  5331. <a name="l05267"></a>05267 xtab(3) = 0.43928746686001514756D+00
  5332. <a name="l05268"></a>05268 xtab(4) = 1.1906765638948557415D+00
  5333. <a name="l05269"></a>05269
  5334. <a name="l05270"></a>05270 weight(1) = 0.22407061812762016065D+00
  5335. <a name="l05271"></a>05271 weight(2) = 0.77592938187237983935D+00
  5336. <a name="l05272"></a>05272 weight(3) = 0.77592938187237983935D+00
  5337. <a name="l05273"></a>05273 weight(4) = 0.22407061812762016065D+00
  5338. <a name="l05274"></a>05274
  5339. <a name="l05275"></a>05275 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  5340. <a name="l05276"></a>05276
  5341. <a name="l05277"></a>05277 xtab(1) = - 1.4414905401823575701D+00
  5342. <a name="l05278"></a>05278 xtab(2) = - 1.1537256454567275850D+00
  5343. <a name="l05279"></a>05279 xtab(3) = - 0.74346864787549244989D+00
  5344. <a name="l05280"></a>05280 xtab(4) = - 0.25649650741623123020D+00
  5345. <a name="l05281"></a>05281 xtab(5) = 0.25649650741623123020D+00
  5346. <a name="l05282"></a>05282 xtab(6) = 0.74346864787549244989D+00
  5347. <a name="l05283"></a>05283 xtab(7) = 1.1537256454567275850D+00
  5348. <a name="l05284"></a>05284 xtab(8) = 1.4414905401823575701D+00
  5349. <a name="l05285"></a>05285
  5350. <a name="l05286"></a>05286 weight(1) = 0.027535633513767011149D+00
  5351. <a name="l05287"></a>05287 weight(2) = 0.14420409203022750950D+00
  5352. <a name="l05288"></a>05288 weight(3) = 0.33626447785280459621D+00
  5353. <a name="l05289"></a>05289 weight(4) = 0.49199579660320088314D+00
  5354. <a name="l05290"></a>05290 weight(5) = 0.49199579660320088314D+00
  5355. <a name="l05291"></a>05291 weight(6) = 0.33626447785280459621D+00
  5356. <a name="l05292"></a>05292 weight(7) = 0.14420409203022750950D+00
  5357. <a name="l05293"></a>05293 weight(8) = 0.027535633513767011149D+00
  5358. <a name="l05294"></a>05294
  5359. <a name="l05295"></a>05295 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 16 ) <span class="keyword">then</span>
  5360. <a name="l05296"></a>05296
  5361. <a name="l05297"></a>05297 xtab( 1) = - 1.5327507132362304779D+00
  5362. <a name="l05298"></a>05298 xtab( 2) = - 1.4446014873666514608D+00
  5363. <a name="l05299"></a>05299 xtab( 3) = - 1.3097818904452936698D+00
  5364. <a name="l05300"></a>05300 xtab( 4) = - 1.1330068786005003695D+00
  5365. <a name="l05301"></a>05301 xtab( 5) = - 0.92027786206637096497D+00
  5366. <a name="l05302"></a>05302 xtab( 6) = - 0.67861108097560545347D+00
  5367. <a name="l05303"></a>05303 xtab( 7) = - 0.41577197673418943962D+00
  5368. <a name="l05304"></a>05304 xtab( 8) = - 0.14003444424696773778D+00
  5369. <a name="l05305"></a>05305 xtab( 9) = 0.14003444424696773778D+00
  5370. <a name="l05306"></a>05306 xtab(10) = 0.41577197673418943962D+00
  5371. <a name="l05307"></a>05307 xtab(11) = 0.67861108097560545347D+00
  5372. <a name="l05308"></a>05308 xtab(12) = 0.92027786206637096497D+00
  5373. <a name="l05309"></a>05309 xtab(13) = 1.1330068786005003695D+00
  5374. <a name="l05310"></a>05310 xtab(14) = 1.3097818904452936698D+00
  5375. <a name="l05311"></a>05311 xtab(15) = 1.4446014873666514608D+00
  5376. <a name="l05312"></a>05312 xtab(16) = 1.5327507132362304779D+00
  5377. <a name="l05313"></a>05313
  5378. <a name="l05314"></a>05314 weight( 1) = 0.0024194677567615628193D+00
  5379. <a name="l05315"></a>05315 weight( 2) = 0.014115268156854008264D+00
  5380. <a name="l05316"></a>05316 weight( 3) = 0.040437893946503669410D+00
  5381. <a name="l05317"></a>05317 weight( 4) = 0.083026647573217742131D+00
  5382. <a name="l05318"></a>05318 weight( 5) = 0.13834195526951273359D+00
  5383. <a name="l05319"></a>05319 weight( 6) = 0.19741148870253455567D+00
  5384. <a name="l05320"></a>05320 weight( 7) = 0.24763632094635522403D+00
  5385. <a name="l05321"></a>05321 weight( 8) = 0.27661095764826050408D+00
  5386. <a name="l05322"></a>05322 weight( 9) = 0.27661095764826050408D+00
  5387. <a name="l05323"></a>05323 weight(10) = 0.24763632094635522403D+00
  5388. <a name="l05324"></a>05324 weight(11) = 0.19741148870253455567D+00
  5389. <a name="l05325"></a>05325 weight(12) = 0.13834195526951273359D+00
  5390. <a name="l05326"></a>05326 weight(13) = 0.083026647573217742131D+00
  5391. <a name="l05327"></a>05327 weight(14) = 0.040437893946503669410D+00
  5392. <a name="l05328"></a>05328 weight(15) = 0.014115268156854008264D+00
  5393. <a name="l05329"></a>05329 weight(16) = 0.0024194677567615628193D+00
  5394. <a name="l05330"></a>05330
  5395. <a name="l05331"></a>05331 <span class="keyword">else</span>
  5396. <a name="l05332"></a>05332
  5397. <a name="l05333"></a>05333 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  5398. <a name="l05334"></a>05334 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;LEGENDRE_SET_COS - Fatal error!&#39;</span>
  5399. <a name="l05335"></a>05335 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  5400. <a name="l05336"></a>05336 stop
  5401. <a name="l05337"></a>05337
  5402. <a name="l05338"></a>05338 <span class="keyword">end if</span>
  5403. <a name="l05339"></a>05339
  5404. <a name="l05340"></a>05340 return
  5405. <a name="l05341"></a>05341 <span class="keyword">end</span>
  5406. <a name="l05342"></a><a class="code" href="quadrule_8f90.html#acc5a8a6f431a042e02f59fbc20041ae0">05342</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#acc5a8a6f431a042e02f59fbc20041ae0">legendre_set_cos2</a> ( norder, xtab, weight )
  5407. <a name="l05343"></a>05343 <span class="comment">!</span>
  5408. <a name="l05344"></a>05344 <span class="comment">!*******************************************************************************</span>
  5409. <a name="l05345"></a>05345 <span class="comment">!</span>
  5410. <a name="l05346"></a>05346 <span class="comment">!! LEGENDRE_SET_COS2 sets a Gauss-Legendre rule for COS(X) * F(X) on [0,PI/2].</span>
  5411. <a name="l05347"></a>05347 <span class="comment">!</span>
  5412. <a name="l05348"></a>05348 <span class="comment">!</span>
  5413. <a name="l05349"></a>05349 <span class="comment">! Integration interval:</span>
  5414. <a name="l05350"></a>05350 <span class="comment">!</span>
  5415. <a name="l05351"></a>05351 <span class="comment">! [ 0, PI/2 ]</span>
  5416. <a name="l05352"></a>05352 <span class="comment">!</span>
  5417. <a name="l05353"></a>05353 <span class="comment">! Weight function:</span>
  5418. <a name="l05354"></a>05354 <span class="comment">!</span>
  5419. <a name="l05355"></a>05355 <span class="comment">! COS(X) * F(X)</span>
  5420. <a name="l05356"></a>05356 <span class="comment">!</span>
  5421. <a name="l05357"></a>05357 <span class="comment">! Integral to approximate:</span>
  5422. <a name="l05358"></a>05358 <span class="comment">!</span>
  5423. <a name="l05359"></a>05359 <span class="comment">! Integral ( 0 &lt;= X &lt;= PI/2 ) COS(X) * F(X) dX</span>
  5424. <a name="l05360"></a>05360 <span class="comment">!</span>
  5425. <a name="l05361"></a>05361 <span class="comment">! Approximate integral:</span>
  5426. <a name="l05362"></a>05362 <span class="comment">!</span>
  5427. <a name="l05363"></a>05363 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  5428. <a name="l05364"></a>05364 <span class="comment">!</span>
  5429. <a name="l05365"></a>05365 <span class="comment">! Discussion:</span>
  5430. <a name="l05366"></a>05366 <span class="comment">!</span>
  5431. <a name="l05367"></a>05367 <span class="comment">! The same rule can be used to approximate</span>
  5432. <a name="l05368"></a>05368 <span class="comment">!</span>
  5433. <a name="l05369"></a>05369 <span class="comment">! Integral ( 0 &lt;= X &lt;= PI/2 ) SIN(X) * F(X) dX</span>
  5434. <a name="l05370"></a>05370 <span class="comment">!</span>
  5435. <a name="l05371"></a>05371 <span class="comment">! as</span>
  5436. <a name="l05372"></a>05372 <span class="comment">!</span>
  5437. <a name="l05373"></a>05373 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( PI/2 - XTAB(I) )</span>
  5438. <a name="l05374"></a>05374 <span class="comment">!</span>
  5439. <a name="l05375"></a>05375 <span class="comment">! Reference:</span>
  5440. <a name="l05376"></a>05376 <span class="comment">!</span>
  5441. <a name="l05377"></a>05377 <span class="comment">! Gwynne Evans,</span>
  5442. <a name="l05378"></a>05378 <span class="comment">! Practical Numerical Integration,</span>
  5443. <a name="l05379"></a>05379 <span class="comment">! Wiley, 1993, QA299.3E93, page 311.</span>
  5444. <a name="l05380"></a>05380 <span class="comment">!</span>
  5445. <a name="l05381"></a>05381 <span class="comment">! Modified:</span>
  5446. <a name="l05382"></a>05382 <span class="comment">!</span>
  5447. <a name="l05383"></a>05383 <span class="comment">! 24 November 2000</span>
  5448. <a name="l05384"></a>05384 <span class="comment">!</span>
  5449. <a name="l05385"></a>05385 <span class="comment">! Author:</span>
  5450. <a name="l05386"></a>05386 <span class="comment">!</span>
  5451. <a name="l05387"></a>05387 <span class="comment">! John Burkardt</span>
  5452. <a name="l05388"></a>05388 <span class="comment">!</span>
  5453. <a name="l05389"></a>05389 <span class="comment">! Parameters:</span>
  5454. <a name="l05390"></a>05390 <span class="comment">!</span>
  5455. <a name="l05391"></a>05391 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  5456. <a name="l05392"></a>05392 <span class="comment">! NORDER must be between 2, 4, 8 or 16.</span>
  5457. <a name="l05393"></a>05393 <span class="comment">!</span>
  5458. <a name="l05394"></a>05394 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  5459. <a name="l05395"></a>05395 <span class="comment">!</span>
  5460. <a name="l05396"></a>05396 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  5461. <a name="l05397"></a>05397 <span class="comment">!</span>
  5462. <a name="l05398"></a>05398 <span class="keyword">implicit none</span>
  5463. <a name="l05399"></a>05399 <span class="comment">!</span>
  5464. <a name="l05400"></a>05400 <span class="keywordtype">integer</span> norder
  5465. <a name="l05401"></a>05401 <span class="comment">!</span>
  5466. <a name="l05402"></a>05402 <span class="keywordtype">double precision</span> xtab(norder)
  5467. <a name="l05403"></a>05403 <span class="keywordtype">double precision</span> weight(norder)
  5468. <a name="l05404"></a>05404 <span class="comment">!</span>
  5469. <a name="l05405"></a>05405 <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  5470. <a name="l05406"></a>05406
  5471. <a name="l05407"></a>05407 xtab(1) = 0.26587388056307823382D+00
  5472. <a name="l05408"></a>05408 xtab(2) = 1.0351526093171315182D+00
  5473. <a name="l05409"></a>05409
  5474. <a name="l05410"></a>05410 weight(1) = 0.60362553280827113087D+00
  5475. <a name="l05411"></a>05411 weight(2) = 0.39637446719172886913D+00
  5476. <a name="l05412"></a>05412
  5477. <a name="l05413"></a>05413 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  5478. <a name="l05414"></a>05414
  5479. <a name="l05415"></a>05415 xtab(1) = 0.095669389196858636773D+00
  5480. <a name="l05416"></a>05416 xtab(2) = 0.45240902327067096554D+00
  5481. <a name="l05417"></a>05417 xtab(3) = 0.93185057672024082424D+00
  5482. <a name="l05418"></a>05418 xtab(4) = 1.3564439599666466230D+00
  5483. <a name="l05419"></a>05419
  5484. <a name="l05420"></a>05420 weight( 1) = 0.23783071419515504517D+00
  5485. <a name="l05421"></a>05421 weight( 2) = 0.40265695523581253512D+00
  5486. <a name="l05422"></a>05422 weight( 3) = 0.28681737948564715225D+00
  5487. <a name="l05423"></a>05423 weight( 4) = 0.072694951083385267446D+00
  5488. <a name="l05424"></a>05424
  5489. <a name="l05425"></a>05425 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  5490. <a name="l05426"></a>05426
  5491. <a name="l05427"></a>05427 xtab(1) = 0.029023729768913933432D+00
  5492. <a name="l05428"></a>05428 xtab(2) = 0.14828524404581819442D+00
  5493. <a name="l05429"></a>05429 xtab(3) = 0.34531111151664787488D+00
  5494. <a name="l05430"></a>05430 xtab(4) = 0.59447696797658360178D+00
  5495. <a name="l05431"></a>05431 xtab(5) = 0.86538380686123504827D+00
  5496. <a name="l05432"></a>05432 xtab(6) = 1.1263076093187456632D+00
  5497. <a name="l05433"></a>05433 xtab(7) = 1.3470150460281258016D+00
  5498. <a name="l05434"></a>05434 xtab(8) = 1.5015603622059195568D+00
  5499. <a name="l05435"></a>05435
  5500. <a name="l05436"></a>05436 weight( 1) = 0.073908998095117384985D+00
  5501. <a name="l05437"></a>05437 weight( 2) = 0.16002993702338006099D+00
  5502. <a name="l05438"></a>05438 weight( 3) = 0.21444434341803549108D+00
  5503. <a name="l05439"></a>05439 weight( 4) = 0.21979581268851903339D+00
  5504. <a name="l05440"></a>05440 weight( 5) = 0.17581164478209568886D+00
  5505. <a name="l05441"></a>05441 weight( 6) = 0.10560448025308322171D+00
  5506. <a name="l05442"></a>05442 weight( 7) = 0.042485497299217201089D+00
  5507. <a name="l05443"></a>05443 weight( 8) = 0.0079192864405519178899D+00
  5508. <a name="l05444"></a>05444
  5509. <a name="l05445"></a>05445 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 16 ) <span class="keyword">then</span>
  5510. <a name="l05446"></a>05446
  5511. <a name="l05447"></a>05447 xtab( 1) = 0.0080145034906295973494D+00
  5512. <a name="l05448"></a>05448 xtab( 2) = 0.041893031354246254797D+00
  5513. <a name="l05449"></a>05449 xtab( 3) = 0.10149954486757579459D+00
  5514. <a name="l05450"></a>05450 xtab( 4) = 0.18463185923836617507D+00
  5515. <a name="l05451"></a>05451 xtab( 5) = 0.28826388487760574589D+00
  5516. <a name="l05452"></a>05452 xtab( 6) = 0.40870579076464794191D+00
  5517. <a name="l05453"></a>05453 xtab( 7) = 0.54176054986913847463D+00
  5518. <a name="l05454"></a>05454 xtab( 8) = 0.68287636658719416893D+00
  5519. <a name="l05455"></a>05455 xtab( 9) = 0.82729287620416833520D+00
  5520. <a name="l05456"></a>05456 xtab(10) = 0.97018212594829367065D+00
  5521. <a name="l05457"></a>05457 xtab(11) = 1.1067865150286247873D+00
  5522. <a name="l05458"></a>05458 xtab(12) = 1.2325555697227748824D+00
  5523. <a name="l05459"></a>05459 xtab(13) = 1.3432821921580721861D+00
  5524. <a name="l05460"></a>05460 xtab(14) = 1.4352370549295032923D+00
  5525. <a name="l05461"></a>05461 xtab(15) = 1.5052970876794669248D+00
  5526. <a name="l05462"></a>05462 xtab(16) = 1.5510586944086135769D+00
  5527. <a name="l05463"></a>05463
  5528. <a name="l05464"></a>05464 weight( 1) = 0.020528714977215248902D+00
  5529. <a name="l05465"></a>05465 weight( 2) = 0.046990919853597958123D+00
  5530. <a name="l05466"></a>05466 weight( 3) = 0.071441021312218541698D+00
  5531. <a name="l05467"></a>05467 weight( 4) = 0.092350338329243052271D+00
  5532. <a name="l05468"></a>05468 weight( 5) = 0.10804928026816236935D+00
  5533. <a name="l05469"></a>05469 weight( 6) = 0.11698241243306261791D+00
  5534. <a name="l05470"></a>05470 weight( 7) = 0.11812395361762037649D+00
  5535. <a name="l05471"></a>05471 weight( 8) = 0.11137584940420091049D+00
  5536. <a name="l05472"></a>05472 weight( 9) = 0.097778236145946543110D+00
  5537. <a name="l05473"></a>05473 weight(10) = 0.079418758985944482077D+00
  5538. <a name="l05474"></a>05474 weight(11) = 0.059039620053768691402D+00
  5539. <a name="l05475"></a>05475 weight(12) = 0.039458876783728165671D+00
  5540. <a name="l05476"></a>05476 weight(13) = 0.022987785677206847531D+00
  5541. <a name="l05477"></a>05477 weight(14) = 0.011010405600421536861D+00
  5542. <a name="l05478"></a>05478 weight(15) = 0.0038123928030499915653D+00
  5543. <a name="l05479"></a>05479 weight(16) = 0.00065143375461266656171D+00
  5544. <a name="l05480"></a>05480
  5545. <a name="l05481"></a>05481 <span class="keyword">else</span>
  5546. <a name="l05482"></a>05482
  5547. <a name="l05483"></a>05483 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  5548. <a name="l05484"></a>05484 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;LEGENDRE_SET_COS2 - Fatal error!&#39;</span>
  5549. <a name="l05485"></a>05485 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  5550. <a name="l05486"></a>05486 stop
  5551. <a name="l05487"></a>05487
  5552. <a name="l05488"></a>05488 <span class="keyword">end if</span>
  5553. <a name="l05489"></a>05489
  5554. <a name="l05490"></a>05490 return
  5555. <a name="l05491"></a>05491 <span class="keyword">end</span>
  5556. <a name="l05492"></a><a class="code" href="quadrule_8f90.html#aa56be14b0d5564b164cc213f31c0d137">05492</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#aa56be14b0d5564b164cc213f31c0d137">legendre_set_log</a> ( norder, xtab, weight )
  5557. <a name="l05493"></a>05493 <span class="comment">!</span>
  5558. <a name="l05494"></a>05494 <span class="comment">!*******************************************************************************</span>
  5559. <a name="l05495"></a>05495 <span class="comment">!</span>
  5560. <a name="l05496"></a>05496 <span class="comment">!! LEGENDRE_SET_LOG sets a Gauss-Legendre rule for - LOG(X) * F(X) on [0,1].</span>
  5561. <a name="l05497"></a>05497 <span class="comment">!</span>
  5562. <a name="l05498"></a>05498 <span class="comment">!</span>
  5563. <a name="l05499"></a>05499 <span class="comment">! Integration interval:</span>
  5564. <a name="l05500"></a>05500 <span class="comment">!</span>
  5565. <a name="l05501"></a>05501 <span class="comment">! [ 0, 1 ]</span>
  5566. <a name="l05502"></a>05502 <span class="comment">!</span>
  5567. <a name="l05503"></a>05503 <span class="comment">! Weight function:</span>
  5568. <a name="l05504"></a>05504 <span class="comment">!</span>
  5569. <a name="l05505"></a>05505 <span class="comment">! - LOG(X) * F(X)</span>
  5570. <a name="l05506"></a>05506 <span class="comment">!</span>
  5571. <a name="l05507"></a>05507 <span class="comment">! Integral to approximate:</span>
  5572. <a name="l05508"></a>05508 <span class="comment">!</span>
  5573. <a name="l05509"></a>05509 <span class="comment">! Integral ( 0 &lt;= X &lt;= 1 ) - LOG(X) * F(X) dX</span>
  5574. <a name="l05510"></a>05510 <span class="comment">!</span>
  5575. <a name="l05511"></a>05511 <span class="comment">! Approximate integral:</span>
  5576. <a name="l05512"></a>05512 <span class="comment">!</span>
  5577. <a name="l05513"></a>05513 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  5578. <a name="l05514"></a>05514 <span class="comment">!</span>
  5579. <a name="l05515"></a>05515 <span class="comment">! Reference:</span>
  5580. <a name="l05516"></a>05516 <span class="comment">!</span>
  5581. <a name="l05517"></a>05517 <span class="comment">! Abramowitz and Stegun,</span>
  5582. <a name="l05518"></a>05518 <span class="comment">! Handbook of Mathematical Functions,</span>
  5583. <a name="l05519"></a>05519 <span class="comment">! National Bureau of Standards, 1964, page 920.</span>
  5584. <a name="l05520"></a>05520 <span class="comment">!</span>
  5585. <a name="l05521"></a>05521 <span class="comment">! Gwynne Evans,</span>
  5586. <a name="l05522"></a>05522 <span class="comment">! Practical Numerical Integration,</span>
  5587. <a name="l05523"></a>05523 <span class="comment">! Wiley, 1993, QA299.3E93, page 309.</span>
  5588. <a name="l05524"></a>05524 <span class="comment">!</span>
  5589. <a name="l05525"></a>05525 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  5590. <a name="l05526"></a>05526 <span class="comment">! Gaussian Quadrature Formulas,</span>
  5591. <a name="l05527"></a>05527 <span class="comment">! Prentice Hall, 1966.</span>
  5592. <a name="l05528"></a>05528 <span class="comment">!</span>
  5593. <a name="l05529"></a>05529 <span class="comment">! Modified:</span>
  5594. <a name="l05530"></a>05530 <span class="comment">!</span>
  5595. <a name="l05531"></a>05531 <span class="comment">! 05 December 2000</span>
  5596. <a name="l05532"></a>05532 <span class="comment">!</span>
  5597. <a name="l05533"></a>05533 <span class="comment">! Author:</span>
  5598. <a name="l05534"></a>05534 <span class="comment">!</span>
  5599. <a name="l05535"></a>05535 <span class="comment">! John Burkardt</span>
  5600. <a name="l05536"></a>05536 <span class="comment">!</span>
  5601. <a name="l05537"></a>05537 <span class="comment">! Parameters:</span>
  5602. <a name="l05538"></a>05538 <span class="comment">!</span>
  5603. <a name="l05539"></a>05539 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  5604. <a name="l05540"></a>05540 <span class="comment">! NORDER must be between 1 through 8, or 16.</span>
  5605. <a name="l05541"></a>05541 <span class="comment">!</span>
  5606. <a name="l05542"></a>05542 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  5607. <a name="l05543"></a>05543 <span class="comment">!</span>
  5608. <a name="l05544"></a>05544 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  5609. <a name="l05545"></a>05545 <span class="comment">!</span>
  5610. <a name="l05546"></a>05546 <span class="keyword">implicit none</span>
  5611. <a name="l05547"></a>05547 <span class="comment">!</span>
  5612. <a name="l05548"></a>05548 <span class="keywordtype">integer</span> norder
  5613. <a name="l05549"></a>05549 <span class="comment">!</span>
  5614. <a name="l05550"></a>05550 <span class="keywordtype">double precision</span> xtab(norder)
  5615. <a name="l05551"></a>05551 <span class="keywordtype">double precision</span> weight(norder)
  5616. <a name="l05552"></a>05552 <span class="comment">!</span>
  5617. <a name="l05553"></a>05553 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  5618. <a name="l05554"></a>05554
  5619. <a name="l05555"></a>05555 xtab(1) = 0.25D+00
  5620. <a name="l05556"></a>05556
  5621. <a name="l05557"></a>05557 weight(1) = 1.0D+00
  5622. <a name="l05558"></a>05558
  5623. <a name="l05559"></a>05559 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  5624. <a name="l05560"></a>05560
  5625. <a name="l05561"></a>05561 xtab(1) = 0.112008806166976182957205488948D+00
  5626. <a name="l05562"></a>05562 xtab(2) = 0.602276908118738102757080225338D+00
  5627. <a name="l05563"></a>05563
  5628. <a name="l05564"></a>05564 weight(1) = 0.718539319030384440665510200891D+00
  5629. <a name="l05565"></a>05565 weight(2) = 0.281460680969615559334489799109D+00
  5630. <a name="l05566"></a>05566
  5631. <a name="l05567"></a>05567 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  5632. <a name="l05568"></a>05568
  5633. <a name="l05569"></a>05569 xtab(1) = 0.0638907930873254049961166031363D+00
  5634. <a name="l05570"></a>05570 xtab(2) = 0.368997063715618765546197645857D+00
  5635. <a name="l05571"></a>05571 xtab(3) = 0.766880303938941455423682659817D+00
  5636. <a name="l05572"></a>05572
  5637. <a name="l05573"></a>05573 weight(1) = 0.513404552232363325129300497567D+00
  5638. <a name="l05574"></a>05574 weight(2) = 0.391980041201487554806287180966D+00
  5639. <a name="l05575"></a>05575 weight(3) = 0.0946154065661491200644123214672D+00
  5640. <a name="l05576"></a>05576
  5641. <a name="l05577"></a>05577 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  5642. <a name="l05578"></a>05578
  5643. <a name="l05579"></a>05579 xtab(1) = 0.0414484801993832208033213101564D+00
  5644. <a name="l05580"></a>05580 xtab(2) = 0.245274914320602251939675759523D+00
  5645. <a name="l05581"></a>05581 xtab(3) = 0.556165453560275837180184354376D+00
  5646. <a name="l05582"></a>05582 xtab(4) = 0.848982394532985174647849188085D+00
  5647. <a name="l05583"></a>05583
  5648. <a name="l05584"></a>05584 weight(1) = 0.383464068145135124850046522343D+00
  5649. <a name="l05585"></a>05585 weight(2) = 0.386875317774762627336008234554D+00
  5650. <a name="l05586"></a>05586 weight(3) = 0.190435126950142415361360014547D+00
  5651. <a name="l05587"></a>05587 weight(4) = 0.0392254871299598324525852285552D+00
  5652. <a name="l05588"></a>05588
  5653. <a name="l05589"></a>05589 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  5654. <a name="l05590"></a>05590
  5655. <a name="l05591"></a>05591 xtab(1) = 0.0291344721519720533037267621154D+00
  5656. <a name="l05592"></a>05592 xtab(2) = 0.173977213320897628701139710829D+00
  5657. <a name="l05593"></a>05593 xtab(3) = 0.411702520284902043174931924646D+00
  5658. <a name="l05594"></a>05594 xtab(4) = 0.677314174582820380701802667998D+00
  5659. <a name="l05595"></a>05595 xtab(5) = 0.894771361031008283638886204455D+00
  5660. <a name="l05596"></a>05596
  5661. <a name="l05597"></a>05597 weight(1) = 0.297893471782894457272257877888D+00
  5662. <a name="l05598"></a>05598 weight(2) = 0.349776226513224180375071870307D+00
  5663. <a name="l05599"></a>05599 weight(3) = 0.234488290044052418886906857943D+00
  5664. <a name="l05600"></a>05600 weight(4) = 0.0989304595166331469761807114404D+00
  5665. <a name="l05601"></a>05601 weight(5) = 0.0189115521431957964895826824218D+00
  5666. <a name="l05602"></a>05602
  5667. <a name="l05603"></a>05603 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  5668. <a name="l05604"></a>05604
  5669. <a name="l05605"></a>05605 xtab(1) = 0.0216340058441169489956958558537D+00
  5670. <a name="l05606"></a>05606 xtab(2) = 0.129583391154950796131158505009D+00
  5671. <a name="l05607"></a>05607 xtab(3) = 0.314020449914765508798248188420D+00
  5672. <a name="l05608"></a>05608 xtab(4) = 0.538657217351802144548941893993D+00
  5673. <a name="l05609"></a>05609 xtab(5) = 0.756915337377402852164544156139D+00
  5674. <a name="l05610"></a>05610 xtab(6) = 0.922668851372120237333873231507D+00
  5675. <a name="l05611"></a>05611
  5676. <a name="l05612"></a>05612 weight(1) = 0.238763662578547569722268303330D+00
  5677. <a name="l05613"></a>05613 weight(2) = 0.308286573273946792969383109211D+00
  5678. <a name="l05614"></a>05614 weight(3) = 0.245317426563210385984932540188D+00
  5679. <a name="l05615"></a>05615 weight(4) = 0.142008756566476685421345576030D+00
  5680. <a name="l05616"></a>05616 weight(5) = 0.0554546223248862900151353549662D+00
  5681. <a name="l05617"></a>05617 weight(6) = 0.0101689586929322758869351162755D+00
  5682. <a name="l05618"></a>05618
  5683. <a name="l05619"></a>05619 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  5684. <a name="l05620"></a>05620
  5685. <a name="l05621"></a>05621 xtab(1) = 0.0167193554082585159416673609320D+00
  5686. <a name="l05622"></a>05622 xtab(2) = 0.100185677915675121586885031757D+00
  5687. <a name="l05623"></a>05623 xtab(3) = 0.246294246207930599046668547239D+00
  5688. <a name="l05624"></a>05624 xtab(4) = 0.433463493257033105832882482601D+00
  5689. <a name="l05625"></a>05625 xtab(5) = 0.632350988047766088461805812245D+00
  5690. <a name="l05626"></a>05626 xtab(6) = 0.811118626740105576526226796782D+00
  5691. <a name="l05627"></a>05627 xtab(7) = 0.940848166743347721760134113379D+00
  5692. <a name="l05628"></a>05628
  5693. <a name="l05629"></a>05629 weight(1) = 0.196169389425248207525427377585D+00
  5694. <a name="l05630"></a>05630 weight(2) = 0.270302644247272982145271719533D+00
  5695. <a name="l05631"></a>05631 weight(3) = 0.239681873007690948308072785252D+00
  5696. <a name="l05632"></a>05632 weight(4) = 0.165775774810432906560869687736D+00
  5697. <a name="l05633"></a>05633 weight(5) = 0.0889432271376579644357238403458D+00
  5698. <a name="l05634"></a>05634 weight(6) = 0.0331943043565710670254494111034D+00
  5699. <a name="l05635"></a>05635 weight(7) = 0.00593278701512592399918517844468D+00
  5700. <a name="l05636"></a>05636
  5701. <a name="l05637"></a>05637 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  5702. <a name="l05638"></a>05638
  5703. <a name="l05639"></a>05639 xtab(1) = 0.0133202441608924650122526725243D+00
  5704. <a name="l05640"></a>05640 xtab(2) = 0.0797504290138949384098277291424D+00
  5705. <a name="l05641"></a>05641 xtab(3) = 0.197871029326188053794476159516D+00
  5706. <a name="l05642"></a>05642 xtab(4) = 0.354153994351909419671463603538D+00
  5707. <a name="l05643"></a>05643 xtab(5) = 0.529458575234917277706149699996D+00
  5708. <a name="l05644"></a>05644 xtab(6) = 0.701814529939099963837152670310D+00
  5709. <a name="l05645"></a>05645 xtab(7) = 0.849379320441106676048309202301D+00
  5710. <a name="l05646"></a>05646 xtab(8) = 0.953326450056359788767379678514D+00
  5711. <a name="l05647"></a>05647
  5712. <a name="l05648"></a>05648 weight(1) = 0.164416604728002886831472568326D+00
  5713. <a name="l05649"></a>05649 weight(2) = 0.237525610023306020501348561960D+00
  5714. <a name="l05650"></a>05650 weight(3) = 0.226841984431919126368780402936D+00
  5715. <a name="l05651"></a>05651 weight(4) = 0.175754079006070244988056212006D+00
  5716. <a name="l05652"></a>05652 weight(5) = 0.112924030246759051855000442086D+00
  5717. <a name="l05653"></a>05653 weight(6) = 0.0578722107177820723985279672940D+00
  5718. <a name="l05654"></a>05654 weight(7) = 0.0209790737421329780434615241150D+00
  5719. <a name="l05655"></a>05655 weight(8) = 0.00368640710402761901335232127647D+00
  5720. <a name="l05656"></a>05656
  5721. <a name="l05657"></a>05657 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 16 ) <span class="keyword">then</span>
  5722. <a name="l05658"></a>05658
  5723. <a name="l05659"></a>05659 xtab( 1) = 0.00389783448711591592405360527037D+00
  5724. <a name="l05660"></a>05660 xtab( 2) = 0.0230289456168732398203176309848D+00
  5725. <a name="l05661"></a>05661 xtab( 3) = 0.0582803983062404123483532298394D+00
  5726. <a name="l05662"></a>05662 xtab( 4) = 0.108678365091054036487713613051D+00
  5727. <a name="l05663"></a>05663 xtab( 5) = 0.172609454909843937760843776232D+00
  5728. <a name="l05664"></a>05664 xtab( 6) = 0.247937054470578495147671753047D+00
  5729. <a name="l05665"></a>05665 xtab( 7) = 0.332094549129917155984755859320D+00
  5730. <a name="l05666"></a>05666 xtab( 8) = 0.422183910581948600115088366745D+00
  5731. <a name="l05667"></a>05667 xtab( 9) = 0.515082473381462603476277704052D+00
  5732. <a name="l05668"></a>05668 xtab(10) = 0.607556120447728724086384921709D+00
  5733. <a name="l05669"></a>05669 xtab(11) = 0.696375653228214061156318166581D+00
  5734. <a name="l05670"></a>05670 xtab(12) = 0.778432565873265405203868167732D+00
  5735. <a name="l05671"></a>05671 xtab(13) = 0.850850269715391083233822761319D+00
  5736. <a name="l05672"></a>05672 xtab(14) = 0.911086857222271905418818994060D+00
  5737. <a name="l05673"></a>05673 xtab(15) = 0.957025571703542157591520509383D+00
  5738. <a name="l05674"></a>05674 xtab(16) = 0.987047800247984476758697436516D+00
  5739. <a name="l05675"></a>05675
  5740. <a name="l05676"></a>05676 weight( 1) = 0.0607917100435912328511733871235D+00
  5741. <a name="l05677"></a>05677 weight( 2) = 0.102915677517582144387691736210D+00
  5742. <a name="l05678"></a>05678 weight( 3) = 0.122355662046009193557547513197D+00
  5743. <a name="l05679"></a>05679 weight( 4) = 0.127569246937015988717042209239D+00
  5744. <a name="l05680"></a>05680 weight( 5) = 0.123013574600070915423123365137D+00
  5745. <a name="l05681"></a>05681 weight( 6) = 0.111847244855485722621848903429D+00
  5746. <a name="l05682"></a>05682 weight( 7) = 0.0965963851521243412529681650802D+00
  5747. <a name="l05683"></a>05683 weight( 8) = 0.0793566643514731387824416770520D+00
  5748. <a name="l05684"></a>05684 weight( 9) = 0.0618504945819652070951360853113D+00
  5749. <a name="l05685"></a>05685 weight(10) = 0.0454352465077266686288299526509D+00
  5750. <a name="l05686"></a>05686 weight(11) = 0.0310989747515818064092528627927D+00
  5751. <a name="l05687"></a>05687 weight(12) = 0.0194597659273608420780860268669D+00
  5752. <a name="l05688"></a>05688 weight(13) = 0.0107762549632055256455393162159D+00
  5753. <a name="l05689"></a>05689 weight(14) = 0.00497254289008764171250524951646D+00
  5754. <a name="l05690"></a>05690 weight(15) = 0.00167820111005119451503546419059D+00
  5755. <a name="l05691"></a>05691 weight(16) = 0.000282353764668436321778085987413D+00
  5756. <a name="l05692"></a>05692
  5757. <a name="l05693"></a>05693 <span class="keyword">else</span>
  5758. <a name="l05694"></a>05694
  5759. <a name="l05695"></a>05695 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  5760. <a name="l05696"></a>05696 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;LEGENDRE_SET_LOG - Fatal error!&#39;</span>
  5761. <a name="l05697"></a>05697 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  5762. <a name="l05698"></a>05698 stop
  5763. <a name="l05699"></a>05699
  5764. <a name="l05700"></a>05700 <span class="keyword">end if</span>
  5765. <a name="l05701"></a>05701
  5766. <a name="l05702"></a>05702 return
  5767. <a name="l05703"></a>05703 <span class="keyword">end</span>
  5768. <a name="l05704"></a><a class="code" href="quadrule_8f90.html#a86c4a711a482034df5404bc3c78e55fd">05704</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a86c4a711a482034df5404bc3c78e55fd">legendre_set_sqrtx_01</a> ( norder, xtab, weight )
  5769. <a name="l05705"></a>05705 <span class="comment">!</span>
  5770. <a name="l05706"></a>05706 <span class="comment">!*******************************************************************************</span>
  5771. <a name="l05707"></a>05707 <span class="comment">!</span>
  5772. <a name="l05708"></a>05708 <span class="comment">!! LEGENDRE_SET_SQRTX_01 sets a Gauss-Legendre rule for SQRT(X) * F(X) on [0,1].</span>
  5773. <a name="l05709"></a>05709 <span class="comment">!</span>
  5774. <a name="l05710"></a>05710 <span class="comment">!</span>
  5775. <a name="l05711"></a>05711 <span class="comment">! Integration interval:</span>
  5776. <a name="l05712"></a>05712 <span class="comment">!</span>
  5777. <a name="l05713"></a>05713 <span class="comment">! [ 0, 1 ]</span>
  5778. <a name="l05714"></a>05714 <span class="comment">!</span>
  5779. <a name="l05715"></a>05715 <span class="comment">! Weight function:</span>
  5780. <a name="l05716"></a>05716 <span class="comment">!</span>
  5781. <a name="l05717"></a>05717 <span class="comment">! SQRT ( X )</span>
  5782. <a name="l05718"></a>05718 <span class="comment">!</span>
  5783. <a name="l05719"></a>05719 <span class="comment">! Integral to approximate:</span>
  5784. <a name="l05720"></a>05720 <span class="comment">!</span>
  5785. <a name="l05721"></a>05721 <span class="comment">! Integral ( 0 &lt;= X &lt;= 1 ) SQRT ( X ) * F(X) dX =</span>
  5786. <a name="l05722"></a>05722 <span class="comment">! Integral ( 0 &lt;= Y &lt;= 1 ) 2 * Y**2 * F(Y**2) dY.</span>
  5787. <a name="l05723"></a>05723 <span class="comment">! (using Y = SQRT(X) )</span>
  5788. <a name="l05724"></a>05724 <span class="comment">!</span>
  5789. <a name="l05725"></a>05725 <span class="comment">! Approximate integral:</span>
  5790. <a name="l05726"></a>05726 <span class="comment">!</span>
  5791. <a name="l05727"></a>05727 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  5792. <a name="l05728"></a>05728 <span class="comment">!</span>
  5793. <a name="l05729"></a>05729 <span class="comment">! Reference:</span>
  5794. <a name="l05730"></a>05730 <span class="comment">!</span>
  5795. <a name="l05731"></a>05731 <span class="comment">! Daniel Zwillinger, editor,</span>
  5796. <a name="l05732"></a>05732 <span class="comment">! CRC Standard Mathematical Tables and Formulae,</span>
  5797. <a name="l05733"></a>05733 <span class="comment">! CRC Press, 30th Edition, 2000, page 696.</span>
  5798. <a name="l05734"></a>05734 <span class="comment">!</span>
  5799. <a name="l05735"></a>05735 <span class="comment">! Modified:</span>
  5800. <a name="l05736"></a>05736 <span class="comment">!</span>
  5801. <a name="l05737"></a>05737 <span class="comment">! 23 January 2001</span>
  5802. <a name="l05738"></a>05738 <span class="comment">!</span>
  5803. <a name="l05739"></a>05739 <span class="comment">! Author:</span>
  5804. <a name="l05740"></a>05740 <span class="comment">!</span>
  5805. <a name="l05741"></a>05741 <span class="comment">! John Burkardt</span>
  5806. <a name="l05742"></a>05742 <span class="comment">!</span>
  5807. <a name="l05743"></a>05743 <span class="comment">! Parameters:</span>
  5808. <a name="l05744"></a>05744 <span class="comment">!</span>
  5809. <a name="l05745"></a>05745 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  5810. <a name="l05746"></a>05746 <span class="comment">!</span>
  5811. <a name="l05747"></a>05747 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  5812. <a name="l05748"></a>05748 <span class="comment">!</span>
  5813. <a name="l05749"></a>05749 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  5814. <a name="l05750"></a>05750 <span class="comment">!</span>
  5815. <a name="l05751"></a>05751 <span class="keyword">implicit none</span>
  5816. <a name="l05752"></a>05752 <span class="comment">!</span>
  5817. <a name="l05753"></a>05753 <span class="keywordtype">integer</span> norder
  5818. <a name="l05754"></a>05754 <span class="comment">!</span>
  5819. <a name="l05755"></a>05755 <span class="keywordtype">integer</span> norder2
  5820. <a name="l05756"></a>05756 <span class="keywordtype">double precision</span> xtab(norder)
  5821. <a name="l05757"></a>05757 <span class="keywordtype">double precision</span> xtab2(2*norder+1)
  5822. <a name="l05758"></a>05758 <span class="keywordtype">double precision</span> weight(norder)
  5823. <a name="l05759"></a>05759 <span class="keywordtype">double precision</span> weight2(2*norder+1)
  5824. <a name="l05760"></a>05760 <span class="comment">!</span>
  5825. <a name="l05761"></a>05761 norder2 = 2 * norder + 1
  5826. <a name="l05762"></a>05762
  5827. <a name="l05763"></a>05763 call <a class="code" href="quadrule_8f90.html#a68e328951e712e3b7e2bc9f6dcf8fc6a">legendre_set </a>( norder2, xtab2, weight2 )
  5828. <a name="l05764"></a>05764
  5829. <a name="l05765"></a>05765 xtab(1:norder) = xtab2(norder+2:2*norder+1)**2
  5830. <a name="l05766"></a>05766 weight(1:norder) = 2.0D+00 * weight2(norder+2:2*norder+1) * xtab(1:norder)
  5831. <a name="l05767"></a>05767
  5832. <a name="l05768"></a>05768 return
  5833. <a name="l05769"></a>05769 <span class="keyword">end</span>
  5834. <a name="l05770"></a><a class="code" href="quadrule_8f90.html#a66bcf2a4c79e18ca6f0bcd21e9a665ad">05770</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a66bcf2a4c79e18ca6f0bcd21e9a665ad">legendre_set_sqrtx2_01</a> ( norder, xtab, weight )
  5835. <a name="l05771"></a>05771 <span class="comment">!</span>
  5836. <a name="l05772"></a>05772 <span class="comment">!*******************************************************************************</span>
  5837. <a name="l05773"></a>05773 <span class="comment">!</span>
  5838. <a name="l05774"></a>05774 <span class="comment">!! LEGENDRE_SET_SQRTX2_01 sets a Gauss-Legendre rule for F(X) / SQRT(X) on [0,1].</span>
  5839. <a name="l05775"></a>05775 <span class="comment">!</span>
  5840. <a name="l05776"></a>05776 <span class="comment">!</span>
  5841. <a name="l05777"></a>05777 <span class="comment">! Integration interval:</span>
  5842. <a name="l05778"></a>05778 <span class="comment">!</span>
  5843. <a name="l05779"></a>05779 <span class="comment">! [ 0, 1 ]</span>
  5844. <a name="l05780"></a>05780 <span class="comment">!</span>
  5845. <a name="l05781"></a>05781 <span class="comment">! Weight function:</span>
  5846. <a name="l05782"></a>05782 <span class="comment">!</span>
  5847. <a name="l05783"></a>05783 <span class="comment">! 1 / SQRT ( X )</span>
  5848. <a name="l05784"></a>05784 <span class="comment">!</span>
  5849. <a name="l05785"></a>05785 <span class="comment">! Integral to approximate:</span>
  5850. <a name="l05786"></a>05786 <span class="comment">!</span>
  5851. <a name="l05787"></a>05787 <span class="comment">! Integral ( 0 &lt;= X &lt;= 1 ) F(X) / SQRT ( X ) dX</span>
  5852. <a name="l05788"></a>05788 <span class="comment">!</span>
  5853. <a name="l05789"></a>05789 <span class="comment">! Approximate integral:</span>
  5854. <a name="l05790"></a>05790 <span class="comment">!</span>
  5855. <a name="l05791"></a>05791 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  5856. <a name="l05792"></a>05792 <span class="comment">!</span>
  5857. <a name="l05793"></a>05793 <span class="comment">! Reference:</span>
  5858. <a name="l05794"></a>05794 <span class="comment">!</span>
  5859. <a name="l05795"></a>05795 <span class="comment">! Daniel Zwillinger, editor,</span>
  5860. <a name="l05796"></a>05796 <span class="comment">! CRC Standard Mathematical Tables and Formulae,</span>
  5861. <a name="l05797"></a>05797 <span class="comment">! CRC Press, 30th Edition, 2000, page 696.</span>
  5862. <a name="l05798"></a>05798 <span class="comment">!</span>
  5863. <a name="l05799"></a>05799 <span class="comment">! Modified:</span>
  5864. <a name="l05800"></a>05800 <span class="comment">!</span>
  5865. <a name="l05801"></a>05801 <span class="comment">! 21 January 2001</span>
  5866. <a name="l05802"></a>05802 <span class="comment">!</span>
  5867. <a name="l05803"></a>05803 <span class="comment">! Author:</span>
  5868. <a name="l05804"></a>05804 <span class="comment">!</span>
  5869. <a name="l05805"></a>05805 <span class="comment">! John Burkardt</span>
  5870. <a name="l05806"></a>05806 <span class="comment">!</span>
  5871. <a name="l05807"></a>05807 <span class="comment">! Parameters:</span>
  5872. <a name="l05808"></a>05808 <span class="comment">!</span>
  5873. <a name="l05809"></a>05809 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  5874. <a name="l05810"></a>05810 <span class="comment">!</span>
  5875. <a name="l05811"></a>05811 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  5876. <a name="l05812"></a>05812 <span class="comment">!</span>
  5877. <a name="l05813"></a>05813 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  5878. <a name="l05814"></a>05814 <span class="comment">!</span>
  5879. <a name="l05815"></a>05815 <span class="keyword">implicit none</span>
  5880. <a name="l05816"></a>05816 <span class="comment">!</span>
  5881. <a name="l05817"></a>05817 <span class="keywordtype">integer</span> norder
  5882. <a name="l05818"></a>05818 <span class="comment">!</span>
  5883. <a name="l05819"></a>05819 <span class="keywordtype">integer</span> norder2
  5884. <a name="l05820"></a>05820 <span class="keywordtype">double precision</span> xtab(norder)
  5885. <a name="l05821"></a>05821 <span class="keywordtype">double precision</span> xtab2(2*norder+1)
  5886. <a name="l05822"></a>05822 <span class="keywordtype">double precision</span> weight(norder)
  5887. <a name="l05823"></a>05823 <span class="keywordtype">double precision</span> weight2(2*norder+1)
  5888. <a name="l05824"></a>05824 <span class="comment">!</span>
  5889. <a name="l05825"></a>05825 norder2 = 2 * norder + 1
  5890. <a name="l05826"></a>05826
  5891. <a name="l05827"></a>05827 call <a class="code" href="quadrule_8f90.html#a68e328951e712e3b7e2bc9f6dcf8fc6a">legendre_set </a>( norder2, xtab2, weight2 )
  5892. <a name="l05828"></a>05828
  5893. <a name="l05829"></a>05829 xtab(1:norder) = xtab2(norder+2:2*norder+1)**2
  5894. <a name="l05830"></a>05830 weight(1:norder) = 2.0D+00 * weight2(norder+2:2*norder+1)
  5895. <a name="l05831"></a>05831
  5896. <a name="l05832"></a>05832 return
  5897. <a name="l05833"></a>05833 <span class="keyword">end</span>
  5898. <a name="l05834"></a><a class="code" href="quadrule_8f90.html#a1c24bdbb65fec4d3f0f0d2f066002c62">05834</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a1c24bdbb65fec4d3f0f0d2f066002c62">legendre_set_x0_01</a> ( norder, xtab, weight )
  5899. <a name="l05835"></a>05835 <span class="comment">!</span>
  5900. <a name="l05836"></a>05836 <span class="comment">!*******************************************************************************</span>
  5901. <a name="l05837"></a>05837 <span class="comment">!</span>
  5902. <a name="l05838"></a>05838 <span class="comment">!! LEGENDRE_SET_X0_01 sets a Gauss-Legendre rule for F(X) on [0,1].</span>
  5903. <a name="l05839"></a>05839 <span class="comment">!</span>
  5904. <a name="l05840"></a>05840 <span class="comment">!</span>
  5905. <a name="l05841"></a>05841 <span class="comment">! Integration interval:</span>
  5906. <a name="l05842"></a>05842 <span class="comment">!</span>
  5907. <a name="l05843"></a>05843 <span class="comment">! [ 0, 1 ]</span>
  5908. <a name="l05844"></a>05844 <span class="comment">!</span>
  5909. <a name="l05845"></a>05845 <span class="comment">! Weight function:</span>
  5910. <a name="l05846"></a>05846 <span class="comment">!</span>
  5911. <a name="l05847"></a>05847 <span class="comment">! 1.0D+00</span>
  5912. <a name="l05848"></a>05848 <span class="comment">!</span>
  5913. <a name="l05849"></a>05849 <span class="comment">! Integral to approximate:</span>
  5914. <a name="l05850"></a>05850 <span class="comment">!</span>
  5915. <a name="l05851"></a>05851 <span class="comment">! Integral ( 0 &lt;= X &lt;= 1 ) F(X) dX</span>
  5916. <a name="l05852"></a>05852 <span class="comment">!</span>
  5917. <a name="l05853"></a>05853 <span class="comment">! Approximate integral:</span>
  5918. <a name="l05854"></a>05854 <span class="comment">!</span>
  5919. <a name="l05855"></a>05855 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  5920. <a name="l05856"></a>05856 <span class="comment">!</span>
  5921. <a name="l05857"></a>05857 <span class="comment">! Reference:</span>
  5922. <a name="l05858"></a>05858 <span class="comment">!</span>
  5923. <a name="l05859"></a>05859 <span class="comment">! Abramowitz and Stegun,</span>
  5924. <a name="l05860"></a>05860 <span class="comment">! Handbook of Mathematical Functions,</span>
  5925. <a name="l05861"></a>05861 <span class="comment">! National Bureau of Standards, 1964, page 921.</span>
  5926. <a name="l05862"></a>05862 <span class="comment">!</span>
  5927. <a name="l05863"></a>05863 <span class="comment">! Modified:</span>
  5928. <a name="l05864"></a>05864 <span class="comment">!</span>
  5929. <a name="l05865"></a>05865 <span class="comment">! 18 November 2000</span>
  5930. <a name="l05866"></a>05866 <span class="comment">!</span>
  5931. <a name="l05867"></a>05867 <span class="comment">! Author:</span>
  5932. <a name="l05868"></a>05868 <span class="comment">!</span>
  5933. <a name="l05869"></a>05869 <span class="comment">! John Burkardt</span>
  5934. <a name="l05870"></a>05870 <span class="comment">!</span>
  5935. <a name="l05871"></a>05871 <span class="comment">! Parameters:</span>
  5936. <a name="l05872"></a>05872 <span class="comment">!</span>
  5937. <a name="l05873"></a>05873 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  5938. <a name="l05874"></a>05874 <span class="comment">! NORDER must be between 1 and 8.</span>
  5939. <a name="l05875"></a>05875 <span class="comment">!</span>
  5940. <a name="l05876"></a>05876 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  5941. <a name="l05877"></a>05877 <span class="comment">!</span>
  5942. <a name="l05878"></a>05878 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  5943. <a name="l05879"></a>05879 <span class="comment">!</span>
  5944. <a name="l05880"></a>05880 <span class="keyword">implicit none</span>
  5945. <a name="l05881"></a>05881 <span class="comment">!</span>
  5946. <a name="l05882"></a>05882 <span class="keywordtype">integer</span> norder
  5947. <a name="l05883"></a>05883 <span class="comment">!</span>
  5948. <a name="l05884"></a>05884 <span class="keywordtype">double precision</span> xtab(norder)
  5949. <a name="l05885"></a>05885 <span class="keywordtype">double precision</span> weight(norder)
  5950. <a name="l05886"></a>05886 <span class="comment">!</span>
  5951. <a name="l05887"></a>05887 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  5952. <a name="l05888"></a>05888
  5953. <a name="l05889"></a>05889 xtab(1) = 0.5D+00
  5954. <a name="l05890"></a>05890
  5955. <a name="l05891"></a>05891 weight(1) = 1.0D+00
  5956. <a name="l05892"></a>05892
  5957. <a name="l05893"></a>05893 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  5958. <a name="l05894"></a>05894
  5959. <a name="l05895"></a>05895 xtab(1) = 0.2113248654D+00
  5960. <a name="l05896"></a>05896 xtab(2) = 0.7886751346D+00
  5961. <a name="l05897"></a>05897
  5962. <a name="l05898"></a>05898 weight(1) = 0.5D+00
  5963. <a name="l05899"></a>05899 weight(2) = 0.5D+00
  5964. <a name="l05900"></a>05900
  5965. <a name="l05901"></a>05901 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  5966. <a name="l05902"></a>05902
  5967. <a name="l05903"></a>05903 xtab(1) = 0.1127016654D+00
  5968. <a name="l05904"></a>05904 xtab(2) = 0.5000000000D+00
  5969. <a name="l05905"></a>05905 xtab(3) = 0.8872983346D+00
  5970. <a name="l05906"></a>05906
  5971. <a name="l05907"></a>05907 weight(1) = 5.0D+00 / 18.0D+00
  5972. <a name="l05908"></a>05908 weight(2) = 8.0D+00 / 18.0D+00
  5973. <a name="l05909"></a>05909 weight(3) = 5.0D+00 / 18.0D+00
  5974. <a name="l05910"></a>05910
  5975. <a name="l05911"></a>05911 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  5976. <a name="l05912"></a>05912
  5977. <a name="l05913"></a>05913 xtab(1) = 0.0694318442D+00
  5978. <a name="l05914"></a>05914 xtab(2) = 0.3300094782D+00
  5979. <a name="l05915"></a>05915 xtab(3) = 0.6699905218D+00
  5980. <a name="l05916"></a>05916 xtab(4) = 0.9305681558D+00
  5981. <a name="l05917"></a>05917
  5982. <a name="l05918"></a>05918 weight(1) = 0.1739274226D+00
  5983. <a name="l05919"></a>05919 weight(2) = 0.3260725774D+00
  5984. <a name="l05920"></a>05920 weight(3) = 0.3260725774D+00
  5985. <a name="l05921"></a>05921 weight(4) = 0.1739274226D+00
  5986. <a name="l05922"></a>05922
  5987. <a name="l05923"></a>05923 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  5988. <a name="l05924"></a>05924
  5989. <a name="l05925"></a>05925 xtab(1) = 0.0469100770D+00
  5990. <a name="l05926"></a>05926 xtab(2) = 0.2307653449D+00
  5991. <a name="l05927"></a>05927 xtab(3) = 0.5000000000D+00
  5992. <a name="l05928"></a>05928 xtab(4) = 0.7692346551D+00
  5993. <a name="l05929"></a>05929 xtab(5) = 0.9530899230D+00
  5994. <a name="l05930"></a>05930
  5995. <a name="l05931"></a>05931 weight(1) = 0.1184634425D+00
  5996. <a name="l05932"></a>05932 weight(2) = 0.2393143352D+00
  5997. <a name="l05933"></a>05933 weight(3) = 0.2844444444D+00
  5998. <a name="l05934"></a>05934 weight(4) = 0.2393143352D+00
  5999. <a name="l05935"></a>05935 weight(5) = 0.1184634425D+00
  6000. <a name="l05936"></a>05936
  6001. <a name="l05937"></a>05937 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  6002. <a name="l05938"></a>05938
  6003. <a name="l05939"></a>05939 xtab(1) = 0.0337652429D+00
  6004. <a name="l05940"></a>05940 xtab(2) = 0.1693953068D+00
  6005. <a name="l05941"></a>05941 xtab(3) = 0.3806904070D+00
  6006. <a name="l05942"></a>05942 xtab(4) = 0.6193095930D+00
  6007. <a name="l05943"></a>05943 xtab(5) = 0.8306046932D+00
  6008. <a name="l05944"></a>05944 xtab(6) = 0.9662347571D+00
  6009. <a name="l05945"></a>05945
  6010. <a name="l05946"></a>05946 weight(1) = 0.0856622462D+00
  6011. <a name="l05947"></a>05947 weight(2) = 0.1803807865D+00
  6012. <a name="l05948"></a>05948 weight(3) = 0.2339569673D+00
  6013. <a name="l05949"></a>05949 weight(4) = 0.2339569673D+00
  6014. <a name="l05950"></a>05950 weight(5) = 0.1803807865D+00
  6015. <a name="l05951"></a>05951 weight(6) = 0.0856622462D+00
  6016. <a name="l05952"></a>05952
  6017. <a name="l05953"></a>05953 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  6018. <a name="l05954"></a>05954
  6019. <a name="l05955"></a>05955 xtab(1) = 0.0254460438D+00
  6020. <a name="l05956"></a>05956 xtab(2) = 0.1292344072D+00
  6021. <a name="l05957"></a>05957 xtab(3) = 0.2970774243D+00
  6022. <a name="l05958"></a>05958 xtab(4) = 0.5000000000D+00
  6023. <a name="l05959"></a>05959 xtab(5) = 0.7029225757D+00
  6024. <a name="l05960"></a>05960 xtab(6) = 0.8707655928D+00
  6025. <a name="l05961"></a>05961 xtab(7) = 0.9745539562D+00
  6026. <a name="l05962"></a>05962
  6027. <a name="l05963"></a>05963 weight(1) = 0.0647424831D+00
  6028. <a name="l05964"></a>05964 weight(2) = 0.1398526957D+00
  6029. <a name="l05965"></a>05965 weight(3) = 0.1909150253D+00
  6030. <a name="l05966"></a>05966 weight(4) = 0.2089795918D+00
  6031. <a name="l05967"></a>05967 weight(5) = 0.1909150253D+00
  6032. <a name="l05968"></a>05968 weight(6) = 0.1398526957D+00
  6033. <a name="l05969"></a>05969 weight(7) = 0.0647424831D+00
  6034. <a name="l05970"></a>05970
  6035. <a name="l05971"></a>05971 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  6036. <a name="l05972"></a>05972
  6037. <a name="l05973"></a>05973 xtab(1) = 0.0198550718D+00
  6038. <a name="l05974"></a>05974 xtab(2) = 0.1016667613D+00
  6039. <a name="l05975"></a>05975 xtab(3) = 0.2372337950D+00
  6040. <a name="l05976"></a>05976 xtab(4) = 0.4082826788D+00
  6041. <a name="l05977"></a>05977 xtab(5) = 0.5917173212D+00
  6042. <a name="l05978"></a>05978 xtab(6) = 0.7627662050D+00
  6043. <a name="l05979"></a>05979 xtab(7) = 0.8983332387D+00
  6044. <a name="l05980"></a>05980 xtab(8) = 0.9801449282D+00
  6045. <a name="l05981"></a>05981
  6046. <a name="l05982"></a>05982 weight(1) = 0.0506142681D+00
  6047. <a name="l05983"></a>05983 weight(2) = 0.1111905172D+00
  6048. <a name="l05984"></a>05984 weight(3) = 0.1568533229D+00
  6049. <a name="l05985"></a>05985 weight(4) = 0.1813418917D+00
  6050. <a name="l05986"></a>05986 weight(5) = 0.1813418917D+00
  6051. <a name="l05987"></a>05987 weight(6) = 0.1568533229D+00
  6052. <a name="l05988"></a>05988 weight(7) = 0.1111905172D+00
  6053. <a name="l05989"></a>05989 weight(8) = 0.0506142681D+00
  6054. <a name="l05990"></a>05990
  6055. <a name="l05991"></a>05991 <span class="keyword">else</span>
  6056. <a name="l05992"></a>05992
  6057. <a name="l05993"></a>05993 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  6058. <a name="l05994"></a>05994 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;LEGENDRE_SET_X0_01 - Fatal error!&#39;</span>
  6059. <a name="l05995"></a>05995 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  6060. <a name="l05996"></a>05996 stop
  6061. <a name="l05997"></a>05997
  6062. <a name="l05998"></a>05998 <span class="keyword">end if</span>
  6063. <a name="l05999"></a>05999
  6064. <a name="l06000"></a>06000 return
  6065. <a name="l06001"></a>06001 <span class="keyword">end</span>
  6066. <a name="l06002"></a><a class="code" href="quadrule_8f90.html#a18d682e70c431b86cae6a7d62b8148fa">06002</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a18d682e70c431b86cae6a7d62b8148fa">legendre_set_x1</a> ( norder, xtab, weight )
  6067. <a name="l06003"></a>06003 <span class="comment">!</span>
  6068. <a name="l06004"></a>06004 <span class="comment">!*******************************************************************************</span>
  6069. <a name="l06005"></a>06005 <span class="comment">!</span>
  6070. <a name="l06006"></a>06006 <span class="comment">!! LEGENDRE_SET_X1 sets a Gauss-Legendre rule for ( 1 + X ) * F(X) on [-1,1].</span>
  6071. <a name="l06007"></a>06007 <span class="comment">!</span>
  6072. <a name="l06008"></a>06008 <span class="comment">!</span>
  6073. <a name="l06009"></a>06009 <span class="comment">! Integration interval:</span>
  6074. <a name="l06010"></a>06010 <span class="comment">!</span>
  6075. <a name="l06011"></a>06011 <span class="comment">! [ -1, 1 ]</span>
  6076. <a name="l06012"></a>06012 <span class="comment">!</span>
  6077. <a name="l06013"></a>06013 <span class="comment">! Weight function:</span>
  6078. <a name="l06014"></a>06014 <span class="comment">!</span>
  6079. <a name="l06015"></a>06015 <span class="comment">! 1 + X</span>
  6080. <a name="l06016"></a>06016 <span class="comment">!</span>
  6081. <a name="l06017"></a>06017 <span class="comment">! Integral to approximate:</span>
  6082. <a name="l06018"></a>06018 <span class="comment">!</span>
  6083. <a name="l06019"></a>06019 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) ( 1 + X ) * F(X) dX</span>
  6084. <a name="l06020"></a>06020 <span class="comment">!</span>
  6085. <a name="l06021"></a>06021 <span class="comment">! Approximate integral:</span>
  6086. <a name="l06022"></a>06022 <span class="comment">!</span>
  6087. <a name="l06023"></a>06023 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  6088. <a name="l06024"></a>06024 <span class="comment">!</span>
  6089. <a name="l06025"></a>06025 <span class="comment">! Reference:</span>
  6090. <a name="l06026"></a>06026 <span class="comment">!</span>
  6091. <a name="l06027"></a>06027 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  6092. <a name="l06028"></a>06028 <span class="comment">! Gaussian Quadrature Formulas,</span>
  6093. <a name="l06029"></a>06029 <span class="comment">! Prentice Hall, 1966, Table #3.</span>
  6094. <a name="l06030"></a>06030 <span class="comment">!</span>
  6095. <a name="l06031"></a>06031 <span class="comment">! Modified:</span>
  6096. <a name="l06032"></a>06032 <span class="comment">!</span>
  6097. <a name="l06033"></a>06033 <span class="comment">! 18 December 2000</span>
  6098. <a name="l06034"></a>06034 <span class="comment">!</span>
  6099. <a name="l06035"></a>06035 <span class="comment">! Author:</span>
  6100. <a name="l06036"></a>06036 <span class="comment">!</span>
  6101. <a name="l06037"></a>06037 <span class="comment">! John Burkardt</span>
  6102. <a name="l06038"></a>06038 <span class="comment">!</span>
  6103. <a name="l06039"></a>06039 <span class="comment">! Parameters:</span>
  6104. <a name="l06040"></a>06040 <span class="comment">!</span>
  6105. <a name="l06041"></a>06041 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  6106. <a name="l06042"></a>06042 <span class="comment">! NORDER must be between 1 and 9.</span>
  6107. <a name="l06043"></a>06043 <span class="comment">!</span>
  6108. <a name="l06044"></a>06044 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  6109. <a name="l06045"></a>06045 <span class="comment">!</span>
  6110. <a name="l06046"></a>06046 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  6111. <a name="l06047"></a>06047 <span class="comment">!</span>
  6112. <a name="l06048"></a>06048 <span class="keyword">implicit none</span>
  6113. <a name="l06049"></a>06049 <span class="comment">!</span>
  6114. <a name="l06050"></a>06050 <span class="keywordtype">integer</span> norder
  6115. <a name="l06051"></a>06051 <span class="comment">!</span>
  6116. <a name="l06052"></a>06052 <span class="keywordtype">double precision</span> xtab(norder)
  6117. <a name="l06053"></a>06053 <span class="keywordtype">double precision</span> weight(norder)
  6118. <a name="l06054"></a>06054 <span class="comment">!</span>
  6119. <a name="l06055"></a>06055 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  6120. <a name="l06056"></a>06056
  6121. <a name="l06057"></a>06057 xtab(1) = 0.333333333333333333333333333333D+00
  6122. <a name="l06058"></a>06058
  6123. <a name="l06059"></a>06059 weight(1) = 2.0D+00
  6124. <a name="l06060"></a>06060
  6125. <a name="l06061"></a>06061 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  6126. <a name="l06062"></a>06062
  6127. <a name="l06063"></a>06063 xtab(1) = -0.289897948556635619639456814941D+00
  6128. <a name="l06064"></a>06064 xtab(2) = 0.689897948556635619639456814941D+00
  6129. <a name="l06065"></a>06065
  6130. <a name="l06066"></a>06066 weight(1) = 0.727834473024091322422523991699D+00
  6131. <a name="l06067"></a>06067 weight(2) = 1.27216552697590867757747600830D+00
  6132. <a name="l06068"></a>06068
  6133. <a name="l06069"></a>06069 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  6134. <a name="l06070"></a>06070
  6135. <a name="l06071"></a>06071 xtab(1) = -0.575318923521694112050483779752D+00
  6136. <a name="l06072"></a>06072 xtab(2) = 0.181066271118530578270147495862D+00
  6137. <a name="l06073"></a>06073 xtab(3) = 0.822824080974592105208907712461D+00
  6138. <a name="l06074"></a>06074
  6139. <a name="l06075"></a>06075 weight(1) = 0.279307919605816490135525088716D+00
  6140. <a name="l06076"></a>06076 weight(2) = 0.916964425438344986775682378225D+00
  6141. <a name="l06077"></a>06077 weight(3) = 0.803727654955838523088792533058D+00
  6142. <a name="l06078"></a>06078
  6143. <a name="l06079"></a>06079 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  6144. <a name="l06080"></a>06080
  6145. <a name="l06081"></a>06081 xtab(1) = -0.720480271312438895695825837750D+00
  6146. <a name="l06082"></a>06082 xtab(2) = -0.167180864737833640113395337326D+00
  6147. <a name="l06083"></a>06083 xtab(3) = 0.446313972723752344639908004629D+00
  6148. <a name="l06084"></a>06084 xtab(4) = 0.885791607770964635613757614892D+00
  6149. <a name="l06085"></a>06085
  6150. <a name="l06086"></a>06086 weight(1) = 0.124723883800032328695500588386D+00
  6151. <a name="l06087"></a>06087 weight(2) = 0.519390190432929763305824811559D+00
  6152. <a name="l06088"></a>06088 weight(3) = 0.813858272041085443165617903743D+00
  6153. <a name="l06089"></a>06089 weight(4) = 0.542027653725952464833056696312D+00
  6154. <a name="l06090"></a>06090
  6155. <a name="l06091"></a>06091 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  6156. <a name="l06092"></a>06092
  6157. <a name="l06093"></a>06093 xtab(1) = -0.802929828402347147753002204224D+00
  6158. <a name="l06094"></a>06094 xtab(2) = -0.390928546707272189029229647442D+00
  6159. <a name="l06095"></a>06095 xtab(3) = 0.124050379505227711989974959990D+00
  6160. <a name="l06096"></a>06096 xtab(4) = 0.603973164252783654928415726409D+00
  6161. <a name="l06097"></a>06097 xtab(5) = 0.920380285897062515318386619813D+00
  6162. <a name="l06098"></a>06098
  6163. <a name="l06099"></a>06099 weight(1) = 0.0629916580867691047411692662740D+00
  6164. <a name="l06100"></a>06100 weight(2) = 0.295635480290466681402532877367D+00
  6165. <a name="l06101"></a>06101 weight(3) = 0.585547948338679234792151477424D+00
  6166. <a name="l06102"></a>06102 weight(4) = 0.668698552377478261966702492391D+00
  6167. <a name="l06103"></a>06103 weight(5) = 0.387126360906606717097443886545D+00
  6168. <a name="l06104"></a>06104
  6169. <a name="l06105"></a>06105 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  6170. <a name="l06106"></a>06106
  6171. <a name="l06107"></a>06107 xtab(1) = -0.853891342639482229703747931639D+00
  6172. <a name="l06108"></a>06108 xtab(2) = -0.538467724060109001833766720231D+00
  6173. <a name="l06109"></a>06109 xtab(3) = -0.117343037543100264162786683611D+00
  6174. <a name="l06110"></a>06110 xtab(4) = 0.326030619437691401805894055838D+00
  6175. <a name="l06111"></a>06111 xtab(5) = 0.703842800663031416300046295008D+00
  6176. <a name="l06112"></a>06112 xtab(6) = 0.941367145680430216055899446174D+00
  6177. <a name="l06113"></a>06113
  6178. <a name="l06114"></a>06114 weight(1) = 0.0349532072544381270240692132496D+00
  6179. <a name="l06115"></a>06115 weight(2) = 0.175820662202035902032706497222D+00
  6180. <a name="l06116"></a>06116 weight(3) = 0.394644603562621056482338042193D+00
  6181. <a name="l06117"></a>06117 weight(4) = 0.563170215152795712476307356284D+00
  6182. <a name="l06118"></a>06118 weight(5) = 0.542169988926074467362761586552D+00
  6183. <a name="l06119"></a>06119 weight(6) = 0.289241322902034734621817304499D+00
  6184. <a name="l06120"></a>06120
  6185. <a name="l06121"></a>06121 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  6186. <a name="l06122"></a>06122
  6187. <a name="l06123"></a>06123 xtab(1) = -0.887474878926155707068695617935D+00
  6188. <a name="l06124"></a>06124 xtab(2) = -0.639518616526215270024840114382D+00
  6189. <a name="l06125"></a>06125 xtab(3) = -0.294750565773660725252184459658D+00
  6190. <a name="l06126"></a>06126 xtab(4) = 0.0943072526611107660028971153047D+00
  6191. <a name="l06127"></a>06127 xtab(5) = 0.468420354430821063046421216613D+00
  6192. <a name="l06128"></a>06128 xtab(6) = 0.770641893678191536180719525865D+00
  6193. <a name="l06129"></a>06129 xtab(7) = 0.955041227122575003782349000858D+00
  6194. <a name="l06130"></a>06130
  6195. <a name="l06131"></a>06131 weight(1) = 0.0208574488112296163587654972151D+00
  6196. <a name="l06132"></a>06132 weight(2) = 0.109633426887493901777324193433D+00
  6197. <a name="l06133"></a>06133 weight(3) = 0.265538785861965879934591955055D+00
  6198. <a name="l06134"></a>06134 weight(4) = 0.428500262783494679963649011999D+00
  6199. <a name="l06135"></a>06135 weight(5) = 0.509563589198353307674937943100D+00
  6200. <a name="l06136"></a>06136 weight(6) = 0.442037032763498409684482945478D+00
  6201. <a name="l06137"></a>06137 weight(7) = 0.223869453693964204606248453720D+00
  6202. <a name="l06138"></a>06138
  6203. <a name="l06139"></a>06139 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  6204. <a name="l06140"></a>06140
  6205. <a name="l06141"></a>06141 xtab(1) = -0.910732089420060298533757956283D+00
  6206. <a name="l06142"></a>06142 xtab(2) = -0.711267485915708857029562959544D+00
  6207. <a name="l06143"></a>06143 xtab(3) = -0.426350485711138962102627520502D+00
  6208. <a name="l06144"></a>06144 xtab(4) = -0.0903733696068532980645444599064D+00
  6209. <a name="l06145"></a>06145 xtab(5) = 0.256135670833455395138292079035D+00
  6210. <a name="l06146"></a>06146 xtab(6) = 0.571383041208738483284917464837D+00
  6211. <a name="l06147"></a>06147 xtab(7) = 0.817352784200412087992517083851D+00
  6212. <a name="l06148"></a>06148 xtab(8) = 0.964440169705273096373589797925D+00
  6213. <a name="l06149"></a>06149
  6214. <a name="l06150"></a>06150 weight(1) = 0.0131807657689951954189692640444D+00
  6215. <a name="l06151"></a>06151 weight(2) = 0.0713716106239448335742111888042D+00
  6216. <a name="l06152"></a>06152 weight(3) = 0.181757278018795592332221684383D+00
  6217. <a name="l06153"></a>06153 weight(4) = 0.316798397969276640481632757440D+00
  6218. <a name="l06154"></a>06154 weight(5) = 0.424189437743720042818124385645D+00
  6219. <a name="l06155"></a>06155 weight(6) = 0.450023197883549464687088394417D+00
  6220. <a name="l06156"></a>06156 weight(7) = 0.364476094545494505382889847132D+00
  6221. <a name="l06157"></a>06157 weight(8) = 0.178203217446223725304862478136D+00
  6222. <a name="l06158"></a>06158
  6223. <a name="l06159"></a>06159 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 9 ) <span class="keyword">then</span>
  6224. <a name="l06160"></a>06160
  6225. <a name="l06161"></a>06161 xtab(1) = -0.927484374233581078117671398464D+00
  6226. <a name="l06162"></a>06162 xtab(2) = -0.763842042420002599615429776011D+00
  6227. <a name="l06163"></a>06163 xtab(3) = -0.525646030370079229365386614293D+00
  6228. <a name="l06164"></a>06164 xtab(4) = -0.236234469390588049278459503207D+00
  6229. <a name="l06165"></a>06165 xtab(5) = 0.0760591978379781302337137826389D+00
  6230. <a name="l06166"></a>06166 xtab(6) = 0.380664840144724365880759065541D+00
  6231. <a name="l06167"></a>06167 xtab(7) = 0.647766687674009436273648507855D+00
  6232. <a name="l06168"></a>06168 xtab(8) = 0.851225220581607910728163628088D+00
  6233. <a name="l06169"></a>06169 xtab(9) = 0.971175180702246902734346518378D+00
  6234. <a name="l06170"></a>06170
  6235. <a name="l06171"></a>06171 weight(1) = 0.00872338834309252349019620448007D+00
  6236. <a name="l06172"></a>06172 weight(2) = 0.0482400171391415162069086091476D+00
  6237. <a name="l06173"></a>06173 weight(3) = 0.127219285964216005046760427743D+00
  6238. <a name="l06174"></a>06174 weight(4) = 0.233604781180660442262926091607D+00
  6239. <a name="l06175"></a>06175 weight(5) = 0.337433287379681397577000079834D+00
  6240. <a name="l06176"></a>06176 weight(6) = 0.401235236773473158616600898930D+00
  6241. <a name="l06177"></a>06177 weight(7) = 0.394134968689382820640692081477D+00
  6242. <a name="l06178"></a>06178 weight(8) = 0.304297020437232650320317215016D+00
  6243. <a name="l06179"></a>06179 weight(9) = 0.145112014093119485838598391765D+00
  6244. <a name="l06180"></a>06180
  6245. <a name="l06181"></a>06181 <span class="keyword">else</span>
  6246. <a name="l06182"></a>06182
  6247. <a name="l06183"></a>06183 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  6248. <a name="l06184"></a>06184 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;LEGENDRE_SET_X1 - Fatal error!&#39;</span>
  6249. <a name="l06185"></a>06185 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal input value of NORDER = &#39;</span>, norder
  6250. <a name="l06186"></a>06186 stop
  6251. <a name="l06187"></a>06187
  6252. <a name="l06188"></a>06188 <span class="keyword">end if</span>
  6253. <a name="l06189"></a>06189
  6254. <a name="l06190"></a>06190 return
  6255. <a name="l06191"></a>06191 <span class="keyword">end</span>
  6256. <a name="l06192"></a><a class="code" href="quadrule_8f90.html#a05a8f595777fdbdfaa618868856a48a5">06192</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a05a8f595777fdbdfaa618868856a48a5">legendre_set_x1_01</a> ( norder, xtab, weight )
  6257. <a name="l06193"></a>06193 <span class="comment">!</span>
  6258. <a name="l06194"></a>06194 <span class="comment">!*******************************************************************************</span>
  6259. <a name="l06195"></a>06195 <span class="comment">!</span>
  6260. <a name="l06196"></a>06196 <span class="comment">!! LEGENDRE_SET_X1_01 sets a Gauss-Legendre rule for X * F(X) on [0,1].</span>
  6261. <a name="l06197"></a>06197 <span class="comment">!</span>
  6262. <a name="l06198"></a>06198 <span class="comment">!</span>
  6263. <a name="l06199"></a>06199 <span class="comment">! Integration interval:</span>
  6264. <a name="l06200"></a>06200 <span class="comment">!</span>
  6265. <a name="l06201"></a>06201 <span class="comment">! [ 0, 1 ]</span>
  6266. <a name="l06202"></a>06202 <span class="comment">!</span>
  6267. <a name="l06203"></a>06203 <span class="comment">! Weight function:</span>
  6268. <a name="l06204"></a>06204 <span class="comment">!</span>
  6269. <a name="l06205"></a>06205 <span class="comment">! X</span>
  6270. <a name="l06206"></a>06206 <span class="comment">!</span>
  6271. <a name="l06207"></a>06207 <span class="comment">! Integral to approximate:</span>
  6272. <a name="l06208"></a>06208 <span class="comment">!</span>
  6273. <a name="l06209"></a>06209 <span class="comment">! Integral ( 0 &lt;= X &lt;= 1 ) X * F(X) dX</span>
  6274. <a name="l06210"></a>06210 <span class="comment">!</span>
  6275. <a name="l06211"></a>06211 <span class="comment">! Approximate integral:</span>
  6276. <a name="l06212"></a>06212 <span class="comment">!</span>
  6277. <a name="l06213"></a>06213 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  6278. <a name="l06214"></a>06214 <span class="comment">!</span>
  6279. <a name="l06215"></a>06215 <span class="comment">! Reference:</span>
  6280. <a name="l06216"></a>06216 <span class="comment">!</span>
  6281. <a name="l06217"></a>06217 <span class="comment">! Abramowitz and Stegun,</span>
  6282. <a name="l06218"></a>06218 <span class="comment">! Handbook of Mathematical Functions,</span>
  6283. <a name="l06219"></a>06219 <span class="comment">! National Bureau of Standards, 1964, page 921.</span>
  6284. <a name="l06220"></a>06220 <span class="comment">!</span>
  6285. <a name="l06221"></a>06221 <span class="comment">! Modified:</span>
  6286. <a name="l06222"></a>06222 <span class="comment">!</span>
  6287. <a name="l06223"></a>06223 <span class="comment">! 18 November 2000</span>
  6288. <a name="l06224"></a>06224 <span class="comment">!</span>
  6289. <a name="l06225"></a>06225 <span class="comment">! Author:</span>
  6290. <a name="l06226"></a>06226 <span class="comment">!</span>
  6291. <a name="l06227"></a>06227 <span class="comment">! John Burkardt</span>
  6292. <a name="l06228"></a>06228 <span class="comment">!</span>
  6293. <a name="l06229"></a>06229 <span class="comment">! Parameters:</span>
  6294. <a name="l06230"></a>06230 <span class="comment">!</span>
  6295. <a name="l06231"></a>06231 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  6296. <a name="l06232"></a>06232 <span class="comment">! NORDER must be between 1 and 8.</span>
  6297. <a name="l06233"></a>06233 <span class="comment">!</span>
  6298. <a name="l06234"></a>06234 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  6299. <a name="l06235"></a>06235 <span class="comment">!</span>
  6300. <a name="l06236"></a>06236 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  6301. <a name="l06237"></a>06237 <span class="comment">!</span>
  6302. <a name="l06238"></a>06238 <span class="keyword">implicit none</span>
  6303. <a name="l06239"></a>06239 <span class="comment">!</span>
  6304. <a name="l06240"></a>06240 <span class="keywordtype">integer</span> norder
  6305. <a name="l06241"></a>06241 <span class="comment">!</span>
  6306. <a name="l06242"></a>06242 <span class="keywordtype">double precision</span> xtab(norder)
  6307. <a name="l06243"></a>06243 <span class="keywordtype">double precision</span> weight(norder)
  6308. <a name="l06244"></a>06244 <span class="comment">!</span>
  6309. <a name="l06245"></a>06245 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  6310. <a name="l06246"></a>06246
  6311. <a name="l06247"></a>06247 xtab(1) = 0.6666666667D+00
  6312. <a name="l06248"></a>06248
  6313. <a name="l06249"></a>06249 weight(1) = 0.5000000000D+00
  6314. <a name="l06250"></a>06250
  6315. <a name="l06251"></a>06251 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  6316. <a name="l06252"></a>06252
  6317. <a name="l06253"></a>06253 xtab(1) = 0.3550510257D+00
  6318. <a name="l06254"></a>06254 xtab(2) = 0.8449489743D+00
  6319. <a name="l06255"></a>06255
  6320. <a name="l06256"></a>06256 weight(1) = 0.1819586183D+00
  6321. <a name="l06257"></a>06257 weight(2) = 0.3180413817D+00
  6322. <a name="l06258"></a>06258
  6323. <a name="l06259"></a>06259 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  6324. <a name="l06260"></a>06260
  6325. <a name="l06261"></a>06261 xtab(1) = 0.2123405382D+00
  6326. <a name="l06262"></a>06262 xtab(2) = 0.5905331356D+00
  6327. <a name="l06263"></a>06263 xtab(3) = 0.9114120405D+00
  6328. <a name="l06264"></a>06264
  6329. <a name="l06265"></a>06265 weight(1) = 0.0698269799D+00
  6330. <a name="l06266"></a>06266 weight(2) = 0.2292411064D+00
  6331. <a name="l06267"></a>06267 weight(3) = 0.2009319137D+00
  6332. <a name="l06268"></a>06268
  6333. <a name="l06269"></a>06269 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  6334. <a name="l06270"></a>06270
  6335. <a name="l06271"></a>06271 xtab(1) = 0.1397598643D+00
  6336. <a name="l06272"></a>06272 xtab(2) = 0.4164095676D+00
  6337. <a name="l06273"></a>06273 xtab(3) = 0.7231569864D+00
  6338. <a name="l06274"></a>06274 xtab(4) = 0.9428958039D+00
  6339. <a name="l06275"></a>06275
  6340. <a name="l06276"></a>06276 weight(1) = 0.0311809710D+00
  6341. <a name="l06277"></a>06277 weight(2) = 0.1298475476D+00
  6342. <a name="l06278"></a>06278 weight(3) = 0.2034645680D+00
  6343. <a name="l06279"></a>06279 weight(4) = 0.1355069134D+00
  6344. <a name="l06280"></a>06280
  6345. <a name="l06281"></a>06281 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  6346. <a name="l06282"></a>06282
  6347. <a name="l06283"></a>06283 xtab(1) = 0.0985350858D+00
  6348. <a name="l06284"></a>06284 xtab(2) = 0.3045357266D+00
  6349. <a name="l06285"></a>06285 xtab(3) = 0.5620251898D+00
  6350. <a name="l06286"></a>06286 xtab(4) = 0.8019865821D+00
  6351. <a name="l06287"></a>06287 xtab(5) = 0.9601901429D+00
  6352. <a name="l06288"></a>06288
  6353. <a name="l06289"></a>06289 weight(1) = 0.0157479145D+00
  6354. <a name="l06290"></a>06290 weight(2) = 0.0739088701D+00
  6355. <a name="l06291"></a>06291 weight(3) = 0.1463888701D+00
  6356. <a name="l06292"></a>06292 weight(4) = 0.1671746381D+00
  6357. <a name="l06293"></a>06293 weight(5) = 0.0967815902D+00
  6358. <a name="l06294"></a>06294
  6359. <a name="l06295"></a>06295 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  6360. <a name="l06296"></a>06296
  6361. <a name="l06297"></a>06297 xtab(1) = 0.0730543287D+00
  6362. <a name="l06298"></a>06298 xtab(2) = 0.2307661380D+00
  6363. <a name="l06299"></a>06299 xtab(3) = 0.4413284812D+00
  6364. <a name="l06300"></a>06300 xtab(4) = 0.6630153097D+00
  6365. <a name="l06301"></a>06301 xtab(5) = 0.8519214003D+00
  6366. <a name="l06302"></a>06302 xtab(6) = 0.9706835728D+00
  6367. <a name="l06303"></a>06303
  6368. <a name="l06304"></a>06304 weight(1) = 0.0087383108D+00
  6369. <a name="l06305"></a>06305 weight(2) = 0.0439551656D+00
  6370. <a name="l06306"></a>06306 weight(3) = 0.0986611509D+00
  6371. <a name="l06307"></a>06307 weight(4) = 0.1407925538D+00
  6372. <a name="l06308"></a>06308 weight(5) = 0.1355424972D+00
  6373. <a name="l06309"></a>06309 weight(6) = 0.0723103307D+00
  6374. <a name="l06310"></a>06310
  6375. <a name="l06311"></a>06311 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  6376. <a name="l06312"></a>06312
  6377. <a name="l06313"></a>06313 xtab(1) = 0.0562625605D+00
  6378. <a name="l06314"></a>06314 xtab(2) = 0.1802406917D+00
  6379. <a name="l06315"></a>06315 xtab(3) = 0.3526247171D+00
  6380. <a name="l06316"></a>06316 xtab(4) = 0.5471536263D+00
  6381. <a name="l06317"></a>06317 xtab(5) = 0.7342101772D+00
  6382. <a name="l06318"></a>06318 xtab(6) = 0.8853209468D+00
  6383. <a name="l06319"></a>06319 xtab(7) = 0.9775206136D+00
  6384. <a name="l06320"></a>06320
  6385. <a name="l06321"></a>06321 weight(1) = 0.0052143622D+00
  6386. <a name="l06322"></a>06322 weight(2) = 0.0274083567D+00
  6387. <a name="l06323"></a>06323 weight(3) = 0.0663846965D+00
  6388. <a name="l06324"></a>06324 weight(4) = 0.1071250657D+00
  6389. <a name="l06325"></a>06325 weight(5) = 0.1273908973D+00
  6390. <a name="l06326"></a>06326 weight(6) = 0.1105092582D+00
  6391. <a name="l06327"></a>06327 weight(7) = 0.0559673634D+00
  6392. <a name="l06328"></a>06328
  6393. <a name="l06329"></a>06329 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  6394. <a name="l06330"></a>06330
  6395. <a name="l06331"></a>06331 xtab(1) = 0.0446339553D+00
  6396. <a name="l06332"></a>06332 xtab(2) = 0.1443662570D+00
  6397. <a name="l06333"></a>06333 xtab(3) = 0.2868247571D+00
  6398. <a name="l06334"></a>06334 xtab(4) = 0.4548133152D+00
  6399. <a name="l06335"></a>06335 xtab(5) = 0.6280678354D+00
  6400. <a name="l06336"></a>06336 xtab(6) = 0.7856915206D+00
  6401. <a name="l06337"></a>06337 xtab(7) = 0.9086763921D+00
  6402. <a name="l06338"></a>06338 xtab(8) = 0.9822200849D+00
  6403. <a name="l06339"></a>06339
  6404. <a name="l06340"></a>06340 weight(1) = 0.0032951914D+00
  6405. <a name="l06341"></a>06341 weight(2) = 0.0178429027D+00
  6406. <a name="l06342"></a>06342 weight(3) = 0.0454393195D+00
  6407. <a name="l06343"></a>06343 weight(4) = 0.0791995995D+00
  6408. <a name="l06344"></a>06344 weight(5) = 0.1060473594D+00
  6409. <a name="l06345"></a>06345 weight(6) = 0.1125057995D+00
  6410. <a name="l06346"></a>06346 weight(7) = 0.0911190236D+00
  6411. <a name="l06347"></a>06347 weight(8) = 0.0445508044D+00
  6412. <a name="l06348"></a>06348
  6413. <a name="l06349"></a>06349 <span class="keyword">else</span>
  6414. <a name="l06350"></a>06350
  6415. <a name="l06351"></a>06351 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  6416. <a name="l06352"></a>06352 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;LEGENDRE_SET_X1_01 - Fatal error!&#39;</span>
  6417. <a name="l06353"></a>06353 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  6418. <a name="l06354"></a>06354 stop
  6419. <a name="l06355"></a>06355
  6420. <a name="l06356"></a>06356 <span class="keyword">end if</span>
  6421. <a name="l06357"></a>06357
  6422. <a name="l06358"></a>06358 return
  6423. <a name="l06359"></a>06359 <span class="keyword">end</span>
  6424. <a name="l06360"></a><a class="code" href="quadrule_8f90.html#a8323fd380b28f282745e9b88ab0f5a74">06360</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a8323fd380b28f282745e9b88ab0f5a74">legendre_set_x2</a> ( norder, xtab, weight )
  6425. <a name="l06361"></a>06361 <span class="comment">!</span>
  6426. <a name="l06362"></a>06362 <span class="comment">!*******************************************************************************</span>
  6427. <a name="l06363"></a>06363 <span class="comment">!</span>
  6428. <a name="l06364"></a>06364 <span class="comment">!! LEGENDRE_SET_X2 sets a Gauss-Legendre rule for ( 1 + X )**2 * F(X) on [-1,1].</span>
  6429. <a name="l06365"></a>06365 <span class="comment">!</span>
  6430. <a name="l06366"></a>06366 <span class="comment">!</span>
  6431. <a name="l06367"></a>06367 <span class="comment">! Integration interval:</span>
  6432. <a name="l06368"></a>06368 <span class="comment">!</span>
  6433. <a name="l06369"></a>06369 <span class="comment">! [ -1, 1 ]</span>
  6434. <a name="l06370"></a>06370 <span class="comment">!</span>
  6435. <a name="l06371"></a>06371 <span class="comment">! Weight function:</span>
  6436. <a name="l06372"></a>06372 <span class="comment">!</span>
  6437. <a name="l06373"></a>06373 <span class="comment">! ( 1 + X )**2</span>
  6438. <a name="l06374"></a>06374 <span class="comment">!</span>
  6439. <a name="l06375"></a>06375 <span class="comment">! Integral to approximate:</span>
  6440. <a name="l06376"></a>06376 <span class="comment">!</span>
  6441. <a name="l06377"></a>06377 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) ( 1 + X )**2 * F(X) dX</span>
  6442. <a name="l06378"></a>06378 <span class="comment">!</span>
  6443. <a name="l06379"></a>06379 <span class="comment">! Approximate integral:</span>
  6444. <a name="l06380"></a>06380 <span class="comment">!</span>
  6445. <a name="l06381"></a>06381 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  6446. <a name="l06382"></a>06382 <span class="comment">!</span>
  6447. <a name="l06383"></a>06383 <span class="comment">! Reference:</span>
  6448. <a name="l06384"></a>06384 <span class="comment">!</span>
  6449. <a name="l06385"></a>06385 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  6450. <a name="l06386"></a>06386 <span class="comment">! Gaussian Quadrature Formulas,</span>
  6451. <a name="l06387"></a>06387 <span class="comment">! Prentice Hall, 1966, Table #3.</span>
  6452. <a name="l06388"></a>06388 <span class="comment">!</span>
  6453. <a name="l06389"></a>06389 <span class="comment">! Modified:</span>
  6454. <a name="l06390"></a>06390 <span class="comment">!</span>
  6455. <a name="l06391"></a>06391 <span class="comment">! 18 December 2000</span>
  6456. <a name="l06392"></a>06392 <span class="comment">!</span>
  6457. <a name="l06393"></a>06393 <span class="comment">! Author:</span>
  6458. <a name="l06394"></a>06394 <span class="comment">!</span>
  6459. <a name="l06395"></a>06395 <span class="comment">! John Burkardt</span>
  6460. <a name="l06396"></a>06396 <span class="comment">!</span>
  6461. <a name="l06397"></a>06397 <span class="comment">! Parameters:</span>
  6462. <a name="l06398"></a>06398 <span class="comment">!</span>
  6463. <a name="l06399"></a>06399 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  6464. <a name="l06400"></a>06400 <span class="comment">! NORDER must be between 1 and 9.</span>
  6465. <a name="l06401"></a>06401 <span class="comment">!</span>
  6466. <a name="l06402"></a>06402 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  6467. <a name="l06403"></a>06403 <span class="comment">!</span>
  6468. <a name="l06404"></a>06404 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  6469. <a name="l06405"></a>06405 <span class="comment">!</span>
  6470. <a name="l06406"></a>06406 <span class="keyword">implicit none</span>
  6471. <a name="l06407"></a>06407 <span class="comment">!</span>
  6472. <a name="l06408"></a>06408 <span class="keywordtype">integer</span> norder
  6473. <a name="l06409"></a>06409 <span class="comment">!</span>
  6474. <a name="l06410"></a>06410 <span class="keywordtype">double precision</span> xtab(norder)
  6475. <a name="l06411"></a>06411 <span class="keywordtype">double precision</span> weight(norder)
  6476. <a name="l06412"></a>06412 <span class="comment">!</span>
  6477. <a name="l06413"></a>06413 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  6478. <a name="l06414"></a>06414
  6479. <a name="l06415"></a>06415 xtab(1) = 0.5D+00
  6480. <a name="l06416"></a>06416
  6481. <a name="l06417"></a>06417 weight(1) = 2.66666666666666666666666666666D+00
  6482. <a name="l06418"></a>06418
  6483. <a name="l06419"></a>06419 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  6484. <a name="l06420"></a>06420
  6485. <a name="l06421"></a>06421 xtab(1) = -0.0883036880224505775998524725910D+00
  6486. <a name="l06422"></a>06422 xtab(2) = 0.754970354689117244266519139258D+00
  6487. <a name="l06423"></a>06423
  6488. <a name="l06424"></a>06424 weight(1) = 0.806287056638603444666851075928D+00
  6489. <a name="l06425"></a>06425 weight(2) = 1.86037961002806322199981559074D+00
  6490. <a name="l06426"></a>06426
  6491. <a name="l06427"></a>06427 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  6492. <a name="l06428"></a>06428
  6493. <a name="l06429"></a>06429 xtab(1) = -0.410004419776996766244796955168D+00
  6494. <a name="l06430"></a>06430 xtab(2) = 0.305992467923296230556472913192D+00
  6495. <a name="l06431"></a>06431 xtab(3) = 0.854011951853700535688324041976D+00
  6496. <a name="l06432"></a>06432
  6497. <a name="l06433"></a>06433 weight(1) = 0.239605624068645584091811926047D+00
  6498. <a name="l06434"></a>06434 weight(2) = 1.16997015407892817602809616291D+00
  6499. <a name="l06435"></a>06435 weight(3) = 1.25709088851909290654675857771D+00
  6500. <a name="l06436"></a>06436
  6501. <a name="l06437"></a>06437 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  6502. <a name="l06438"></a>06438
  6503. <a name="l06439"></a>06439 xtab(1) = -0.591702835793545726606755921586D+00
  6504. <a name="l06440"></a>06440 xtab(2) = -0.0340945902087350046811467387661D+00
  6505. <a name="l06441"></a>06441 xtab(3) = 0.522798524896275389882037174551D+00
  6506. <a name="l06442"></a>06442 xtab(4) = 0.902998901106005341405865485802D+00
  6507. <a name="l06443"></a>06443
  6508. <a name="l06444"></a>06444 weight(1) = 0.0828179259993445222751812523731D+00
  6509. <a name="l06445"></a>06445 weight(2) = 0.549071097383384602539010760334D+00
  6510. <a name="l06446"></a>06446 weight(3) = 1.14767031839371367238662411421D+00
  6511. <a name="l06447"></a>06447 weight(4) = 0.887107324890223869465850539752D+00
  6512. <a name="l06448"></a>06448
  6513. <a name="l06449"></a>06449 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  6514. <a name="l06450"></a>06450
  6515. <a name="l06451"></a>06451 xtab(1) = -0.702108425894032836232448374820D+00
  6516. <a name="l06452"></a>06452 xtab(2) = -0.268666945261773544694327777841D+00
  6517. <a name="l06453"></a>06453 xtab(3) = 0.220227225868961343518209179230D+00
  6518. <a name="l06454"></a>06454 xtab(4) = 0.653039358456608553790815164028D+00
  6519. <a name="l06455"></a>06455 xtab(5) = 0.930842120163569816951085142737D+00
  6520. <a name="l06456"></a>06456
  6521. <a name="l06457"></a>06457 weight(1) = 0.0329106016247920636689299329544D+00
  6522. <a name="l06458"></a>06458 weight(2) = 0.256444805783695354037991444453D+00
  6523. <a name="l06459"></a>06459 weight(3) = 0.713601289772720001490035944563D+00
  6524. <a name="l06460"></a>06460 weight(4) = 1.00959169519929190423066348132D+00
  6525. <a name="l06461"></a>06461 weight(5) = 0.654118274286167343239045863379D+00
  6526. <a name="l06462"></a>06462
  6527. <a name="l06463"></a>06463 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  6528. <a name="l06464"></a>06464
  6529. <a name="l06465"></a>06465 xtab(1) = -0.773611232355123732602532012021D+00
  6530. <a name="l06466"></a>06466 xtab(2) = -0.431362254623427837535325249187D+00
  6531. <a name="l06467"></a>06467 xtab(3) = -0.0180728263295041680220798103354D+00
  6532. <a name="l06468"></a>06468 xtab(4) = 0.395126163954217534500188844163D+00
  6533. <a name="l06469"></a>06469 xtab(5) = 0.736872116684029732026178298518D+00
  6534. <a name="l06470"></a>06470 xtab(6) = 0.948190889812665614490712786006D+00
  6535. <a name="l06471"></a>06471
  6536. <a name="l06472"></a>06472 weight(1) = 0.0146486064549543818622276447204D+00
  6537. <a name="l06473"></a>06473 weight(2) = 0.125762377479560410622810097040D+00
  6538. <a name="l06474"></a>06474 weight(3) = 0.410316569036929681761034600615D+00
  6539. <a name="l06475"></a>06475 weight(4) = 0.756617493988329628546336413760D+00
  6540. <a name="l06476"></a>06476 weight(5) = 0.859011997894245060846045458784D+00
  6541. <a name="l06477"></a>06477 weight(6) = 0.500309621812647503028212451747D+00
  6542. <a name="l06478"></a>06478
  6543. <a name="l06479"></a>06479 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  6544. <a name="l06480"></a>06480
  6545. <a name="l06481"></a>06481 xtab(1) = -0.822366333126005527278634734418D+00
  6546. <a name="l06482"></a>06482 xtab(2) = -0.547034493182875002223997992852D+00
  6547. <a name="l06483"></a>06483 xtab(3) = -0.200043026557985860387937545780D+00
  6548. <a name="l06484"></a>06484 xtab(4) = 0.171995710805880507163425502299D+00
  6549. <a name="l06485"></a>06485 xtab(5) = 0.518891747903884926692601716998D+00
  6550. <a name="l06486"></a>06486 xtab(6) = 0.793821941703901970495546427988D+00
  6551. <a name="l06487"></a>06487 xtab(7) = 0.959734452453198985538996625765D+00
  6552. <a name="l06488"></a>06488
  6553. <a name="l06489"></a>06489 weight(1) = 0.00714150426951365443207221475404D+00
  6554. <a name="l06490"></a>06490 weight(2) = 0.0653034050584375560578544725498D+00
  6555. <a name="l06491"></a>06491 weight(3) = 0.235377690316228918725962815880D+00
  6556. <a name="l06492"></a>06492 weight(4) = 0.505171029671130381676271523850D+00
  6557. <a name="l06493"></a>06493 weight(5) = 0.733870426238362032891332767175D+00
  6558. <a name="l06494"></a>06494 weight(6) = 0.725590596901489156295739839779D+00
  6559. <a name="l06495"></a>06495 weight(7) = 0.394212014211504966587433032679D+00
  6560. <a name="l06496"></a>06496
  6561. <a name="l06497"></a>06497 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  6562. <a name="l06498"></a>06498
  6563. <a name="l06499"></a>06499 xtab(1) = -0.857017929919813794402037235698D+00
  6564. <a name="l06500"></a>06500 xtab(2) = -0.631543407166567521509503573952D+00
  6565. <a name="l06501"></a>06501 xtab(3) = -0.339104543648722903660229021109D+00
  6566. <a name="l06502"></a>06502 xtab(4) = -0.0111941563689783438801237300122D+00
  6567. <a name="l06503"></a>06503 xtab(5) = 0.316696017045595559454075475675D+00
  6568. <a name="l06504"></a>06504 xtab(6) = 0.609049663022520165351466780939D+00
  6569. <a name="l06505"></a>06505 xtab(7) = 0.834198765028697794599267293239D+00
  6570. <a name="l06506"></a>06506 xtab(8) = 0.967804480896157932935972899807D+00
  6571. <a name="l06507"></a>06507
  6572. <a name="l06508"></a>06508 weight(1) = 0.00374814227227757804631954025851D+00
  6573. <a name="l06509"></a>06509 weight(2) = 0.0357961737041152639660521680263D+00
  6574. <a name="l06510"></a>06510 weight(3) = 0.137974910241879862433949246199D+00
  6575. <a name="l06511"></a>06511 weight(4) = 0.326515411108352185491692769217D+00
  6576. <a name="l06512"></a>06512 weight(5) = 0.547577467373226177976217604887D+00
  6577. <a name="l06513"></a>06513 weight(6) = 0.682278153375510121675529810121D+00
  6578. <a name="l06514"></a>06514 weight(7) = 0.614544746137780998436053880546D+00
  6579. <a name="l06515"></a>06515 weight(8) = 0.318231662453524478640851647411D+00
  6580. <a name="l06516"></a>06516
  6581. <a name="l06517"></a>06517 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 9 ) <span class="keyword">then</span>
  6582. <a name="l06518"></a>06518
  6583. <a name="l06519"></a>06519 xtab(1) = -0.882491728426548422828684254270D+00
  6584. <a name="l06520"></a>06520 xtab(2) = -0.694873684026474640346360850039D+00
  6585. <a name="l06521"></a>06521 xtab(3) = -0.446537143480670863635920316400D+00
  6586. <a name="l06522"></a>06522 xtab(4) = -0.159388112702326252531544826624D+00
  6587. <a name="l06523"></a>06523 xtab(5) = 0.141092709224374414981503995427D+00
  6588. <a name="l06524"></a>06524 xtab(6) = 0.428217823321559204544020866175D+00
  6589. <a name="l06525"></a>06525 xtab(7) = 0.676480966471850715860378175342D+00
  6590. <a name="l06526"></a>06526 xtab(8) = 0.863830940812464825046988286026D+00
  6591. <a name="l06527"></a>06527 xtab(9) = 0.973668228805771018909618924364D+00
  6592. <a name="l06528"></a>06528
  6593. <a name="l06529"></a>06529 weight(1) = 0.00209009877215570354392734918986D+00
  6594. <a name="l06530"></a>06530 weight(2) = 0.0205951891648697848186537272448D+00
  6595. <a name="l06531"></a>06531 weight(3) = 0.0832489326348178964194106978875D+00
  6596. <a name="l06532"></a>06532 weight(4) = 0.210746247220398685903797568021D+00
  6597. <a name="l06533"></a>06533 weight(5) = 0.388325022916052063676224499399D+00
  6598. <a name="l06534"></a>06534 weight(6) = 0.554275165518437673725822282791D+00
  6599. <a name="l06535"></a>06535 weight(7) = 0.621388553284444032628761363828D+00
  6600. <a name="l06536"></a>06536 weight(8) = 0.523916296267173054255512857631D+00
  6601. <a name="l06537"></a>06537 weight(9) = 0.262081160888317771694556320674D+00
  6602. <a name="l06538"></a>06538
  6603. <a name="l06539"></a>06539 <span class="keyword">else</span>
  6604. <a name="l06540"></a>06540
  6605. <a name="l06541"></a>06541 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  6606. <a name="l06542"></a>06542 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;LEGENDRE_SET_X2 - Fatal error!&#39;</span>
  6607. <a name="l06543"></a>06543 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal input value of NORDER = &#39;</span>, norder
  6608. <a name="l06544"></a>06544 stop
  6609. <a name="l06545"></a>06545
  6610. <a name="l06546"></a>06546 <span class="keyword">end if</span>
  6611. <a name="l06547"></a>06547
  6612. <a name="l06548"></a>06548 return
  6613. <a name="l06549"></a>06549 <span class="keyword">end</span>
  6614. <a name="l06550"></a><a class="code" href="quadrule_8f90.html#a82fb68c4ded02b55802a7f1768f66d76">06550</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a82fb68c4ded02b55802a7f1768f66d76">legendre_set_x2_01</a> ( norder, xtab, weight )
  6615. <a name="l06551"></a>06551 <span class="comment">!</span>
  6616. <a name="l06552"></a>06552 <span class="comment">!*******************************************************************************</span>
  6617. <a name="l06553"></a>06553 <span class="comment">!</span>
  6618. <a name="l06554"></a>06554 <span class="comment">!! LEGENDRE_SET_X2_01 sets a Gauss-Legendre rule for X**2 * F(X) on [0,1].</span>
  6619. <a name="l06555"></a>06555 <span class="comment">!</span>
  6620. <a name="l06556"></a>06556 <span class="comment">!</span>
  6621. <a name="l06557"></a>06557 <span class="comment">! Integration interval:</span>
  6622. <a name="l06558"></a>06558 <span class="comment">!</span>
  6623. <a name="l06559"></a>06559 <span class="comment">! [ 0, 1 ]</span>
  6624. <a name="l06560"></a>06560 <span class="comment">!</span>
  6625. <a name="l06561"></a>06561 <span class="comment">! Weight function:</span>
  6626. <a name="l06562"></a>06562 <span class="comment">!</span>
  6627. <a name="l06563"></a>06563 <span class="comment">! X**2</span>
  6628. <a name="l06564"></a>06564 <span class="comment">!</span>
  6629. <a name="l06565"></a>06565 <span class="comment">! Integral to approximate:</span>
  6630. <a name="l06566"></a>06566 <span class="comment">!</span>
  6631. <a name="l06567"></a>06567 <span class="comment">! Integral ( 0 &lt;= X &lt;= 1 ) X*X * F(X) dX</span>
  6632. <a name="l06568"></a>06568 <span class="comment">!</span>
  6633. <a name="l06569"></a>06569 <span class="comment">! Approximate integral:</span>
  6634. <a name="l06570"></a>06570 <span class="comment">!</span>
  6635. <a name="l06571"></a>06571 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  6636. <a name="l06572"></a>06572 <span class="comment">!</span>
  6637. <a name="l06573"></a>06573 <span class="comment">! Reference:</span>
  6638. <a name="l06574"></a>06574 <span class="comment">!</span>
  6639. <a name="l06575"></a>06575 <span class="comment">! Abramowitz and Stegun,</span>
  6640. <a name="l06576"></a>06576 <span class="comment">! Handbook of Mathematical Functions,</span>
  6641. <a name="l06577"></a>06577 <span class="comment">! National Bureau of Standards, 1964, page 921.</span>
  6642. <a name="l06578"></a>06578 <span class="comment">!</span>
  6643. <a name="l06579"></a>06579 <span class="comment">! Modified:</span>
  6644. <a name="l06580"></a>06580 <span class="comment">!</span>
  6645. <a name="l06581"></a>06581 <span class="comment">! 18 November 2000</span>
  6646. <a name="l06582"></a>06582 <span class="comment">!</span>
  6647. <a name="l06583"></a>06583 <span class="comment">! Author:</span>
  6648. <a name="l06584"></a>06584 <span class="comment">!</span>
  6649. <a name="l06585"></a>06585 <span class="comment">! John Burkardt</span>
  6650. <a name="l06586"></a>06586 <span class="comment">!</span>
  6651. <a name="l06587"></a>06587 <span class="comment">! Parameters:</span>
  6652. <a name="l06588"></a>06588 <span class="comment">!</span>
  6653. <a name="l06589"></a>06589 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  6654. <a name="l06590"></a>06590 <span class="comment">! NORDER must be between 1 and 8.</span>
  6655. <a name="l06591"></a>06591 <span class="comment">!</span>
  6656. <a name="l06592"></a>06592 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  6657. <a name="l06593"></a>06593 <span class="comment">!</span>
  6658. <a name="l06594"></a>06594 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  6659. <a name="l06595"></a>06595 <span class="comment">!</span>
  6660. <a name="l06596"></a>06596 <span class="keyword">implicit none</span>
  6661. <a name="l06597"></a>06597 <span class="comment">!</span>
  6662. <a name="l06598"></a>06598 <span class="keywordtype">integer</span> norder
  6663. <a name="l06599"></a>06599 <span class="comment">!</span>
  6664. <a name="l06600"></a>06600 <span class="keywordtype">double precision</span> xtab(norder)
  6665. <a name="l06601"></a>06601 <span class="keywordtype">double precision</span> weight(norder)
  6666. <a name="l06602"></a>06602 <span class="comment">!</span>
  6667. <a name="l06603"></a>06603 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  6668. <a name="l06604"></a>06604
  6669. <a name="l06605"></a>06605 xtab(1) = 0.75D+00
  6670. <a name="l06606"></a>06606
  6671. <a name="l06607"></a>06607 weight(1) = 1.0D+00 / 3.0D+00
  6672. <a name="l06608"></a>06608
  6673. <a name="l06609"></a>06609 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  6674. <a name="l06610"></a>06610
  6675. <a name="l06611"></a>06611 xtab(1) = 0.4558481560D+00
  6676. <a name="l06612"></a>06612 xtab(2) = 0.8774851773D+00
  6677. <a name="l06613"></a>06613
  6678. <a name="l06614"></a>06614 weight(1) = 0.1007858821D+00
  6679. <a name="l06615"></a>06615 weight(2) = 0.2325474513D+00
  6680. <a name="l06616"></a>06616
  6681. <a name="l06617"></a>06617 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  6682. <a name="l06618"></a>06618
  6683. <a name="l06619"></a>06619 xtab(1) = 0.2949977901D+00
  6684. <a name="l06620"></a>06620 xtab(2) = 0.6529962340D+00
  6685. <a name="l06621"></a>06621 xtab(3) = 0.9270059759D+00
  6686. <a name="l06622"></a>06622
  6687. <a name="l06623"></a>06623 weight(1) = 0.0299507030D+00
  6688. <a name="l06624"></a>06624 weight(2) = 0.1462462693D+00
  6689. <a name="l06625"></a>06625 weight(3) = 0.1571363611D+00
  6690. <a name="l06626"></a>06626
  6691. <a name="l06627"></a>06627 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  6692. <a name="l06628"></a>06628
  6693. <a name="l06629"></a>06629 xtab(1) = 0.2041485821D+00
  6694. <a name="l06630"></a>06630 xtab(2) = 0.4829527049D+00
  6695. <a name="l06631"></a>06631 xtab(3) = 0.7613992624D+00
  6696. <a name="l06632"></a>06632 xtab(4) = 0.9514994506D+00
  6697. <a name="l06633"></a>06633
  6698. <a name="l06634"></a>06634 weight(1) = 0.0103522408D+00
  6699. <a name="l06635"></a>06635 weight(2) = 0.0686338872D+00
  6700. <a name="l06636"></a>06636 weight(3) = 0.1434587898D+00
  6701. <a name="l06637"></a>06637 weight(4) = 0.1108884156D+00
  6702. <a name="l06638"></a>06638
  6703. <a name="l06639"></a>06639 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  6704. <a name="l06640"></a>06640
  6705. <a name="l06641"></a>06641 xtab(1) = 0.1489457871D+00
  6706. <a name="l06642"></a>06642 xtab(2) = 0.3656665274D+00
  6707. <a name="l06643"></a>06643 xtab(3) = 0.6101136129D+00
  6708. <a name="l06644"></a>06644 xtab(4) = 0.8265196792D+00
  6709. <a name="l06645"></a>06645 xtab(5) = 0.9654210601D+00
  6710. <a name="l06646"></a>06646
  6711. <a name="l06647"></a>06647 weight(1) = 0.0041138252D+00
  6712. <a name="l06648"></a>06648 weight(2) = 0.0320556007D+00
  6713. <a name="l06649"></a>06649 weight(3) = 0.0892001612D+00
  6714. <a name="l06650"></a>06650 weight(4) = 0.1261989619D+00
  6715. <a name="l06651"></a>06651 weight(5) = 0.0817647843D+00
  6716. <a name="l06652"></a>06652
  6717. <a name="l06653"></a>06653 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  6718. <a name="l06654"></a>06654
  6719. <a name="l06655"></a>06655 xtab(1) = 0.1131943838D+00
  6720. <a name="l06656"></a>06656 xtab(2) = 0.2843188727D+00
  6721. <a name="l06657"></a>06657 xtab(3) = 0.4909635868D+00
  6722. <a name="l06658"></a>06658 xtab(4) = 0.6975630820D+00
  6723. <a name="l06659"></a>06659 xtab(5) = 0.8684360583D+00
  6724. <a name="l06660"></a>06660 xtab(6) = 0.9740954449D+00
  6725. <a name="l06661"></a>06661
  6726. <a name="l06662"></a>06662 weight(1) = 0.0018310758D+00
  6727. <a name="l06663"></a>06663 weight(2) = 0.0157202972D+00
  6728. <a name="l06664"></a>06664 weight(3) = 0.0512895711D+00
  6729. <a name="l06665"></a>06665 weight(4) = 0.0945771867D+00
  6730. <a name="l06666"></a>06666 weight(5) = 0.1073764997D+00
  6731. <a name="l06667"></a>06667 weight(6) = 0.0625387027D+00
  6732. <a name="l06668"></a>06668
  6733. <a name="l06669"></a>06669 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  6734. <a name="l06670"></a>06670
  6735. <a name="l06671"></a>06671 xtab(1) = 0.0888168334D+00
  6736. <a name="l06672"></a>06672 xtab(2) = 0.2264827534D+00
  6737. <a name="l06673"></a>06673 xtab(3) = 0.3999784867D+00
  6738. <a name="l06674"></a>06674 xtab(4) = 0.5859978554D+00
  6739. <a name="l06675"></a>06675 xtab(5) = 0.7594458740D+00
  6740. <a name="l06676"></a>06676 xtab(6) = 0.8969109709D+00
  6741. <a name="l06677"></a>06677 xtab(7) = 0.9798672262D+00
  6742. <a name="l06678"></a>06678
  6743. <a name="l06679"></a>06679 weight(1) = 0.0008926880D+00
  6744. <a name="l06680"></a>06680 weight(2) = 0.0081629256D+00
  6745. <a name="l06681"></a>06681 weight(3) = 0.0294222113D+00
  6746. <a name="l06682"></a>06682 weight(4) = 0.0631463787D+00
  6747. <a name="l06683"></a>06683 weight(5) = 0.0917338033D+00
  6748. <a name="l06684"></a>06684 weight(6) = 0.0906988246D+00
  6749. <a name="l06685"></a>06685 weight(7) = 0.0492765018D+00
  6750. <a name="l06686"></a>06686
  6751. <a name="l06687"></a>06687 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  6752. <a name="l06688"></a>06688
  6753. <a name="l06689"></a>06689 xtab(1) = 0.0714910350D+00
  6754. <a name="l06690"></a>06690 xtab(2) = 0.1842282964D+00
  6755. <a name="l06691"></a>06691 xtab(3) = 0.3304477282D+00
  6756. <a name="l06692"></a>06692 xtab(4) = 0.4944029218D+00
  6757. <a name="l06693"></a>06693 xtab(5) = 0.6583480085D+00
  6758. <a name="l06694"></a>06694 xtab(6) = 0.8045248315D+00
  6759. <a name="l06695"></a>06695 xtab(7) = 0.9170993825D+00
  6760. <a name="l06696"></a>06696 xtab(8) = 0.9839022404D+00
  6761. <a name="l06697"></a>06697
  6762. <a name="l06698"></a>06698 weight(1) = 0.0004685178D+00
  6763. <a name="l06699"></a>06699 weight(2) = 0.0044745217D+00
  6764. <a name="l06700"></a>06700 weight(3) = 0.0172468638D+00
  6765. <a name="l06701"></a>06701 weight(4) = 0.0408144264D+00
  6766. <a name="l06702"></a>06702 weight(5) = 0.0684471834D+00
  6767. <a name="l06703"></a>06703 weight(6) = 0.0852847692D+00
  6768. <a name="l06704"></a>06704 weight(7) = 0.0768180933D+00
  6769. <a name="l06705"></a>06705 weight(8) = 0.0397789578D+00
  6770. <a name="l06706"></a>06706
  6771. <a name="l06707"></a>06707 <span class="keyword">else</span>
  6772. <a name="l06708"></a>06708
  6773. <a name="l06709"></a>06709 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  6774. <a name="l06710"></a>06710 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;LEGENDRE_SET_X2_01 - Fatal error!&#39;</span>
  6775. <a name="l06711"></a>06711 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  6776. <a name="l06712"></a>06712 stop
  6777. <a name="l06713"></a>06713
  6778. <a name="l06714"></a>06714 <span class="keyword">end if</span>
  6779. <a name="l06715"></a>06715
  6780. <a name="l06716"></a>06716 return
  6781. <a name="l06717"></a>06717 <span class="keyword">end</span>
  6782. <a name="l06718"></a><a class="code" href="quadrule_8f90.html#a78a0044231676591f20f6a799a9177cd">06718</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a78a0044231676591f20f6a799a9177cd">lobatto_set</a> ( norder, xtab, weight )
  6783. <a name="l06719"></a>06719 <span class="comment">!</span>
  6784. <a name="l06720"></a>06720 <span class="comment">!*******************************************************************************</span>
  6785. <a name="l06721"></a>06721 <span class="comment">!</span>
  6786. <a name="l06722"></a>06722 <span class="comment">!! LOBATTO_SET sets abscissas and weights for Lobatto quadrature.</span>
  6787. <a name="l06723"></a>06723 <span class="comment">!</span>
  6788. <a name="l06724"></a>06724 <span class="comment">!</span>
  6789. <a name="l06725"></a>06725 <span class="comment">! Integration interval:</span>
  6790. <a name="l06726"></a>06726 <span class="comment">!</span>
  6791. <a name="l06727"></a>06727 <span class="comment">! [ -1, 1 ].</span>
  6792. <a name="l06728"></a>06728 <span class="comment">!</span>
  6793. <a name="l06729"></a>06729 <span class="comment">! Weight function:</span>
  6794. <a name="l06730"></a>06730 <span class="comment">!</span>
  6795. <a name="l06731"></a>06731 <span class="comment">! 1.0D+00</span>
  6796. <a name="l06732"></a>06732 <span class="comment">!</span>
  6797. <a name="l06733"></a>06733 <span class="comment">! Integral to approximate:</span>
  6798. <a name="l06734"></a>06734 <span class="comment">!</span>
  6799. <a name="l06735"></a>06735 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) F(X) dX</span>
  6800. <a name="l06736"></a>06736 <span class="comment">!</span>
  6801. <a name="l06737"></a>06737 <span class="comment">! Approximate integral:</span>
  6802. <a name="l06738"></a>06738 <span class="comment">!</span>
  6803. <a name="l06739"></a>06739 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  6804. <a name="l06740"></a>06740 <span class="comment">!</span>
  6805. <a name="l06741"></a>06741 <span class="comment">! Precision:</span>
  6806. <a name="l06742"></a>06742 <span class="comment">!</span>
  6807. <a name="l06743"></a>06743 <span class="comment">! The quadrature rule will integrate exactly all polynomials up to</span>
  6808. <a name="l06744"></a>06744 <span class="comment">! X**(2*NORDER-3).</span>
  6809. <a name="l06745"></a>06745 <span class="comment">!</span>
  6810. <a name="l06746"></a>06746 <span class="comment">! Note:</span>
  6811. <a name="l06747"></a>06747 <span class="comment">!</span>
  6812. <a name="l06748"></a>06748 <span class="comment">! The Lobatto rule is distinguished by the fact that both endpoints</span>
  6813. <a name="l06749"></a>06749 <span class="comment">! (-1 and 1) are always abscissas of the rule.</span>
  6814. <a name="l06750"></a>06750 <span class="comment">!</span>
  6815. <a name="l06751"></a>06751 <span class="comment">! Reference:</span>
  6816. <a name="l06752"></a>06752 <span class="comment">!</span>
  6817. <a name="l06753"></a>06753 <span class="comment">! Abramowitz and Stegun,</span>
  6818. <a name="l06754"></a>06754 <span class="comment">! Handbook of Mathematical Functions,</span>
  6819. <a name="l06755"></a>06755 <span class="comment">! National Bureau of Standards, 1964.</span>
  6820. <a name="l06756"></a>06756 <span class="comment">!</span>
  6821. <a name="l06757"></a>06757 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  6822. <a name="l06758"></a>06758 <span class="comment">! Gaussian Quadrature Formulas,</span>
  6823. <a name="l06759"></a>06759 <span class="comment">! Prentice Hall, 1966.</span>
  6824. <a name="l06760"></a>06760 <span class="comment">!</span>
  6825. <a name="l06761"></a>06761 <span class="comment">! Daniel Zwillinger, editor,</span>
  6826. <a name="l06762"></a>06762 <span class="comment">! Standard Mathematical Tables and Formulae,</span>
  6827. <a name="l06763"></a>06763 <span class="comment">! 30th Edition,</span>
  6828. <a name="l06764"></a>06764 <span class="comment">! CRC Press, 1996.</span>
  6829. <a name="l06765"></a>06765 <span class="comment">!</span>
  6830. <a name="l06766"></a>06766 <span class="comment">! Modified:</span>
  6831. <a name="l06767"></a>06767 <span class="comment">!</span>
  6832. <a name="l06768"></a>06768 <span class="comment">! 20 September 1998</span>
  6833. <a name="l06769"></a>06769 <span class="comment">!</span>
  6834. <a name="l06770"></a>06770 <span class="comment">! Author:</span>
  6835. <a name="l06771"></a>06771 <span class="comment">!</span>
  6836. <a name="l06772"></a>06772 <span class="comment">! John Burkardt</span>
  6837. <a name="l06773"></a>06773 <span class="comment">!</span>
  6838. <a name="l06774"></a>06774 <span class="comment">! Parameters:</span>
  6839. <a name="l06775"></a>06775 <span class="comment">!</span>
  6840. <a name="l06776"></a>06776 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  6841. <a name="l06777"></a>06777 <span class="comment">! NORDER must be between 2 and 20.</span>
  6842. <a name="l06778"></a>06778 <span class="comment">!</span>
  6843. <a name="l06779"></a>06779 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas for the rule.</span>
  6844. <a name="l06780"></a>06780 <span class="comment">!</span>
  6845. <a name="l06781"></a>06781 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  6846. <a name="l06782"></a>06782 <span class="comment">! The weights are positive, symmetric and should sum to 2.</span>
  6847. <a name="l06783"></a>06783 <span class="comment">!</span>
  6848. <a name="l06784"></a>06784 <span class="keyword">implicit none</span>
  6849. <a name="l06785"></a>06785 <span class="comment">!</span>
  6850. <a name="l06786"></a>06786 <span class="keywordtype">integer</span> norder
  6851. <a name="l06787"></a>06787 <span class="comment">!</span>
  6852. <a name="l06788"></a>06788 <span class="keywordtype">double precision</span> xtab(norder)
  6853. <a name="l06789"></a>06789 <span class="keywordtype">double precision</span> weight(norder)
  6854. <a name="l06790"></a>06790 <span class="comment">!</span>
  6855. <a name="l06791"></a>06791 <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  6856. <a name="l06792"></a>06792
  6857. <a name="l06793"></a>06793 xtab(1) = - 1.0D+00
  6858. <a name="l06794"></a>06794 xtab(2) = 1.0D+00
  6859. <a name="l06795"></a>06795
  6860. <a name="l06796"></a>06796 weight(1) = 1.0D+00
  6861. <a name="l06797"></a>06797 weight(2) = 1.0D+00
  6862. <a name="l06798"></a>06798
  6863. <a name="l06799"></a>06799 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  6864. <a name="l06800"></a>06800
  6865. <a name="l06801"></a>06801 xtab(1) = - 1.0D+00
  6866. <a name="l06802"></a>06802 xtab(2) = 0.0D+00
  6867. <a name="l06803"></a>06803 xtab(3) = 1.0D+00
  6868. <a name="l06804"></a>06804
  6869. <a name="l06805"></a>06805 weight(1) = 1.0D+00 / 3.0D+00
  6870. <a name="l06806"></a>06806 weight(2) = 4.0D+00 / 3.0D+00
  6871. <a name="l06807"></a>06807 weight(3) = 1.0D+00 / 3.0D+00
  6872. <a name="l06808"></a>06808
  6873. <a name="l06809"></a>06809 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  6874. <a name="l06810"></a>06810
  6875. <a name="l06811"></a>06811 xtab(1) = - 1.0D+00
  6876. <a name="l06812"></a>06812 xtab(2) = - 0.447213595499957939281834733746D+00
  6877. <a name="l06813"></a>06813 xtab(3) = 0.447213595499957939281834733746D+00
  6878. <a name="l06814"></a>06814 xtab(4) = 1.0D+00
  6879. <a name="l06815"></a>06815
  6880. <a name="l06816"></a>06816 weight(1) = 1.0D+00 / 6.0D+00
  6881. <a name="l06817"></a>06817 weight(2) = 5.0D+00 / 6.0D+00
  6882. <a name="l06818"></a>06818 weight(3) = 5.0D+00 / 6.0D+00
  6883. <a name="l06819"></a>06819 weight(4) = 1.0D+00 / 6.0D+00
  6884. <a name="l06820"></a>06820
  6885. <a name="l06821"></a>06821 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  6886. <a name="l06822"></a>06822
  6887. <a name="l06823"></a>06823 xtab(1) = - 1.0D+00
  6888. <a name="l06824"></a>06824 xtab(2) = - 0.654653670707977143798292456247D+00
  6889. <a name="l06825"></a>06825 xtab(3) = 0.0D+00
  6890. <a name="l06826"></a>06826 xtab(4) = 0.654653670707977143798292456247D+00
  6891. <a name="l06827"></a>06827 xtab(5) = 1.0D+00
  6892. <a name="l06828"></a>06828
  6893. <a name="l06829"></a>06829 weight(1) = 9.0D+00 / 90.0D+00
  6894. <a name="l06830"></a>06830 weight(2) = 49.0D+00 / 90.0D+00
  6895. <a name="l06831"></a>06831 weight(3) = 64.0D+00 / 90.0D+00
  6896. <a name="l06832"></a>06832 weight(4) = 49.0D+00 / 90.0D+00
  6897. <a name="l06833"></a>06833 weight(5) = 9.0D+00 / 90.0D+00
  6898. <a name="l06834"></a>06834
  6899. <a name="l06835"></a>06835 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  6900. <a name="l06836"></a>06836
  6901. <a name="l06837"></a>06837 xtab(1) = - 1.0D+00
  6902. <a name="l06838"></a>06838 xtab(2) = - 0.765055323929464692851002973959D+00
  6903. <a name="l06839"></a>06839 xtab(3) = - 0.285231516480645096314150994041D+00
  6904. <a name="l06840"></a>06840 xtab(4) = 0.285231516480645096314150994041D+00
  6905. <a name="l06841"></a>06841 xtab(5) = 0.765055323929464692851002973959D+00
  6906. <a name="l06842"></a>06842 xtab(6) = 1.0D+00
  6907. <a name="l06843"></a>06843
  6908. <a name="l06844"></a>06844 weight(1) = 0.066666666666666666666666666667D+00
  6909. <a name="l06845"></a>06845 weight(2) = 0.378474956297846980316612808212D+00
  6910. <a name="l06846"></a>06846 weight(3) = 0.554858377035486353016720525121D+00
  6911. <a name="l06847"></a>06847 weight(4) = 0.554858377035486353016720525121D+00
  6912. <a name="l06848"></a>06848 weight(5) = 0.378474956297846980316612808212D+00
  6913. <a name="l06849"></a>06849 weight(6) = 0.066666666666666666666666666667D+00
  6914. <a name="l06850"></a>06850
  6915. <a name="l06851"></a>06851 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  6916. <a name="l06852"></a>06852
  6917. <a name="l06853"></a>06853 xtab(1) = - 1.0D+00
  6918. <a name="l06854"></a>06854 xtab(2) = - 0.830223896278566929872032213967D+00
  6919. <a name="l06855"></a>06855 xtab(3) = - 0.468848793470714213803771881909D+00
  6920. <a name="l06856"></a>06856 xtab(4) = 0.0D+00
  6921. <a name="l06857"></a>06857 xtab(5) = 0.468848793470714213803771881909D+00
  6922. <a name="l06858"></a>06858 xtab(6) = 0.830223896278566929872032213967D+00
  6923. <a name="l06859"></a>06859 xtab(7) = 1.0D+00
  6924. <a name="l06860"></a>06860
  6925. <a name="l06861"></a>06861 weight(1) = 0.476190476190476190476190476190D-01
  6926. <a name="l06862"></a>06862 weight(2) = 0.276826047361565948010700406290D+00
  6927. <a name="l06863"></a>06863 weight(3) = 0.431745381209862623417871022281D+00
  6928. <a name="l06864"></a>06864 weight(4) = 0.487619047619047619047619047619D+00
  6929. <a name="l06865"></a>06865 weight(5) = 0.431745381209862623417871022281D+00
  6930. <a name="l06866"></a>06866 weight(6) = 0.276826047361565948010700406290D+00
  6931. <a name="l06867"></a>06867 weight(7) = 0.476190476190476190476190476190D-01
  6932. <a name="l06868"></a>06868
  6933. <a name="l06869"></a>06869 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  6934. <a name="l06870"></a>06870
  6935. <a name="l06871"></a>06871 xtab(1) = - 1.0D+00
  6936. <a name="l06872"></a>06872 xtab(2) = - 0.871740148509606615337445761221D+00
  6937. <a name="l06873"></a>06873 xtab(3) = - 0.591700181433142302144510731398D+00
  6938. <a name="l06874"></a>06874 xtab(4) = - 0.209299217902478868768657260345D+00
  6939. <a name="l06875"></a>06875 xtab(5) = 0.209299217902478868768657260345D+00
  6940. <a name="l06876"></a>06876 xtab(6) = 0.591700181433142302144510731398D+00
  6941. <a name="l06877"></a>06877 xtab(7) = 0.871740148509606615337445761221D+00
  6942. <a name="l06878"></a>06878 xtab(8) = 1.0D+00
  6943. <a name="l06879"></a>06879
  6944. <a name="l06880"></a>06880 weight(1) = 0.357142857142857142857142857143D-01
  6945. <a name="l06881"></a>06881 weight(2) = 0.210704227143506039382991065776D+00
  6946. <a name="l06882"></a>06882 weight(3) = 0.341122692483504364764240677108D+00
  6947. <a name="l06883"></a>06883 weight(4) = 0.412458794658703881567052971402D+00
  6948. <a name="l06884"></a>06884 weight(5) = 0.412458794658703881567052971402D+00
  6949. <a name="l06885"></a>06885 weight(6) = 0.341122692483504364764240677108D+00
  6950. <a name="l06886"></a>06886 weight(7) = 0.210704227143506039382991065776D+00
  6951. <a name="l06887"></a>06887 weight(8) = 0.357142857142857142857142857143D-01
  6952. <a name="l06888"></a>06888
  6953. <a name="l06889"></a>06889 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 9 ) <span class="keyword">then</span>
  6954. <a name="l06890"></a>06890
  6955. <a name="l06891"></a>06891 xtab(1) = - 1.0D+00
  6956. <a name="l06892"></a>06892 xtab(2) = - 0.899757995411460157312345244418D+00
  6957. <a name="l06893"></a>06893 xtab(3) = - 0.677186279510737753445885427091D+00
  6958. <a name="l06894"></a>06894 xtab(4) = - 0.363117463826178158710752068709D+00
  6959. <a name="l06895"></a>06895 xtab(5) = 0.0D+00
  6960. <a name="l06896"></a>06896 xtab(6) = 0.363117463826178158710752068709D+00
  6961. <a name="l06897"></a>06897 xtab(7) = 0.677186279510737753445885427091D+00
  6962. <a name="l06898"></a>06898 xtab(8) = 0.899757995411460157312345244418D+00
  6963. <a name="l06899"></a>06899 xtab(9) = 1.0D+00
  6964. <a name="l06900"></a>06900
  6965. <a name="l06901"></a>06901 weight(1) = 0.277777777777777777777777777778D-01
  6966. <a name="l06902"></a>06902 weight(2) = 0.165495361560805525046339720029D+00
  6967. <a name="l06903"></a>06903 weight(3) = 0.274538712500161735280705618579D+00
  6968. <a name="l06904"></a>06904 weight(4) = 0.346428510973046345115131532140D+00
  6969. <a name="l06905"></a>06905 weight(5) = 0.371519274376417233560090702948D+00
  6970. <a name="l06906"></a>06906 weight(6) = 0.346428510973046345115131532140D+00
  6971. <a name="l06907"></a>06907 weight(7) = 0.274538712500161735280705618579D+00
  6972. <a name="l06908"></a>06908 weight(8) = 0.165495361560805525046339720029D+00
  6973. <a name="l06909"></a>06909 weight(9) = 0.277777777777777777777777777778D-01
  6974. <a name="l06910"></a>06910
  6975. <a name="l06911"></a>06911 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 10 ) <span class="keyword">then</span>
  6976. <a name="l06912"></a>06912
  6977. <a name="l06913"></a>06913 xtab(1) = - 1.0D+00
  6978. <a name="l06914"></a>06914 xtab(2) = - 0.919533908166458813828932660822D+00
  6979. <a name="l06915"></a>06915 xtab(3) = - 0.738773865105505075003106174860D+00
  6980. <a name="l06916"></a>06916 xtab(4) = - 0.477924949810444495661175092731D+00
  6981. <a name="l06917"></a>06917 xtab(5) = - 0.165278957666387024626219765958D+00
  6982. <a name="l06918"></a>06918 xtab(6) = 0.165278957666387024626219765958D+00
  6983. <a name="l06919"></a>06919 xtab(7) = 0.477924949810444495661175092731D+00
  6984. <a name="l06920"></a>06920 xtab(8) = 0.738773865105505075003106174860D+00
  6985. <a name="l06921"></a>06921 xtab(9) = 0.919533908166458813828932660822D+00
  6986. <a name="l06922"></a>06922 xtab(10) = 1.0D+00
  6987. <a name="l06923"></a>06923
  6988. <a name="l06924"></a>06924 weight(1) = 0.222222222222222222222222222222D-01
  6989. <a name="l06925"></a>06925 weight(2) = 0.133305990851070111126227170755D+00
  6990. <a name="l06926"></a>06926 weight(3) = 0.224889342063126452119457821731D+00
  6991. <a name="l06927"></a>06927 weight(4) = 0.292042683679683757875582257374D+00
  6992. <a name="l06928"></a>06928 weight(5) = 0.327539761183897456656510527917D+00
  6993. <a name="l06929"></a>06929 weight(6) = 0.327539761183897456656510527917D+00
  6994. <a name="l06930"></a>06930 weight(7) = 0.292042683679683757875582257374D+00
  6995. <a name="l06931"></a>06931 weight(8) = 0.224889342063126452119457821731D+00
  6996. <a name="l06932"></a>06932 weight(9) = 0.133305990851070111126227170755D+00
  6997. <a name="l06933"></a>06933 weight(10) = 0.222222222222222222222222222222D-01
  6998. <a name="l06934"></a>06934
  6999. <a name="l06935"></a>06935 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 11 ) <span class="keyword">then</span>
  7000. <a name="l06936"></a>06936
  7001. <a name="l06937"></a>06937 xtab(1) = - 1.0D+00
  7002. <a name="l06938"></a>06938 xtab(2) = - 0.934001430408059134332274136099D+00
  7003. <a name="l06939"></a>06939 xtab(3) = - 0.784483473663144418622417816108D+00
  7004. <a name="l06940"></a>06940 xtab(4) = - 0.565235326996205006470963969478D+00
  7005. <a name="l06941"></a>06941 xtab(5) = - 0.295758135586939391431911515559D+00
  7006. <a name="l06942"></a>06942 xtab(6) = 0.0D+00
  7007. <a name="l06943"></a>06943 xtab(7) = 0.295758135586939391431911515559D+00
  7008. <a name="l06944"></a>06944 xtab(8) = 0.565235326996205006470963969478D+00
  7009. <a name="l06945"></a>06945 xtab(9) = 0.784483473663144418622417816108D+00
  7010. <a name="l06946"></a>06946 xtab(10) = 0.934001430408059134332274136099D+00
  7011. <a name="l06947"></a>06947 xtab(11) = 1.0D+00
  7012. <a name="l06948"></a>06948
  7013. <a name="l06949"></a>06949 weight(1) = 0.181818181818181818181818181818D-01
  7014. <a name="l06950"></a>06950 weight(2) = 0.109612273266994864461403449580D+00
  7015. <a name="l06951"></a>06951 weight(3) = 0.187169881780305204108141521899D+00
  7016. <a name="l06952"></a>06952 weight(4) = 0.248048104264028314040084866422D+00
  7017. <a name="l06953"></a>06953 weight(5) = 0.286879124779008088679222403332D+00
  7018. <a name="l06954"></a>06954 weight(6) = 0.300217595455690693785931881170D+00
  7019. <a name="l06955"></a>06955 weight(7) = 0.286879124779008088679222403332D+00
  7020. <a name="l06956"></a>06956 weight(8) = 0.248048104264028314040084866422D+00
  7021. <a name="l06957"></a>06957 weight(9) = 0.187169881780305204108141521899D+00
  7022. <a name="l06958"></a>06958 weight(10) = 0.109612273266994864461403449580D+00
  7023. <a name="l06959"></a>06959 weight(11) = 0.181818181818181818181818181818D-01
  7024. <a name="l06960"></a>06960
  7025. <a name="l06961"></a>06961 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 12 ) <span class="keyword">then</span>
  7026. <a name="l06962"></a>06962
  7027. <a name="l06963"></a>06963 xtab(1) = - 1.0D+00
  7028. <a name="l06964"></a>06964 xtab(2) = - 0.944899272222882223407580138303D+00
  7029. <a name="l06965"></a>06965 xtab(3) = - 0.819279321644006678348641581717D+00
  7030. <a name="l06966"></a>06966 xtab(4) = - 0.632876153031869677662404854444D+00
  7031. <a name="l06967"></a>06967 xtab(5) = - 0.399530940965348932264349791567D+00
  7032. <a name="l06968"></a>06968 xtab(6) = - 0.136552932854927554864061855740D+00
  7033. <a name="l06969"></a>06969 xtab(7) = 0.136552932854927554864061855740D+00
  7034. <a name="l06970"></a>06970 xtab(8) = 0.399530940965348932264349791567D+00
  7035. <a name="l06971"></a>06971 xtab(9) = 0.632876153031869677662404854444D+00
  7036. <a name="l06972"></a>06972 xtab(10) = 0.819279321644006678348641581717D+00
  7037. <a name="l06973"></a>06973 xtab(11) = 0.944899272222882223407580138303D+00
  7038. <a name="l06974"></a>06974 xtab(12) = 1.0D+00
  7039. <a name="l06975"></a>06975
  7040. <a name="l06976"></a>06976 weight(1) = 0.151515151515151515151515151515D-01
  7041. <a name="l06977"></a>06977 weight(2) = 0.916845174131961306683425941341D-01
  7042. <a name="l06978"></a>06978 weight(3) = 0.157974705564370115164671062700D+00
  7043. <a name="l06979"></a>06979 weight(4) = 0.212508417761021145358302077367D+00
  7044. <a name="l06980"></a>06980 weight(5) = 0.251275603199201280293244412148D+00
  7045. <a name="l06981"></a>06981 weight(6) = 0.271405240910696177000288338500D+00
  7046. <a name="l06982"></a>06982 weight(7) = 0.271405240910696177000288338500D+00
  7047. <a name="l06983"></a>06983 weight(8) = 0.251275603199201280293244412148D+00
  7048. <a name="l06984"></a>06984 weight(9) = 0.212508417761021145358302077367D+00
  7049. <a name="l06985"></a>06985 weight(10) = 0.157974705564370115164671062700D+00
  7050. <a name="l06986"></a>06986 weight(11) = 0.916845174131961306683425941341D-01
  7051. <a name="l06987"></a>06987 weight(12) = 0.151515151515151515151515151515D-01
  7052. <a name="l06988"></a>06988
  7053. <a name="l06989"></a>06989 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 13 ) <span class="keyword">then</span>
  7054. <a name="l06990"></a>06990
  7055. <a name="l06991"></a>06991 xtab(1) = - 1.0D+00
  7056. <a name="l06992"></a>06992 xtab(2) = - 0.953309846642163911896905464755D+00
  7057. <a name="l06993"></a>06993 xtab(3) = - 0.846347564651872316865925607099D+00
  7058. <a name="l06994"></a>06994 xtab(4) = - 0.686188469081757426072759039566D+00
  7059. <a name="l06995"></a>06995 xtab(5) = - 0.482909821091336201746937233637D+00
  7060. <a name="l06996"></a>06996 xtab(6) = - 0.249286930106239992568673700374D+00
  7061. <a name="l06997"></a>06997 xtab(7) = 0.0D+00
  7062. <a name="l06998"></a>06998 xtab(8) = 0.249286930106239992568673700374D+00
  7063. <a name="l06999"></a>06999 xtab(9) = 0.482909821091336201746937233637D+00
  7064. <a name="l07000"></a>07000 xtab(10) = 0.686188469081757426072759039566D+00
  7065. <a name="l07001"></a>07001 xtab(11) = 0.846347564651872316865925607099D+00
  7066. <a name="l07002"></a>07002 xtab(12) = 0.953309846642163911896905464755D+00
  7067. <a name="l07003"></a>07003 xtab(13) = 1.0D+00
  7068. <a name="l07004"></a>07004
  7069. <a name="l07005"></a>07005 weight(1) = 0.128205128205128205128205128205D-01
  7070. <a name="l07006"></a>07006 weight(2) = 0.778016867468189277935889883331D-01
  7071. <a name="l07007"></a>07007 weight(3) = 0.134981926689608349119914762589D+00
  7072. <a name="l07008"></a>07008 weight(4) = 0.183646865203550092007494258747D+00
  7073. <a name="l07009"></a>07009 weight(5) = 0.220767793566110086085534008379D+00
  7074. <a name="l07010"></a>07010 weight(6) = 0.244015790306676356458578148360D+00
  7075. <a name="l07011"></a>07011 weight(7) = 0.251930849333446736044138641541D+00
  7076. <a name="l07012"></a>07012 weight(8) = 0.244015790306676356458578148360D+00
  7077. <a name="l07013"></a>07013 weight(9) = 0.220767793566110086085534008379D+00
  7078. <a name="l07014"></a>07014 weight(10) = 0.183646865203550092007494258747D+00
  7079. <a name="l07015"></a>07015 weight(11) = 0.134981926689608349119914762589D+00
  7080. <a name="l07016"></a>07016 weight(12) = 0.778016867468189277935889883331D-01
  7081. <a name="l07017"></a>07017 weight(13) = 0.128205128205128205128205128205D-01
  7082. <a name="l07018"></a>07018
  7083. <a name="l07019"></a>07019 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 14 ) <span class="keyword">then</span>
  7084. <a name="l07020"></a>07020
  7085. <a name="l07021"></a>07021 xtab(1) = - 1.0D+00
  7086. <a name="l07022"></a>07022 xtab(2) = - 0.959935045267260901355100162015D+00
  7087. <a name="l07023"></a>07023 xtab(3) = - 0.867801053830347251000220202908D+00
  7088. <a name="l07024"></a>07024 xtab(4) = - 0.728868599091326140584672400521D+00
  7089. <a name="l07025"></a>07025 xtab(5) = - 0.550639402928647055316622705859D+00
  7090. <a name="l07026"></a>07026 xtab(6) = - 0.342724013342712845043903403642D+00
  7091. <a name="l07027"></a>07027 xtab(7) = - 0.116331868883703867658776709736D+00
  7092. <a name="l07028"></a>07028 xtab(8) = 0.116331868883703867658776709736D+00
  7093. <a name="l07029"></a>07029 xtab(9) = 0.342724013342712845043903403642D+00
  7094. <a name="l07030"></a>07030 xtab(10) = 0.550639402928647055316622705859D+00
  7095. <a name="l07031"></a>07031 xtab(11) = 0.728868599091326140584672400521D+00
  7096. <a name="l07032"></a>07032 xtab(12) = 0.867801053830347251000220202908D+00
  7097. <a name="l07033"></a>07033 xtab(13) = 0.959935045267260901355100162015D+00
  7098. <a name="l07034"></a>07034 xtab(14) = 1.0D+00
  7099. <a name="l07035"></a>07035
  7100. <a name="l07036"></a>07036 weight(1) = 0.109890109890109890109890109890D-01
  7101. <a name="l07037"></a>07037 weight(2) = 0.668372844976812846340706607461D-01
  7102. <a name="l07038"></a>07038 weight(3) = 0.116586655898711651540996670655D+00
  7103. <a name="l07039"></a>07039 weight(4) = 0.160021851762952142412820997988D+00
  7104. <a name="l07040"></a>07040 weight(5) = 0.194826149373416118640331778376D+00
  7105. <a name="l07041"></a>07041 weight(6) = 0.219126253009770754871162523954D+00
  7106. <a name="l07042"></a>07042 weight(7) = 0.231612794468457058889628357293D+00
  7107. <a name="l07043"></a>07043 weight(8) = 0.231612794468457058889628357293D+00
  7108. <a name="l07044"></a>07044 weight(9) = 0.219126253009770754871162523954D+00
  7109. <a name="l07045"></a>07045 weight(10) = 0.194826149373416118640331778376D+00
  7110. <a name="l07046"></a>07046 weight(11) = 0.160021851762952142412820997988D+00
  7111. <a name="l07047"></a>07047 weight(12) = 0.116586655898711651540996670655D+00
  7112. <a name="l07048"></a>07048 weight(13) = 0.668372844976812846340706607461D-01
  7113. <a name="l07049"></a>07049 weight(14) = 0.109890109890109890109890109890D-01
  7114. <a name="l07050"></a>07050
  7115. <a name="l07051"></a>07051 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 15 ) <span class="keyword">then</span>
  7116. <a name="l07052"></a>07052
  7117. <a name="l07053"></a>07053 xtab(1) = - 1.0D+00
  7118. <a name="l07054"></a>07054 xtab(2) = - 0.965245926503838572795851392070D+00
  7119. <a name="l07055"></a>07055 xtab(3) = - 0.885082044222976298825401631482D+00
  7120. <a name="l07056"></a>07056 xtab(4) = - 0.763519689951815200704118475976D+00
  7121. <a name="l07057"></a>07057 xtab(5) = - 0.606253205469845711123529938637D+00
  7122. <a name="l07058"></a>07058 xtab(6) = - 0.420638054713672480921896938739D+00
  7123. <a name="l07059"></a>07059 xtab(7) = - 0.215353955363794238225679446273D+00
  7124. <a name="l07060"></a>07060 xtab(8) = 0.0D+00
  7125. <a name="l07061"></a>07061 xtab(9) = 0.215353955363794238225679446273D+00
  7126. <a name="l07062"></a>07062 xtab(10) = 0.420638054713672480921896938739D+00
  7127. <a name="l07063"></a>07063 xtab(11) = 0.606253205469845711123529938637D+00
  7128. <a name="l07064"></a>07064 xtab(12) = 0.763519689951815200704118475976D+00
  7129. <a name="l07065"></a>07065 xtab(13) = 0.885082044222976298825401631482D+00
  7130. <a name="l07066"></a>07066 xtab(14) = 0.965245926503838572795851392070D+00
  7131. <a name="l07067"></a>07067 xtab(15) = 1.0D+00
  7132. <a name="l07068"></a>07068
  7133. <a name="l07069"></a>07069 weight(1) = 0.952380952380952380952380952381D-02
  7134. <a name="l07070"></a>07070 weight(2) = 0.580298930286012490968805840253D-01
  7135. <a name="l07071"></a>07071 weight(3) = 0.101660070325718067603666170789D+00
  7136. <a name="l07072"></a>07072 weight(4) = 0.140511699802428109460446805644D+00
  7137. <a name="l07073"></a>07073 weight(5) = 0.172789647253600949052077099408D+00
  7138. <a name="l07074"></a>07074 weight(6) = 0.196987235964613356092500346507D+00
  7139. <a name="l07075"></a>07075 weight(7) = 0.211973585926820920127430076977D+00
  7140. <a name="l07076"></a>07076 weight(8) = 0.217048116348815649514950214251D+00
  7141. <a name="l07077"></a>07077 weight(9) = 0.211973585926820920127430076977D+00
  7142. <a name="l07078"></a>07078 weight(10) = 0.196987235964613356092500346507D+00
  7143. <a name="l07079"></a>07079 weight(11) = 0.172789647253600949052077099408D+00
  7144. <a name="l07080"></a>07080 weight(12) = 0.140511699802428109460446805644D+00
  7145. <a name="l07081"></a>07081 weight(13) = 0.101660070325718067603666170789D+00
  7146. <a name="l07082"></a>07082 weight(14) = 0.580298930286012490968805840253D-01
  7147. <a name="l07083"></a>07083 weight(15) = 0.952380952380952380952380952381D-02
  7148. <a name="l07084"></a>07084
  7149. <a name="l07085"></a>07085 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 16 ) <span class="keyword">then</span>
  7150. <a name="l07086"></a>07086
  7151. <a name="l07087"></a>07087 xtab(1) = - 1.0D+00
  7152. <a name="l07088"></a>07088 xtab(2) = - 0.969568046270217932952242738367D+00
  7153. <a name="l07089"></a>07089 xtab(3) = - 0.899200533093472092994628261520D+00
  7154. <a name="l07090"></a>07090 xtab(4) = - 0.792008291861815063931088270963D+00
  7155. <a name="l07091"></a>07091 xtab(5) = - 0.652388702882493089467883219641D+00
  7156. <a name="l07092"></a>07092 xtab(6) = - 0.486059421887137611781890785847D+00
  7157. <a name="l07093"></a>07093 xtab(7) = - 0.299830468900763208098353454722D+00
  7158. <a name="l07094"></a>07094 xtab(8) = - 0.101326273521949447843033005046D+00
  7159. <a name="l07095"></a>07095 xtab(9) = 0.101326273521949447843033005046D+00
  7160. <a name="l07096"></a>07096 xtab(10) = 0.299830468900763208098353454722D+00
  7161. <a name="l07097"></a>07097 xtab(11) = 0.486059421887137611781890785847D+00
  7162. <a name="l07098"></a>07098 xtab(12) = 0.652388702882493089467883219641D+00
  7163. <a name="l07099"></a>07099 xtab(13) = 0.792008291861815063931088270963D+00
  7164. <a name="l07100"></a>07100 xtab(14) = 0.899200533093472092994628261520D+00
  7165. <a name="l07101"></a>07101 xtab(15) = 0.969568046270217932952242738367D+00
  7166. <a name="l07102"></a>07102 xtab(16) = 1.0D+00
  7167. <a name="l07103"></a>07103
  7168. <a name="l07104"></a>07104 weight(1) = 0.833333333333333333333333333333D-02
  7169. <a name="l07105"></a>07105 weight(2) = 0.508503610059199054032449195655D-01
  7170. <a name="l07106"></a>07106 weight(3) = 0.893936973259308009910520801661D-01
  7171. <a name="l07107"></a>07107 weight(4) = 0.124255382132514098349536332657D+00
  7172. <a name="l07108"></a>07108 weight(5) = 0.154026980807164280815644940485D+00
  7173. <a name="l07109"></a>07109 weight(6) = 0.177491913391704125301075669528D+00
  7174. <a name="l07110"></a>07110 weight(7) = 0.193690023825203584316913598854D+00
  7175. <a name="l07111"></a>07111 weight(8) = 0.201958308178229871489199125411D+00
  7176. <a name="l07112"></a>07112 weight(9) = 0.201958308178229871489199125411D+00
  7177. <a name="l07113"></a>07113 weight(10) = 0.193690023825203584316913598854D+00
  7178. <a name="l07114"></a>07114 weight(11) = 0.177491913391704125301075669528D+00
  7179. <a name="l07115"></a>07115 weight(12) = 0.154026980807164280815644940485D+00
  7180. <a name="l07116"></a>07116 weight(13) = 0.124255382132514098349536332657D+00
  7181. <a name="l07117"></a>07117 weight(14) = 0.893936973259308009910520801661D-01
  7182. <a name="l07118"></a>07118 weight(15) = 0.508503610059199054032449195655D-01
  7183. <a name="l07119"></a>07119 weight(16) = 0.833333333333333333333333333333D-02
  7184. <a name="l07120"></a>07120
  7185. <a name="l07121"></a>07121 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 17 ) <span class="keyword">then</span>
  7186. <a name="l07122"></a>07122
  7187. <a name="l07123"></a>07123 xtab(1) = - 1.0D+00
  7188. <a name="l07124"></a>07124 xtab(2) = - 0.973132176631418314156979501874D+00
  7189. <a name="l07125"></a>07125 xtab(3) = - 0.910879995915573595623802506398D+00
  7190. <a name="l07126"></a>07126 xtab(4) = - 0.815696251221770307106750553238D+00
  7191. <a name="l07127"></a>07127 xtab(5) = - 0.691028980627684705394919357372D+00
  7192. <a name="l07128"></a>07128 xtab(6) = - 0.541385399330101539123733407504D+00
  7193. <a name="l07129"></a>07129 xtab(7) = - 0.372174433565477041907234680735D+00
  7194. <a name="l07130"></a>07130 xtab(8) = - 0.189511973518317388304263014753D+00
  7195. <a name="l07131"></a>07131 xtab(9) = 0.0D+00
  7196. <a name="l07132"></a>07132 xtab(10) = 0.189511973518317388304263014753D+00
  7197. <a name="l07133"></a>07133 xtab(11) = 0.372174433565477041907234680735D+00
  7198. <a name="l07134"></a>07134 xtab(12) = 0.541385399330101539123733407504D+00
  7199. <a name="l07135"></a>07135 xtab(13) = 0.691028980627684705394919357372D+00
  7200. <a name="l07136"></a>07136 xtab(14) = 0.815696251221770307106750553238D+00
  7201. <a name="l07137"></a>07137 xtab(15) = 0.910879995915573595623802506398D+00
  7202. <a name="l07138"></a>07138 xtab(16) = 0.973132176631418314156979501874D+00
  7203. <a name="l07139"></a>07139 xtab(17) = 1.0D+00
  7204. <a name="l07140"></a>07140
  7205. <a name="l07141"></a>07141 weight(1) = 0.735294117647058823529411764706D-02
  7206. <a name="l07142"></a>07142 weight(2) = 0.449219405432542096474009546232D-01
  7207. <a name="l07143"></a>07143 weight(3) = 0.791982705036871191902644299528D-01
  7208. <a name="l07144"></a>07144 weight(4) = 0.110592909007028161375772705220D+00
  7209. <a name="l07145"></a>07145 weight(5) = 0.137987746201926559056201574954D+00
  7210. <a name="l07146"></a>07146 weight(6) = 0.160394661997621539516328365865D+00
  7211. <a name="l07147"></a>07147 weight(7) = 0.177004253515657870436945745363D+00
  7212. <a name="l07148"></a>07148 weight(8) = 0.187216339677619235892088482861D+00
  7213. <a name="l07149"></a>07149 weight(9) = 0.190661874753469433299407247028D+00
  7214. <a name="l07150"></a>07150 weight(10) = 0.187216339677619235892088482861D+00
  7215. <a name="l07151"></a>07151 weight(11) = 0.177004253515657870436945745363D+00
  7216. <a name="l07152"></a>07152 weight(12) = 0.160394661997621539516328365865D+00
  7217. <a name="l07153"></a>07153 weight(13) = 0.137987746201926559056201574954D+00
  7218. <a name="l07154"></a>07154 weight(14) = 0.110592909007028161375772705220D+00
  7219. <a name="l07155"></a>07155 weight(15) = 0.791982705036871191902644299528D-01
  7220. <a name="l07156"></a>07156 weight(16) = 0.449219405432542096474009546232D-01
  7221. <a name="l07157"></a>07157 weight(17) = 0.735294117647058823529411764706D-02
  7222. <a name="l07158"></a>07158
  7223. <a name="l07159"></a>07159 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 18 ) <span class="keyword">then</span>
  7224. <a name="l07160"></a>07160
  7225. <a name="l07161"></a>07161 xtab(1) = - 1.0D+00
  7226. <a name="l07162"></a>07162 xtab(2) = - 0.976105557412198542864518924342D+00
  7227. <a name="l07163"></a>07163 xtab(3) = - 0.920649185347533873837854625431D+00
  7228. <a name="l07164"></a>07164 xtab(4) = - 0.835593535218090213713646362328D+00
  7229. <a name="l07165"></a>07165 xtab(5) = - 0.723679329283242681306210365302D+00
  7230. <a name="l07166"></a>07166 xtab(6) = - 0.588504834318661761173535893194D+00
  7231. <a name="l07167"></a>07167 xtab(7) = - 0.434415036912123975342287136741D+00
  7232. <a name="l07168"></a>07168 xtab(8) = - 0.266362652878280984167665332026D+00
  7233. <a name="l07169"></a>07169 xtab(9) = - 0.897490934846521110226450100886D-01
  7234. <a name="l07170"></a>07170 xtab(10) = 0.897490934846521110226450100886D-01
  7235. <a name="l07171"></a>07171 xtab(11) = 0.266362652878280984167665332026D+00
  7236. <a name="l07172"></a>07172 xtab(12) = 0.434415036912123975342287136741D+00
  7237. <a name="l07173"></a>07173 xtab(13) = 0.588504834318661761173535893194D+00
  7238. <a name="l07174"></a>07174 xtab(14) = 0.723679329283242681306210365302D+00
  7239. <a name="l07175"></a>07175 xtab(15) = 0.835593535218090213713646362328D+00
  7240. <a name="l07176"></a>07176 xtab(16) = 0.920649185347533873837854625431D+00
  7241. <a name="l07177"></a>07177 xtab(17) = 0.976105557412198542864518924342D+00
  7242. <a name="l07178"></a>07178 xtab(18) = 1.0D+00
  7243. <a name="l07179"></a>07179
  7244. <a name="l07180"></a>07180 weight(1) = 0.653594771241830065359477124183D-02
  7245. <a name="l07181"></a>07181 weight(2) = 0.399706288109140661375991764101D-01
  7246. <a name="l07182"></a>07182 weight(3) = 0.706371668856336649992229601678D-01
  7247. <a name="l07183"></a>07183 weight(4) = 0.990162717175028023944236053187D-01
  7248. <a name="l07184"></a>07184 weight(5) = 0.124210533132967100263396358897D+00
  7249. <a name="l07185"></a>07185 weight(6) = 0.145411961573802267983003210494D+00
  7250. <a name="l07186"></a>07186 weight(7) = 0.161939517237602489264326706700D+00
  7251. <a name="l07187"></a>07187 weight(8) = 0.173262109489456226010614403827D+00
  7252. <a name="l07188"></a>07188 weight(9) = 0.179015863439703082293818806944D+00
  7253. <a name="l07189"></a>07189 weight(10) = 0.179015863439703082293818806944D+00
  7254. <a name="l07190"></a>07190 weight(11) = 0.173262109489456226010614403827D+00
  7255. <a name="l07191"></a>07191 weight(12) = 0.161939517237602489264326706700D+00
  7256. <a name="l07192"></a>07192 weight(13) = 0.145411961573802267983003210494D+00
  7257. <a name="l07193"></a>07193 weight(14) = 0.124210533132967100263396358897D+00
  7258. <a name="l07194"></a>07194 weight(15) = 0.990162717175028023944236053187D-01
  7259. <a name="l07195"></a>07195 weight(16) = 0.706371668856336649992229601678D-01
  7260. <a name="l07196"></a>07196 weight(17) = 0.399706288109140661375991764101D-01
  7261. <a name="l07197"></a>07197 weight(18) = 0.653594771241830065359477124183D-02
  7262. <a name="l07198"></a>07198
  7263. <a name="l07199"></a>07199 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 19 ) <span class="keyword">then</span>
  7264. <a name="l07200"></a>07200
  7265. <a name="l07201"></a>07201 xtab(1) = - 1.0D+00
  7266. <a name="l07202"></a>07202 xtab(2) = - 0.978611766222080095152634063110D+00
  7267. <a name="l07203"></a>07203 xtab(3) = - 0.928901528152586243717940258797D+00
  7268. <a name="l07204"></a>07204 xtab(4) = - 0.852460577796646093085955970041D+00
  7269. <a name="l07205"></a>07205 xtab(5) = - 0.751494202552613014163637489634D+00
  7270. <a name="l07206"></a>07206 xtab(6) = - 0.628908137265220497766832306229D+00
  7271. <a name="l07207"></a>07207 xtab(7) = - 0.488229285680713502777909637625D+00
  7272. <a name="l07208"></a>07208 xtab(8) = - 0.333504847824498610298500103845D+00
  7273. <a name="l07209"></a>07209 xtab(9) = - 0.169186023409281571375154153445D+00
  7274. <a name="l07210"></a>07210 xtab(10) = 0.0D+00
  7275. <a name="l07211"></a>07211 xtab(11) = 0.169186023409281571375154153445D+00
  7276. <a name="l07212"></a>07212 xtab(12) = 0.333504847824498610298500103845D+00
  7277. <a name="l07213"></a>07213 xtab(13) = 0.488229285680713502777909637625D+00
  7278. <a name="l07214"></a>07214 xtab(14) = 0.628908137265220497766832306229D+00
  7279. <a name="l07215"></a>07215 xtab(15) = 0.751494202552613014163637489634D+00
  7280. <a name="l07216"></a>07216 xtab(16) = 0.852460577796646093085955970041D+00
  7281. <a name="l07217"></a>07217 xtab(17) = 0.928901528152586243717940258797D+00
  7282. <a name="l07218"></a>07218 xtab(18) = 0.978611766222080095152634063110D+00
  7283. <a name="l07219"></a>07219 xtab(19) = 1.0D+00
  7284. <a name="l07220"></a>07220
  7285. <a name="l07221"></a>07221 weight(1) = 0.584795321637426900584795321637D-02
  7286. <a name="l07222"></a>07222 weight(2) = 0.357933651861764771154255690351D-01
  7287. <a name="l07223"></a>07223 weight(3) = 0.633818917626297368516956904183D-01
  7288. <a name="l07224"></a>07224 weight(4) = 0.891317570992070844480087905562D-01
  7289. <a name="l07225"></a>07225 weight(5) = 0.112315341477305044070910015464D+00
  7290. <a name="l07226"></a>07226 weight(6) = 0.132267280448750776926046733910D+00
  7291. <a name="l07227"></a>07227 weight(7) = 0.148413942595938885009680643668D+00
  7292. <a name="l07228"></a>07228 weight(8) = 0.160290924044061241979910968184D+00
  7293. <a name="l07229"></a>07229 weight(9) = 0.167556584527142867270137277740D+00
  7294. <a name="l07230"></a>07230 weight(10) = 0.170001919284827234644672715617D+00
  7295. <a name="l07231"></a>07231 weight(11) = 0.167556584527142867270137277740D+00
  7296. <a name="l07232"></a>07232 weight(12) = 0.160290924044061241979910968184D+00
  7297. <a name="l07233"></a>07233 weight(13) = 0.148413942595938885009680643668D+00
  7298. <a name="l07234"></a>07234 weight(14) = 0.132267280448750776926046733910D+00
  7299. <a name="l07235"></a>07235 weight(15) = 0.112315341477305044070910015464D+00
  7300. <a name="l07236"></a>07236 weight(16) = 0.891317570992070844480087905562D-01
  7301. <a name="l07237"></a>07237 weight(17) = 0.633818917626297368516956904183D-01
  7302. <a name="l07238"></a>07238 weight(18) = 0.357933651861764771154255690351D-01
  7303. <a name="l07239"></a>07239 weight(19) = 0.584795321637426900584795321637D-02
  7304. <a name="l07240"></a>07240
  7305. <a name="l07241"></a>07241 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 20 ) <span class="keyword">then</span>
  7306. <a name="l07242"></a>07242
  7307. <a name="l07243"></a>07243 xtab(1) = - 1.0D+00
  7308. <a name="l07244"></a>07244 xtab(2) = - 0.980743704893914171925446438584D+00
  7309. <a name="l07245"></a>07245 xtab(3) = - 0.935934498812665435716181584931D+00
  7310. <a name="l07246"></a>07246 xtab(4) = - 0.866877978089950141309847214616D+00
  7311. <a name="l07247"></a>07247 xtab(5) = - 0.775368260952055870414317527595D+00
  7312. <a name="l07248"></a>07248 xtab(6) = - 0.663776402290311289846403322971D+00
  7313. <a name="l07249"></a>07249 xtab(7) = - 0.534992864031886261648135961829D+00
  7314. <a name="l07250"></a>07250 xtab(8) = - 0.392353183713909299386474703816D+00
  7315. <a name="l07251"></a>07251 xtab(9) = - 0.239551705922986495182401356927D+00
  7316. <a name="l07252"></a>07252 xtab(10) = - 0.805459372388218379759445181596D-01
  7317. <a name="l07253"></a>07253 xtab(11) = 0.805459372388218379759445181596D-01
  7318. <a name="l07254"></a>07254 xtab(12) = 0.239551705922986495182401356927D+00
  7319. <a name="l07255"></a>07255 xtab(13) = 0.392353183713909299386474703816D+00
  7320. <a name="l07256"></a>07256 xtab(14) = 0.534992864031886261648135961829D+00
  7321. <a name="l07257"></a>07257 xtab(15) = 0.663776402290311289846403322971D+00
  7322. <a name="l07258"></a>07258 xtab(16) = 0.775368260952055870414317527595D+00
  7323. <a name="l07259"></a>07259 xtab(17) = 0.866877978089950141309847214616D+00
  7324. <a name="l07260"></a>07260 xtab(18) = 0.935934498812665435716181584931D+00
  7325. <a name="l07261"></a>07261 xtab(19) = 0.980743704893914171925446438584D+00
  7326. <a name="l07262"></a>07262 xtab(20) = 1.0D+00
  7327. <a name="l07263"></a>07263
  7328. <a name="l07264"></a>07264 weight(1) = 0.526315789473684210526315789474D-02
  7329. <a name="l07265"></a>07265 weight(2) = 0.322371231884889414916050281173D-01
  7330. <a name="l07266"></a>07266 weight(3) = 0.571818021275668260047536271732D-01
  7331. <a name="l07267"></a>07267 weight(4) = 0.806317639961196031447768461137D-01
  7332. <a name="l07268"></a>07268 weight(5) = 0.101991499699450815683781205733D+00
  7333. <a name="l07269"></a>07269 weight(6) = 0.120709227628674725099429705002D+00
  7334. <a name="l07270"></a>07270 weight(7) = 0.136300482358724184489780792989D+00
  7335. <a name="l07271"></a>07271 weight(8) = 0.148361554070916825814713013734D+00
  7336. <a name="l07272"></a>07272 weight(9) = 0.156580102647475487158169896794D+00
  7337. <a name="l07273"></a>07273 weight(10) = 0.160743286387845749007726726449D+00
  7338. <a name="l07274"></a>07274 weight(11) = 0.160743286387845749007726726449D+00
  7339. <a name="l07275"></a>07275 weight(12) = 0.156580102647475487158169896794D+00
  7340. <a name="l07276"></a>07276 weight(13) = 0.148361554070916825814713013734D+00
  7341. <a name="l07277"></a>07277 weight(14) = 0.136300482358724184489780792989D+00
  7342. <a name="l07278"></a>07278 weight(15) = 0.120709227628674725099429705002D+00
  7343. <a name="l07279"></a>07279 weight(16) = 0.101991499699450815683781205733D+00
  7344. <a name="l07280"></a>07280 weight(17) = 0.806317639961196031447768461137D-01
  7345. <a name="l07281"></a>07281 weight(18) = 0.571818021275668260047536271732D-01
  7346. <a name="l07282"></a>07282 weight(19) = 0.322371231884889414916050281173D-01
  7347. <a name="l07283"></a>07283 weight(20) = 0.526315789473684210526315789474D-02
  7348. <a name="l07284"></a>07284
  7349. <a name="l07285"></a>07285 <span class="keyword">else</span>
  7350. <a name="l07286"></a>07286
  7351. <a name="l07287"></a>07287 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  7352. <a name="l07288"></a>07288 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;LOBATTO_SET - Fatal error!&#39;</span>
  7353. <a name="l07289"></a>07289 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  7354. <a name="l07290"></a>07290 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; Legal values are between 2 and 20.&#39;</span>
  7355. <a name="l07291"></a>07291 stop
  7356. <a name="l07292"></a>07292
  7357. <a name="l07293"></a>07293 <span class="keyword">end if</span>
  7358. <a name="l07294"></a>07294
  7359. <a name="l07295"></a>07295 return
  7360. <a name="l07296"></a>07296 <span class="keyword">end</span>
  7361. <a name="l07297"></a><a class="code" href="quadrule_8f90.html#a6bd375a88b7077d216c6532d98f9425c">07297</a> <span class="keyword">function </span>log_gamma ( x )
  7362. <a name="l07298"></a>07298 <span class="comment">!</span>
  7363. <a name="l07299"></a>07299 <span class="comment">!*******************************************************************************</span>
  7364. <a name="l07300"></a>07300 <span class="comment">!</span>
  7365. <a name="l07301"></a>07301 <span class="comment">!! LOG_GAMMA calculates the natural logarithm of GAMMA(X).</span>
  7366. <a name="l07302"></a>07302 <span class="comment">!</span>
  7367. <a name="l07303"></a>07303 <span class="comment">!</span>
  7368. <a name="l07304"></a>07304 <span class="comment">! Discussion:</span>
  7369. <a name="l07305"></a>07305 <span class="comment">!</span>
  7370. <a name="l07306"></a>07306 <span class="comment">! The method uses Stirling&#39;s approximation, and is accurate to about</span>
  7371. <a name="l07307"></a>07307 <span class="comment">! 12 decimal places.</span>
  7372. <a name="l07308"></a>07308 <span class="comment">!</span>
  7373. <a name="l07309"></a>07309 <span class="comment">! Reference:</span>
  7374. <a name="l07310"></a>07310 <span class="comment">!</span>
  7375. <a name="l07311"></a>07311 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  7376. <a name="l07312"></a>07312 <span class="comment">! Gaussian Quadrature Formulas,</span>
  7377. <a name="l07313"></a>07313 <span class="comment">! Prentice Hall, 1966.</span>
  7378. <a name="l07314"></a>07314 <span class="comment">!</span>
  7379. <a name="l07315"></a>07315 <span class="comment">! Modified:</span>
  7380. <a name="l07316"></a>07316 <span class="comment">!</span>
  7381. <a name="l07317"></a>07317 <span class="comment">! 19 September 1998</span>
  7382. <a name="l07318"></a>07318 <span class="comment">!</span>
  7383. <a name="l07319"></a>07319 <span class="comment">! Parameters:</span>
  7384. <a name="l07320"></a>07320 <span class="comment">!</span>
  7385. <a name="l07321"></a>07321 <span class="comment">! Input, double precision X, the evaluation point. The routine</span>
  7386. <a name="l07322"></a>07322 <span class="comment">! will fail if GAMMA(X) is not positive. X should be greater than 0.</span>
  7387. <a name="l07323"></a>07323 <span class="comment">!</span>
  7388. <a name="l07324"></a>07324 <span class="comment">! Output, double precision LOG_GAMMA, the natural logarithm of the</span>
  7389. <a name="l07325"></a>07325 <span class="comment">! gamma function of X.</span>
  7390. <a name="l07326"></a>07326 <span class="comment">!</span>
  7391. <a name="l07327"></a>07327 <span class="keyword">implicit none</span>
  7392. <a name="l07328"></a>07328 <span class="comment">!</span>
  7393. <a name="l07329"></a>07329 <span class="keywordtype">double precision</span> d_pi
  7394. <a name="l07330"></a>07330 <span class="keywordtype">integer</span> i
  7395. <a name="l07331"></a>07331 <span class="keywordtype">integer</span> k
  7396. <a name="l07332"></a>07332 <span class="keywordtype">double precision</span> log_gamma
  7397. <a name="l07333"></a>07333 <span class="keywordtype">integer</span> m
  7398. <a name="l07334"></a>07334 <span class="keywordtype">double precision</span> p
  7399. <a name="l07335"></a>07335 <span class="keywordtype">double precision</span> x
  7400. <a name="l07336"></a>07336 <span class="keywordtype">double precision</span> x2
  7401. <a name="l07337"></a>07337 <span class="keywordtype">double precision</span> y
  7402. <a name="l07338"></a>07338 <span class="keywordtype">double precision</span> z
  7403. <a name="l07339"></a>07339 <span class="comment">!</span>
  7404. <a name="l07340"></a>07340 <span class="keyword">if</span> ( x &lt; 0.5 ) <span class="keyword">then</span>
  7405. <a name="l07341"></a>07341
  7406. <a name="l07342"></a>07342 m = 1
  7407. <a name="l07343"></a>07343 x2 = 1.0D+00 - x
  7408. <a name="l07344"></a>07344
  7409. <a name="l07345"></a>07345 <span class="keyword">else</span>
  7410. <a name="l07346"></a>07346
  7411. <a name="l07347"></a>07347 m = 0
  7412. <a name="l07348"></a>07348 x2 = x
  7413. <a name="l07349"></a>07349
  7414. <a name="l07350"></a>07350 <span class="keyword">end if</span>
  7415. <a name="l07351"></a>07351
  7416. <a name="l07352"></a>07352 k = - 1
  7417. <a name="l07353"></a>07353
  7418. <a name="l07354"></a>07354 <span class="keyword">do</span>
  7419. <a name="l07355"></a>07355
  7420. <a name="l07356"></a>07356 k = k + 1
  7421. <a name="l07357"></a>07357
  7422. <a name="l07358"></a>07358 <span class="keyword">if</span> ( x2 + dble ( k ) &gt; 6.0D+00 ) <span class="keyword">then</span>
  7423. <a name="l07359"></a>07359 exit
  7424. <a name="l07360"></a>07360 <span class="keyword">end if</span>
  7425. <a name="l07361"></a>07361
  7426. <a name="l07362"></a>07362 <span class="keyword">end do</span>
  7427. <a name="l07363"></a>07363
  7428. <a name="l07364"></a>07364 z = x2 + dble ( k )
  7429. <a name="l07365"></a>07365
  7430. <a name="l07366"></a>07366 y = ( z - 0.5 ) * log ( z ) - z + 0.9189385332047D+00 + &amp;
  7431. <a name="l07367"></a>07367 ( ( ( ( ( &amp;
  7432. <a name="l07368"></a>07368 - 4146.0D+00 / z**2 &amp;
  7433. <a name="l07369"></a>07369 + 1820.0D+00 ) / z**2 &amp;
  7434. <a name="l07370"></a>07370 - 1287.0D+00 ) / z**2 &amp;
  7435. <a name="l07371"></a>07371 + 1716.0D+00 ) / z**2 &amp;
  7436. <a name="l07372"></a>07372 - 6006.0D+00 ) / z**2 &amp;
  7437. <a name="l07373"></a>07373 + 180180.0D+00 ) / z / 2162160.0D+00
  7438. <a name="l07374"></a>07374
  7439. <a name="l07375"></a>07375 <span class="keyword">if</span> ( k &gt; 0 ) <span class="keyword">then</span>
  7440. <a name="l07376"></a>07376
  7441. <a name="l07377"></a>07377 <span class="keyword">do</span> i = 1, k
  7442. <a name="l07378"></a>07378 y = y - log ( x2 + dble ( k - i ) )
  7443. <a name="l07379"></a>07379 <span class="keyword">end do</span>
  7444. <a name="l07380"></a>07380
  7445. <a name="l07381"></a>07381 <span class="keyword">end if</span>
  7446. <a name="l07382"></a>07382
  7447. <a name="l07383"></a>07383 <span class="keyword">if</span> ( m /= 0 ) <span class="keyword">then</span>
  7448. <a name="l07384"></a>07384
  7449. <a name="l07385"></a>07385 p = d_pi ( ) / sin ( d_pi ( ) * ( 1.0D+00 - x2 ) )
  7450. <a name="l07386"></a>07386
  7451. <a name="l07387"></a>07387 <span class="keyword">if</span> ( p &lt;= 0.0D+00 ) <span class="keyword">then</span>
  7452. <a name="l07388"></a>07388
  7453. <a name="l07389"></a>07389 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  7454. <a name="l07390"></a>07390 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;LOG_GAMMA - fatal error!&#39;</span>
  7455. <a name="l07391"></a>07391 stop
  7456. <a name="l07392"></a>07392
  7457. <a name="l07393"></a>07393 <span class="keyword">else</span>
  7458. <a name="l07394"></a>07394
  7459. <a name="l07395"></a>07395 y = log ( p ) - y
  7460. <a name="l07396"></a>07396
  7461. <a name="l07397"></a>07397 <span class="keyword">end if</span>
  7462. <a name="l07398"></a>07398
  7463. <a name="l07399"></a>07399 <span class="keyword">end if</span>
  7464. <a name="l07400"></a>07400
  7465. <a name="l07401"></a>07401 log_gamma = y
  7466. <a name="l07402"></a>07402
  7467. <a name="l07403"></a>07403 return
  7468. <a name="l07404"></a>07404 <span class="keyword">end</span>
  7469. <a name="l07405"></a><a class="code" href="quadrule_8f90.html#a7b182dbe7e6b57c218f9a6d3f89b5130">07405</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a7b182dbe7e6b57c218f9a6d3f89b5130">moulton_set</a> ( norder, xtab, weight )
  7470. <a name="l07406"></a>07406 <span class="comment">!</span>
  7471. <a name="l07407"></a>07407 <span class="comment">!*******************************************************************************</span>
  7472. <a name="l07408"></a>07408 <span class="comment">!</span>
  7473. <a name="l07409"></a>07409 <span class="comment">!! MOULTON_SET sets weights for Adams-Moulton quadrature.</span>
  7474. <a name="l07410"></a>07410 <span class="comment">!</span>
  7475. <a name="l07411"></a>07411 <span class="comment">!</span>
  7476. <a name="l07412"></a>07412 <span class="comment">! Definition:</span>
  7477. <a name="l07413"></a>07413 <span class="comment">!</span>
  7478. <a name="l07414"></a>07414 <span class="comment">! Adams-Moulton quadrature formulas are normally used in solving</span>
  7479. <a name="l07415"></a>07415 <span class="comment">! ordinary differential equations, and are not suitable for general</span>
  7480. <a name="l07416"></a>07416 <span class="comment">! quadrature computations. However, an Adams-Moulton formula is</span>
  7481. <a name="l07417"></a>07417 <span class="comment">! equivalent to approximating the integral of F(Y(X)) between X(M)</span>
  7482. <a name="l07418"></a>07418 <span class="comment">! and X(M+1), using an implicit formula that relies on known values</span>
  7483. <a name="l07419"></a>07419 <span class="comment">! of F(Y(X)) at X(M-N+1) through X(M), plus the unknown value at X(M+1).</span>
  7484. <a name="l07420"></a>07420 <span class="comment">!</span>
  7485. <a name="l07421"></a>07421 <span class="comment">! Suppose the unknown function is denoted by Y(X), with derivative F(Y(X)),</span>
  7486. <a name="l07422"></a>07422 <span class="comment">! and that approximate values of the function are known at a series of</span>
  7487. <a name="l07423"></a>07423 <span class="comment">! X values, which we write as X(1), X(2), ..., X(M). We write the value</span>
  7488. <a name="l07424"></a>07424 <span class="comment">! Y(X(1)) as Y(1) and so on.</span>
  7489. <a name="l07425"></a>07425 <span class="comment">!</span>
  7490. <a name="l07426"></a>07426 <span class="comment">! Then the solution of the ODE Y&#39; = F(X,Y) at the next point X(M+1) is</span>
  7491. <a name="l07427"></a>07427 <span class="comment">! computed by:</span>
  7492. <a name="l07428"></a>07428 <span class="comment">!</span>
  7493. <a name="l07429"></a>07429 <span class="comment">! Y(M+1) = Y(M) + Integral ( X(M) &lt; X &lt; X(M+1) ) F(Y(X)) dX</span>
  7494. <a name="l07430"></a>07430 <span class="comment">! = Y(M) + H * Sum ( I = 1 to N ) W(I) * F(Y(M+2-I)) approximately.</span>
  7495. <a name="l07431"></a>07431 <span class="comment">!</span>
  7496. <a name="l07432"></a>07432 <span class="comment">! Note that this formula is implicit, since the unknown value Y(M+1)</span>
  7497. <a name="l07433"></a>07433 <span class="comment">! appears on the right hand side. Hence, in ODE applications, this</span>
  7498. <a name="l07434"></a>07434 <span class="comment">! equation must be solved via a nonlinear equation solver. For</span>
  7499. <a name="l07435"></a>07435 <span class="comment">! quadrature problems, where the function to be integrated is known</span>
  7500. <a name="l07436"></a>07436 <span class="comment">! beforehand, this is not a problem, and the calculation is explicit.</span>
  7501. <a name="l07437"></a>07437 <span class="comment">!</span>
  7502. <a name="l07438"></a>07438 <span class="comment">! In the documentation that follows, we replace F(Y(X)) by F(X).</span>
  7503. <a name="l07439"></a>07439 <span class="comment">!</span>
  7504. <a name="l07440"></a>07440 <span class="comment">! Integration interval:</span>
  7505. <a name="l07441"></a>07441 <span class="comment">!</span>
  7506. <a name="l07442"></a>07442 <span class="comment">! [ 0, 1 ]</span>
  7507. <a name="l07443"></a>07443 <span class="comment">!</span>
  7508. <a name="l07444"></a>07444 <span class="comment">! Weight function:</span>
  7509. <a name="l07445"></a>07445 <span class="comment">!</span>
  7510. <a name="l07446"></a>07446 <span class="comment">! 1.0D+00</span>
  7511. <a name="l07447"></a>07447 <span class="comment">!</span>
  7512. <a name="l07448"></a>07448 <span class="comment">! Integral to approximate:</span>
  7513. <a name="l07449"></a>07449 <span class="comment">!</span>
  7514. <a name="l07450"></a>07450 <span class="comment">! Integral ( 0 &lt;= X &lt;= 1 ) F(X) dX</span>
  7515. <a name="l07451"></a>07451 <span class="comment">!</span>
  7516. <a name="l07452"></a>07452 <span class="comment">! Approximate integral:</span>
  7517. <a name="l07453"></a>07453 <span class="comment">!</span>
  7518. <a name="l07454"></a>07454 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( 2 - I )</span>
  7519. <a name="l07455"></a>07455 <span class="comment">!</span>
  7520. <a name="l07456"></a>07456 <span class="comment">! Note:</span>
  7521. <a name="l07457"></a>07457 <span class="comment">!</span>
  7522. <a name="l07458"></a>07458 <span class="comment">! The Adams-Moulton formulas require equally spaced data.</span>
  7523. <a name="l07459"></a>07459 <span class="comment">!</span>
  7524. <a name="l07460"></a>07460 <span class="comment">! Here is how the formula is applied in the case with non-unit spacing:</span>
  7525. <a name="l07461"></a>07461 <span class="comment">!</span>
  7526. <a name="l07462"></a>07462 <span class="comment">! Integral ( A &lt;= X &lt;= A+H ) F(X) dX =</span>
  7527. <a name="l07463"></a>07463 <span class="comment">! H * Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( A - (I-2)*H ), approximately.</span>
  7528. <a name="l07464"></a>07464 <span class="comment">!</span>
  7529. <a name="l07465"></a>07465 <span class="comment">! Reference:</span>
  7530. <a name="l07466"></a>07466 <span class="comment">!</span>
  7531. <a name="l07467"></a>07467 <span class="comment">! Abramowitz and Stegun,</span>
  7532. <a name="l07468"></a>07468 <span class="comment">! Handbook of Mathematical Functions,</span>
  7533. <a name="l07469"></a>07469 <span class="comment">! National Bureau of Standards, 1964,</span>
  7534. <a name="l07470"></a>07470 <span class="comment">! page 915 (&quot;Lagrangian Integration Coefficients&quot;).</span>
  7535. <a name="l07471"></a>07471 <span class="comment">!</span>
  7536. <a name="l07472"></a>07472 <span class="comment">! Jean Lapidus and John Seinfeld,</span>
  7537. <a name="l07473"></a>07473 <span class="comment">! Numerical Solution of Ordinary Differential Equations,</span>
  7538. <a name="l07474"></a>07474 <span class="comment">! Academic Press, 1971.</span>
  7539. <a name="l07475"></a>07475 <span class="comment">!</span>
  7540. <a name="l07476"></a>07476 <span class="comment">! Daniel Zwillinger, editor,</span>
  7541. <a name="l07477"></a>07477 <span class="comment">! Standard Mathematical Tables and Formulae,</span>
  7542. <a name="l07478"></a>07478 <span class="comment">! 30th Edition,</span>
  7543. <a name="l07479"></a>07479 <span class="comment">! CRC Press, 1996.</span>
  7544. <a name="l07480"></a>07480 <span class="comment">!</span>
  7545. <a name="l07481"></a>07481 <span class="comment">! Modified:</span>
  7546. <a name="l07482"></a>07482 <span class="comment">!</span>
  7547. <a name="l07483"></a>07483 <span class="comment">! 16 September 1998</span>
  7548. <a name="l07484"></a>07484 <span class="comment">!</span>
  7549. <a name="l07485"></a>07485 <span class="comment">! Author:</span>
  7550. <a name="l07486"></a>07486 <span class="comment">!</span>
  7551. <a name="l07487"></a>07487 <span class="comment">! John Burkardt</span>
  7552. <a name="l07488"></a>07488 <span class="comment">!</span>
  7553. <a name="l07489"></a>07489 <span class="comment">! Parameters:</span>
  7554. <a name="l07490"></a>07490 <span class="comment">!</span>
  7555. <a name="l07491"></a>07491 <span class="comment">! Input, integer NORDER, the order of the rule. NORDER must be</span>
  7556. <a name="l07492"></a>07492 <span class="comment">! between 1 and 10.</span>
  7557. <a name="l07493"></a>07493 <span class="comment">!</span>
  7558. <a name="l07494"></a>07494 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  7559. <a name="l07495"></a>07495 <span class="comment">!</span>
  7560. <a name="l07496"></a>07496 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  7561. <a name="l07497"></a>07497 <span class="comment">! WEIGHT(1) is the weight at X = 1, WEIGHT(2) the weight at X = 0, and so on.</span>
  7562. <a name="l07498"></a>07498 <span class="comment">! The weights are rational. The weights are not symmetric, and</span>
  7563. <a name="l07499"></a>07499 <span class="comment">! some weights may be negative. They should sum to 1.</span>
  7564. <a name="l07500"></a>07500 <span class="comment">!</span>
  7565. <a name="l07501"></a>07501 <span class="keyword">implicit none</span>
  7566. <a name="l07502"></a>07502 <span class="comment">!</span>
  7567. <a name="l07503"></a>07503 <span class="keywordtype">integer</span> norder
  7568. <a name="l07504"></a>07504 <span class="comment">!</span>
  7569. <a name="l07505"></a>07505 <span class="keywordtype">double precision</span> d
  7570. <a name="l07506"></a>07506 <span class="keywordtype">integer</span> i
  7571. <a name="l07507"></a>07507 <span class="keywordtype">double precision</span> weight(norder)
  7572. <a name="l07508"></a>07508 <span class="keywordtype">double precision</span> xtab(norder)
  7573. <a name="l07509"></a>07509 <span class="comment">!</span>
  7574. <a name="l07510"></a>07510 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  7575. <a name="l07511"></a>07511
  7576. <a name="l07512"></a>07512 weight(1) = 1.0D+00
  7577. <a name="l07513"></a>07513
  7578. <a name="l07514"></a>07514 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  7579. <a name="l07515"></a>07515
  7580. <a name="l07516"></a>07516 d = 2.0D+00
  7581. <a name="l07517"></a>07517
  7582. <a name="l07518"></a>07518 weight(1) = 1.0D+00 / d
  7583. <a name="l07519"></a>07519 weight(2) = 1.0D+00 / d
  7584. <a name="l07520"></a>07520
  7585. <a name="l07521"></a>07521 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  7586. <a name="l07522"></a>07522
  7587. <a name="l07523"></a>07523 d = 12.0D+00
  7588. <a name="l07524"></a>07524
  7589. <a name="l07525"></a>07525 weight(1) = 5.0D+00 / d
  7590. <a name="l07526"></a>07526 weight(2) = 8.0D+00 / d
  7591. <a name="l07527"></a>07527 weight(3) = - 1.0D+00 / d
  7592. <a name="l07528"></a>07528
  7593. <a name="l07529"></a>07529 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  7594. <a name="l07530"></a>07530
  7595. <a name="l07531"></a>07531 d = 24.0D+00
  7596. <a name="l07532"></a>07532
  7597. <a name="l07533"></a>07533 weight(1) = 9.0D+00 / d
  7598. <a name="l07534"></a>07534 weight(2) = 19.0D+00 / d
  7599. <a name="l07535"></a>07535 weight(3) = - 5.0D+00 / d
  7600. <a name="l07536"></a>07536 weight(4) = 1.0D+00 / d
  7601. <a name="l07537"></a>07537
  7602. <a name="l07538"></a>07538 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  7603. <a name="l07539"></a>07539
  7604. <a name="l07540"></a>07540 d = 720.0D+00
  7605. <a name="l07541"></a>07541
  7606. <a name="l07542"></a>07542 weight(1) = 251.0D+00 / d
  7607. <a name="l07543"></a>07543 weight(2) = 646.0D+00 / d
  7608. <a name="l07544"></a>07544 weight(3) = - 264.0D+00 / d
  7609. <a name="l07545"></a>07545 weight(4) = 106.0D+00 / d
  7610. <a name="l07546"></a>07546 weight(5) = - 19.0D+00 / d
  7611. <a name="l07547"></a>07547
  7612. <a name="l07548"></a>07548 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  7613. <a name="l07549"></a>07549
  7614. <a name="l07550"></a>07550 d = 1440.0D+00
  7615. <a name="l07551"></a>07551
  7616. <a name="l07552"></a>07552 weight(1) = 475.0D+00 / d
  7617. <a name="l07553"></a>07553 weight(2) = 1427.0D+00 / d
  7618. <a name="l07554"></a>07554 weight(3) = - 798.0D+00 / d
  7619. <a name="l07555"></a>07555 weight(4) = 482.0D+00 / d
  7620. <a name="l07556"></a>07556 weight(5) = - 173.0D+00 / d
  7621. <a name="l07557"></a>07557 weight(6) = 27.0D+00 / d
  7622. <a name="l07558"></a>07558
  7623. <a name="l07559"></a>07559 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  7624. <a name="l07560"></a>07560
  7625. <a name="l07561"></a>07561 d = 60480.0D+00
  7626. <a name="l07562"></a>07562
  7627. <a name="l07563"></a>07563 weight(1) = 19087.0D+00 / d
  7628. <a name="l07564"></a>07564 weight(2) = 65112.0D+00 / d
  7629. <a name="l07565"></a>07565 weight(3) = - 46461.0D+00 / d
  7630. <a name="l07566"></a>07566 weight(4) = 37504.0D+00 / d
  7631. <a name="l07567"></a>07567 weight(5) = - 20211.0D+00 / d
  7632. <a name="l07568"></a>07568 weight(6) = 6312.0D+00 / d
  7633. <a name="l07569"></a>07569 weight(7) = - 863.0D+00 / d
  7634. <a name="l07570"></a>07570
  7635. <a name="l07571"></a>07571 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  7636. <a name="l07572"></a>07572
  7637. <a name="l07573"></a>07573 d = 120960.0D+00
  7638. <a name="l07574"></a>07574
  7639. <a name="l07575"></a>07575 weight(1) = 36799.0D+00 / d
  7640. <a name="l07576"></a>07576 weight(2) = 139849.0D+00 / d
  7641. <a name="l07577"></a>07577 weight(3) = - 121797.0D+00 / d
  7642. <a name="l07578"></a>07578 weight(4) = 123133.0D+00 / d
  7643. <a name="l07579"></a>07579 weight(5) = - 88547.0D+00 / d
  7644. <a name="l07580"></a>07580 weight(6) = 41499.0D+00 / d
  7645. <a name="l07581"></a>07581 weight(7) = - 11351.0D+00 / d
  7646. <a name="l07582"></a>07582 weight(8) = 1375.0D+00 / d
  7647. <a name="l07583"></a>07583
  7648. <a name="l07584"></a>07584 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 9 ) <span class="keyword">then</span>
  7649. <a name="l07585"></a>07585
  7650. <a name="l07586"></a>07586 d = 3628800.0D+00
  7651. <a name="l07587"></a>07587
  7652. <a name="l07588"></a>07588 weight(1) = 1070017.0D+00 / d
  7653. <a name="l07589"></a>07589 weight(2) = 4467094.0D+00 / d
  7654. <a name="l07590"></a>07590 weight(3) = - 4604594.0D+00 / d
  7655. <a name="l07591"></a>07591 weight(4) = 5595358.0D+00 / d
  7656. <a name="l07592"></a>07592 weight(5) = - 5033120.0D+00 / d
  7657. <a name="l07593"></a>07593 weight(6) = 3146338.0D+00 / d
  7658. <a name="l07594"></a>07594 weight(7) = - 1291214.0D+00 / d
  7659. <a name="l07595"></a>07595 weight(8) = 312874.0D+00 / d
  7660. <a name="l07596"></a>07596 weight(9) = - 33953.0D+00 / d
  7661. <a name="l07597"></a>07597
  7662. <a name="l07598"></a>07598 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 10 ) <span class="keyword">then</span>
  7663. <a name="l07599"></a>07599
  7664. <a name="l07600"></a>07600 d = 7257600.0D+00
  7665. <a name="l07601"></a>07601
  7666. <a name="l07602"></a>07602 weight(1) = 2082753.0D+00 / d
  7667. <a name="l07603"></a>07603 weight(2) = 9449717.0D+00 / d
  7668. <a name="l07604"></a>07604 weight(3) = - 11271304.0D+00 / d
  7669. <a name="l07605"></a>07605 weight(4) = 16002320.0D+00 / d
  7670. <a name="l07606"></a>07606 weight(5) = - 17283646.0D+00 / d
  7671. <a name="l07607"></a>07607 weight(6) = 13510082.0D+00 / d
  7672. <a name="l07608"></a>07608 weight(7) = - 7394032.0D+00 / d
  7673. <a name="l07609"></a>07609 weight(8) = 2687864.0D+00 / d
  7674. <a name="l07610"></a>07610 weight(9) = - 583435.0D+00 / d
  7675. <a name="l07611"></a>07611 weight(10) = 57281.0D+00 / d
  7676. <a name="l07612"></a>07612
  7677. <a name="l07613"></a>07613 <span class="keyword">else</span>
  7678. <a name="l07614"></a>07614
  7679. <a name="l07615"></a>07615 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  7680. <a name="l07616"></a>07616 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;MOULTON_SET - Fatal error!&#39;</span>
  7681. <a name="l07617"></a>07617 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  7682. <a name="l07618"></a>07618 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; Legal values are 1 through 10.&#39;</span>
  7683. <a name="l07619"></a>07619 stop
  7684. <a name="l07620"></a>07620
  7685. <a name="l07621"></a>07621 <span class="keyword">end if</span>
  7686. <a name="l07622"></a>07622
  7687. <a name="l07623"></a>07623 <span class="keyword">do</span> i = 1, norder
  7688. <a name="l07624"></a>07624 xtab(i) = dble ( 2 - i )
  7689. <a name="l07625"></a>07625 <span class="keyword">end do</span>
  7690. <a name="l07626"></a>07626
  7691. <a name="l07627"></a>07627 return
  7692. <a name="l07628"></a>07628 <span class="keyword">end</span>
  7693. <a name="l07629"></a><a class="code" href="quadrule_8f90.html#a661d42ddf0d8116d8f9353e456918ca0">07629</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a661d42ddf0d8116d8f9353e456918ca0">ncc_com</a> ( norder, xtab, weight )
  7694. <a name="l07630"></a>07630 <span class="comment">!</span>
  7695. <a name="l07631"></a>07631 <span class="comment">!*******************************************************************************</span>
  7696. <a name="l07632"></a>07632 <span class="comment">!</span>
  7697. <a name="l07633"></a>07633 <span class="comment">!! NCC_COM computes the coefficients of a Newton-Cotes closed quadrature rule.</span>
  7698. <a name="l07634"></a>07634 <span class="comment">!</span>
  7699. <a name="l07635"></a>07635 <span class="comment">!</span>
  7700. <a name="l07636"></a>07636 <span class="comment">! Definition:</span>
  7701. <a name="l07637"></a>07637 <span class="comment">!</span>
  7702. <a name="l07638"></a>07638 <span class="comment">! For the interval [-1,1], the Newton-Cotes open quadrature rule</span>
  7703. <a name="l07639"></a>07639 <span class="comment">! estimates</span>
  7704. <a name="l07640"></a>07640 <span class="comment">!</span>
  7705. <a name="l07641"></a>07641 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) F(X) dX</span>
  7706. <a name="l07642"></a>07642 <span class="comment">!</span>
  7707. <a name="l07643"></a>07643 <span class="comment">! using NORDER equally spaced abscissas XTAB(I) and a weight vector</span>
  7708. <a name="l07644"></a>07644 <span class="comment">! WEIGHT(I):</span>
  7709. <a name="l07645"></a>07645 <span class="comment">!</span>
  7710. <a name="l07646"></a>07646 <span class="comment">! Sum ( I = 1 to N ) WEIGHT(I) * F ( XTAB(I) ).</span>
  7711. <a name="l07647"></a>07647 <span class="comment">!</span>
  7712. <a name="l07648"></a>07648 <span class="comment">! For the CLOSED rule, the abscissas include A and B.</span>
  7713. <a name="l07649"></a>07649 <span class="comment">!</span>
  7714. <a name="l07650"></a>07650 <span class="comment">! Modified:</span>
  7715. <a name="l07651"></a>07651 <span class="comment">!</span>
  7716. <a name="l07652"></a>07652 <span class="comment">! 25 September 1998</span>
  7717. <a name="l07653"></a>07653 <span class="comment">!</span>
  7718. <a name="l07654"></a>07654 <span class="comment">! Author:</span>
  7719. <a name="l07655"></a>07655 <span class="comment">!</span>
  7720. <a name="l07656"></a>07656 <span class="comment">! John Burkardt</span>
  7721. <a name="l07657"></a>07657 <span class="comment">!</span>
  7722. <a name="l07658"></a>07658 <span class="comment">! Parameters:</span>
  7723. <a name="l07659"></a>07659 <span class="comment">!</span>
  7724. <a name="l07660"></a>07660 <span class="comment">! Input, integer NORDER, the order of the rule, which should be</span>
  7725. <a name="l07661"></a>07661 <span class="comment">! at least 2.</span>
  7726. <a name="l07662"></a>07662 <span class="comment">!</span>
  7727. <a name="l07663"></a>07663 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  7728. <a name="l07664"></a>07664 <span class="comment">!</span>
  7729. <a name="l07665"></a>07665 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  7730. <a name="l07666"></a>07666 <span class="comment">!</span>
  7731. <a name="l07667"></a>07667 <span class="keyword">implicit none</span>
  7732. <a name="l07668"></a>07668 <span class="comment">!</span>
  7733. <a name="l07669"></a>07669 <span class="keywordtype">integer</span> norder
  7734. <a name="l07670"></a>07670 <span class="comment">!</span>
  7735. <a name="l07671"></a>07671 <span class="keywordtype">double precision</span> a
  7736. <a name="l07672"></a>07672 <span class="keywordtype">double precision</span> b
  7737. <a name="l07673"></a>07673 <span class="keywordtype">integer</span> i
  7738. <a name="l07674"></a>07674 <span class="keywordtype">double precision</span> weight(norder)
  7739. <a name="l07675"></a>07675 <span class="keywordtype">double precision</span> xtab(norder)
  7740. <a name="l07676"></a>07676 <span class="comment">!</span>
  7741. <a name="l07677"></a>07677 <span class="comment">! Compute a closed quadrature rule.</span>
  7742. <a name="l07678"></a>07678 <span class="comment">!</span>
  7743. <a name="l07679"></a>07679 a = -1.0D+00
  7744. <a name="l07680"></a>07680 b = 1.0D+00
  7745. <a name="l07681"></a>07681
  7746. <a name="l07682"></a>07682 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  7747. <a name="l07683"></a>07683
  7748. <a name="l07684"></a>07684 xtab(1) = 0.0D+00
  7749. <a name="l07685"></a>07685 weight(1) = 2.0D+00
  7750. <a name="l07686"></a>07686 return
  7751. <a name="l07687"></a>07687
  7752. <a name="l07688"></a>07688 <span class="keyword">else</span>
  7753. <a name="l07689"></a>07689
  7754. <a name="l07690"></a>07690 <span class="keyword">do</span> i = 1, norder
  7755. <a name="l07691"></a>07691 xtab(i) = ( dble ( norder - i ) * a + dble ( i - 1 ) * b ) / &amp;
  7756. <a name="l07692"></a>07692 dble ( norder - 1 )
  7757. <a name="l07693"></a>07693 <span class="keyword">end do</span>
  7758. <a name="l07694"></a>07694
  7759. <a name="l07695"></a>07695 <span class="keyword">end if</span>
  7760. <a name="l07696"></a>07696
  7761. <a name="l07697"></a>07697 call <a class="code" href="quadrule_8f90.html#a0b336aacd3856d5d5e724522dd3e6e8a">nc_com </a>( norder, a, b, xtab, weight )
  7762. <a name="l07698"></a>07698
  7763. <a name="l07699"></a>07699 return
  7764. <a name="l07700"></a>07700 <span class="keyword">end</span>
  7765. <a name="l07701"></a><a class="code" href="quadrule_8f90.html#a0b336aacd3856d5d5e724522dd3e6e8a">07701</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a0b336aacd3856d5d5e724522dd3e6e8a">nc_com</a> ( norder, a, b, xtab, weight )
  7766. <a name="l07702"></a>07702 <span class="comment">!</span>
  7767. <a name="l07703"></a>07703 <span class="comment">!*******************************************************************************</span>
  7768. <a name="l07704"></a>07704 <span class="comment">!</span>
  7769. <a name="l07705"></a>07705 <span class="comment">!! NC_COM computes the coefficients of a Newton-Cotes quadrature rule.</span>
  7770. <a name="l07706"></a>07706 <span class="comment">!</span>
  7771. <a name="l07707"></a>07707 <span class="comment">!</span>
  7772. <a name="l07708"></a>07708 <span class="comment">! Definition:</span>
  7773. <a name="l07709"></a>07709 <span class="comment">!</span>
  7774. <a name="l07710"></a>07710 <span class="comment">! For the interval [A,B], the Newton-Cotes quadrature rule estimates</span>
  7775. <a name="l07711"></a>07711 <span class="comment">!</span>
  7776. <a name="l07712"></a>07712 <span class="comment">! Integral ( A &lt;= X &lt;= B ) F(X) dX</span>
  7777. <a name="l07713"></a>07713 <span class="comment">!</span>
  7778. <a name="l07714"></a>07714 <span class="comment">! using NORDER equally spaced abscissas XTAB(I) and a weight vector</span>
  7779. <a name="l07715"></a>07715 <span class="comment">! WEIGHT(I):</span>
  7780. <a name="l07716"></a>07716 <span class="comment">!</span>
  7781. <a name="l07717"></a>07717 <span class="comment">! Sum ( I = 1 to N ) WEIGHT(I) * F ( XTAB(I) ).</span>
  7782. <a name="l07718"></a>07718 <span class="comment">!</span>
  7783. <a name="l07719"></a>07719 <span class="comment">! For the CLOSED rule, the abscissas include the points A and B.</span>
  7784. <a name="l07720"></a>07720 <span class="comment">! For the OPEN rule, the abscissas do not include A and B.</span>
  7785. <a name="l07721"></a>07721 <span class="comment">!</span>
  7786. <a name="l07722"></a>07722 <span class="comment">! Modified:</span>
  7787. <a name="l07723"></a>07723 <span class="comment">!</span>
  7788. <a name="l07724"></a>07724 <span class="comment">! 25 September 1998</span>
  7789. <a name="l07725"></a>07725 <span class="comment">!</span>
  7790. <a name="l07726"></a>07726 <span class="comment">! Author:</span>
  7791. <a name="l07727"></a>07727 <span class="comment">!</span>
  7792. <a name="l07728"></a>07728 <span class="comment">! John Burkardt</span>
  7793. <a name="l07729"></a>07729 <span class="comment">!</span>
  7794. <a name="l07730"></a>07730 <span class="comment">! Parameters:</span>
  7795. <a name="l07731"></a>07731 <span class="comment">!</span>
  7796. <a name="l07732"></a>07732 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  7797. <a name="l07733"></a>07733 <span class="comment">!</span>
  7798. <a name="l07734"></a>07734 <span class="comment">! Input, double precision A, B, the left and right endpoints of the interval</span>
  7799. <a name="l07735"></a>07735 <span class="comment">! over which the quadrature rule is to be applied.</span>
  7800. <a name="l07736"></a>07736 <span class="comment">!</span>
  7801. <a name="l07737"></a>07737 <span class="comment">! Input, double precision XTAB(NORDER), the abscissas of the rule.</span>
  7802. <a name="l07738"></a>07738 <span class="comment">!</span>
  7803. <a name="l07739"></a>07739 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  7804. <a name="l07740"></a>07740 <span class="comment">!</span>
  7805. <a name="l07741"></a>07741 <span class="keyword">implicit none</span>
  7806. <a name="l07742"></a>07742 <span class="comment">!</span>
  7807. <a name="l07743"></a>07743 <span class="keywordtype">integer</span> norder
  7808. <a name="l07744"></a>07744 <span class="comment">!</span>
  7809. <a name="l07745"></a>07745 <span class="keywordtype">double precision</span> a
  7810. <a name="l07746"></a>07746 <span class="keywordtype">double precision</span> b
  7811. <a name="l07747"></a>07747 <span class="keywordtype">double precision</span> diftab(norder)
  7812. <a name="l07748"></a>07748 <span class="keywordtype">integer</span> i
  7813. <a name="l07749"></a>07749 <span class="keywordtype">integer</span> j
  7814. <a name="l07750"></a>07750 <span class="keywordtype">integer</span> k
  7815. <a name="l07751"></a>07751 <span class="keywordtype">double precision</span> weight(norder)
  7816. <a name="l07752"></a>07752 <span class="keywordtype">double precision</span> xtab(norder)
  7817. <a name="l07753"></a>07753 <span class="keywordtype">double precision</span> yvala
  7818. <a name="l07754"></a>07754 <span class="keywordtype">double precision</span> yvalb
  7819. <a name="l07755"></a>07755 <span class="comment">!</span>
  7820. <a name="l07756"></a>07756 <span class="keyword">do</span> i = 1, norder
  7821. <a name="l07757"></a>07757 <span class="comment">!</span>
  7822. <a name="l07758"></a>07758 <span class="comment">! Compute the Lagrange basis polynomial which is 1 at XTAB(I),</span>
  7823. <a name="l07759"></a>07759 <span class="comment">! and zero at the other nodes.</span>
  7824. <a name="l07760"></a>07760 <span class="comment">!</span>
  7825. <a name="l07761"></a>07761 diftab(1:norder) = 0.0D+00
  7826. <a name="l07762"></a>07762 diftab(i) = 1.0D+00
  7827. <a name="l07763"></a>07763
  7828. <a name="l07764"></a>07764 <span class="keyword">do</span> j = 2, norder
  7829. <a name="l07765"></a>07765 <span class="keyword">do</span> k = j, norder
  7830. <a name="l07766"></a>07766 diftab(norder+j-k) = ( diftab(norder+j-k-1) - diftab(norder+j-k) ) &amp;
  7831. <a name="l07767"></a>07767 / ( xtab(norder+1-k) - xtab(norder+j-k) )
  7832. <a name="l07768"></a>07768 <span class="keyword">end do</span>
  7833. <a name="l07769"></a>07769 <span class="keyword">end do</span>
  7834. <a name="l07770"></a>07770
  7835. <a name="l07771"></a>07771 <span class="keyword">do</span> j = 1, norder-1
  7836. <a name="l07772"></a>07772 <span class="keyword">do</span> k = 1, norder-j
  7837. <a name="l07773"></a>07773 diftab(norder-k) = diftab(norder-k) - xtab(norder-k-j+1) * &amp;
  7838. <a name="l07774"></a>07774 diftab(norder-k+1)
  7839. <a name="l07775"></a>07775 <span class="keyword">end do</span>
  7840. <a name="l07776"></a>07776 <span class="keyword">end do</span>
  7841. <a name="l07777"></a>07777 <span class="comment">!</span>
  7842. <a name="l07778"></a>07778 <span class="comment">! Evaluate the antiderivative of the polynomial at the left and</span>
  7843. <a name="l07779"></a>07779 <span class="comment">! right endpoints.</span>
  7844. <a name="l07780"></a>07780 <span class="comment">!</span>
  7845. <a name="l07781"></a>07781 yvala = diftab(norder) / dble ( norder )
  7846. <a name="l07782"></a>07782 <span class="keyword">do</span> j = norder-1, 1, -1
  7847. <a name="l07783"></a>07783 yvala = yvala * a + diftab(j) / dble ( j )
  7848. <a name="l07784"></a>07784 <span class="keyword">end do</span>
  7849. <a name="l07785"></a>07785 yvala = yvala * a
  7850. <a name="l07786"></a>07786
  7851. <a name="l07787"></a>07787 yvalb = diftab(norder) / dble ( norder )
  7852. <a name="l07788"></a>07788 <span class="keyword">do</span> j = norder-1, 1, -1
  7853. <a name="l07789"></a>07789 yvalb = yvalb * b + diftab(j) / dble ( j )
  7854. <a name="l07790"></a>07790 <span class="keyword">end do</span>
  7855. <a name="l07791"></a>07791 yvalb = yvalb * b
  7856. <a name="l07792"></a>07792
  7857. <a name="l07793"></a>07793 weight(i) = yvalb - yvala
  7858. <a name="l07794"></a>07794
  7859. <a name="l07795"></a>07795 <span class="keyword">end do</span>
  7860. <a name="l07796"></a>07796
  7861. <a name="l07797"></a>07797 return
  7862. <a name="l07798"></a>07798 <span class="keyword">end</span>
  7863. <a name="l07799"></a><a class="code" href="quadrule_8f90.html#a45c034914a08b905c6dbe38d8ef5c5d9">07799</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a45c034914a08b905c6dbe38d8ef5c5d9">ncc_set</a> ( norder, xtab, weight )
  7864. <a name="l07800"></a>07800 <span class="comment">!</span>
  7865. <a name="l07801"></a>07801 <span class="comment">!*******************************************************************************</span>
  7866. <a name="l07802"></a>07802 <span class="comment">!</span>
  7867. <a name="l07803"></a>07803 <span class="comment">!! NCC_SET sets abscissas and weights for closed Newton-Cotes quadrature.</span>
  7868. <a name="l07804"></a>07804 <span class="comment">!</span>
  7869. <a name="l07805"></a>07805 <span class="comment">!</span>
  7870. <a name="l07806"></a>07806 <span class="comment">! Integration interval:</span>
  7871. <a name="l07807"></a>07807 <span class="comment">!</span>
  7872. <a name="l07808"></a>07808 <span class="comment">! [ -1, 1 ]</span>
  7873. <a name="l07809"></a>07809 <span class="comment">!</span>
  7874. <a name="l07810"></a>07810 <span class="comment">! Weight function:</span>
  7875. <a name="l07811"></a>07811 <span class="comment">!</span>
  7876. <a name="l07812"></a>07812 <span class="comment">! 1.0D+00</span>
  7877. <a name="l07813"></a>07813 <span class="comment">!</span>
  7878. <a name="l07814"></a>07814 <span class="comment">! Integral to approximate:</span>
  7879. <a name="l07815"></a>07815 <span class="comment">!</span>
  7880. <a name="l07816"></a>07816 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) F(X) dX</span>
  7881. <a name="l07817"></a>07817 <span class="comment">!</span>
  7882. <a name="l07818"></a>07818 <span class="comment">! Approximate integral:</span>
  7883. <a name="l07819"></a>07819 <span class="comment">!</span>
  7884. <a name="l07820"></a>07820 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  7885. <a name="l07821"></a>07821 <span class="comment">!</span>
  7886. <a name="l07822"></a>07822 <span class="comment">! Note:</span>
  7887. <a name="l07823"></a>07823 <span class="comment">!</span>
  7888. <a name="l07824"></a>07824 <span class="comment">! The closed Newton-Cotes rules use equally spaced abscissas, and</span>
  7889. <a name="l07825"></a>07825 <span class="comment">! hence may be used with tabulated function data.</span>
  7890. <a name="l07826"></a>07826 <span class="comment">!</span>
  7891. <a name="l07827"></a>07827 <span class="comment">! The rules are called &quot;closed&quot; because they include the endpoints.</span>
  7892. <a name="l07828"></a>07828 <span class="comment">!</span>
  7893. <a name="l07829"></a>07829 <span class="comment">! The higher order rules involve negative weights. These can produce</span>
  7894. <a name="l07830"></a>07830 <span class="comment">! loss of accuracy due to the subtraction of large, nearly equal quantities.</span>
  7895. <a name="l07831"></a>07831 <span class="comment">!</span>
  7896. <a name="l07832"></a>07832 <span class="comment">! NORDER = 2 is the trapezoidal rule.</span>
  7897. <a name="l07833"></a>07833 <span class="comment">! NORDER = 3 is Simpson&#39;s rule.</span>
  7898. <a name="l07834"></a>07834 <span class="comment">! NORDER = 4 is Simpson&#39;s 3/8 rule.</span>
  7899. <a name="l07835"></a>07835 <span class="comment">! NORDER = 5 is Bode&#39;s rule.</span>
  7900. <a name="l07836"></a>07836 <span class="comment">!</span>
  7901. <a name="l07837"></a>07837 <span class="comment">! The Kopal reference for NORDER = 12 lists</span>
  7902. <a name="l07838"></a>07838 <span class="comment">! WEIGHT(6) = 15494566.0D+00 / 43545600.0D+00</span>
  7903. <a name="l07839"></a>07839 <span class="comment">! but this results in a set of coeffients that don&#39;t add up to 2.</span>
  7904. <a name="l07840"></a>07840 <span class="comment">! The correct value is</span>
  7905. <a name="l07841"></a>07841 <span class="comment">! WEIGHT(6) = 15493566.0D+00 / 43545600.0.</span>
  7906. <a name="l07842"></a>07842 <span class="comment">!</span>
  7907. <a name="l07843"></a>07843 <span class="comment">! Reference:</span>
  7908. <a name="l07844"></a>07844 <span class="comment">!</span>
  7909. <a name="l07845"></a>07845 <span class="comment">! Abramowitz and Stegun,</span>
  7910. <a name="l07846"></a>07846 <span class="comment">! Handbook of Mathematical Functions,</span>
  7911. <a name="l07847"></a>07847 <span class="comment">! National Bureau of Standards, 1964.</span>
  7912. <a name="l07848"></a>07848 <span class="comment">!</span>
  7913. <a name="l07849"></a>07849 <span class="comment">! Johnson,</span>
  7914. <a name="l07850"></a>07850 <span class="comment">! Quarterly Journal of Mathematics,</span>
  7915. <a name="l07851"></a>07851 <span class="comment">! Volume 46, Number 52, 1915.</span>
  7916. <a name="l07852"></a>07852 <span class="comment">!</span>
  7917. <a name="l07853"></a>07853 <span class="comment">! Zdenek Kopal,</span>
  7918. <a name="l07854"></a>07854 <span class="comment">! Numerical Analysis,</span>
  7919. <a name="l07855"></a>07855 <span class="comment">! John Wiley, 1955.</span>
  7920. <a name="l07856"></a>07856 <span class="comment">!</span>
  7921. <a name="l07857"></a>07857 <span class="comment">! Daniel Zwillinger, editor,</span>
  7922. <a name="l07858"></a>07858 <span class="comment">! Standard Mathematical Tables and Formulae,</span>
  7923. <a name="l07859"></a>07859 <span class="comment">! 30th Edition,</span>
  7924. <a name="l07860"></a>07860 <span class="comment">! CRC Press, 1996.</span>
  7925. <a name="l07861"></a>07861 <span class="comment">!</span>
  7926. <a name="l07862"></a>07862 <span class="comment">! Modified:</span>
  7927. <a name="l07863"></a>07863 <span class="comment">!</span>
  7928. <a name="l07864"></a>07864 <span class="comment">! 16 September 1998</span>
  7929. <a name="l07865"></a>07865 <span class="comment">!</span>
  7930. <a name="l07866"></a>07866 <span class="comment">! Author:</span>
  7931. <a name="l07867"></a>07867 <span class="comment">!</span>
  7932. <a name="l07868"></a>07868 <span class="comment">! John Burkardt</span>
  7933. <a name="l07869"></a>07869 <span class="comment">!</span>
  7934. <a name="l07870"></a>07870 <span class="comment">! Parameters:</span>
  7935. <a name="l07871"></a>07871 <span class="comment">!</span>
  7936. <a name="l07872"></a>07872 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  7937. <a name="l07873"></a>07873 <span class="comment">! NORDER must be between 2 and 20.</span>
  7938. <a name="l07874"></a>07874 <span class="comment">!</span>
  7939. <a name="l07875"></a>07875 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  7940. <a name="l07876"></a>07876 <span class="comment">! The abscissas are uniformly spaced in the interval, and include</span>
  7941. <a name="l07877"></a>07877 <span class="comment">! -1 and 1.</span>
  7942. <a name="l07878"></a>07878 <span class="comment">!</span>
  7943. <a name="l07879"></a>07879 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  7944. <a name="l07880"></a>07880 <span class="comment">! The weights are symmetric, rational, and should sum to 2.0.</span>
  7945. <a name="l07881"></a>07881 <span class="comment">! Some weights may be negative.</span>
  7946. <a name="l07882"></a>07882 <span class="comment">!</span>
  7947. <a name="l07883"></a>07883 <span class="keyword">implicit none</span>
  7948. <a name="l07884"></a>07884 <span class="comment">!</span>
  7949. <a name="l07885"></a>07885 <span class="keywordtype">integer</span> norder
  7950. <a name="l07886"></a>07886 <span class="comment">!</span>
  7951. <a name="l07887"></a>07887 <span class="keywordtype">double precision</span> d
  7952. <a name="l07888"></a>07888 <span class="keywordtype">integer</span> i
  7953. <a name="l07889"></a>07889 <span class="keywordtype">double precision</span> weight(norder)
  7954. <a name="l07890"></a>07890 <span class="keywordtype">double precision</span> xtab(norder)
  7955. <a name="l07891"></a>07891 <span class="comment">!</span>
  7956. <a name="l07892"></a>07892 <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  7957. <a name="l07893"></a>07893
  7958. <a name="l07894"></a>07894 weight(1) = 1.0D+00
  7959. <a name="l07895"></a>07895 weight(2) = 1.0D+00
  7960. <a name="l07896"></a>07896
  7961. <a name="l07897"></a>07897 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  7962. <a name="l07898"></a>07898
  7963. <a name="l07899"></a>07899 d = 3.0D+00
  7964. <a name="l07900"></a>07900
  7965. <a name="l07901"></a>07901 weight(1) = 1.0D+00 / d
  7966. <a name="l07902"></a>07902 weight(2) = 4.0D+00 / d
  7967. <a name="l07903"></a>07903 weight(3) = 1.0D+00 / d
  7968. <a name="l07904"></a>07904
  7969. <a name="l07905"></a>07905 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  7970. <a name="l07906"></a>07906
  7971. <a name="l07907"></a>07907 d = 4.0D+00
  7972. <a name="l07908"></a>07908
  7973. <a name="l07909"></a>07909 weight(1) = 1.0D+00 / d
  7974. <a name="l07910"></a>07910 weight(2) = 3.0D+00 / d
  7975. <a name="l07911"></a>07911 weight(3) = 3.0D+00 / d
  7976. <a name="l07912"></a>07912 weight(4) = 1.0D+00 / d
  7977. <a name="l07913"></a>07913
  7978. <a name="l07914"></a>07914 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  7979. <a name="l07915"></a>07915
  7980. <a name="l07916"></a>07916 d = 45.0D+00
  7981. <a name="l07917"></a>07917
  7982. <a name="l07918"></a>07918 weight(1) = 7.0D+00 / d
  7983. <a name="l07919"></a>07919 weight(2) = 32.0D+00 / d
  7984. <a name="l07920"></a>07920 weight(3) = 12.0D+00 / d
  7985. <a name="l07921"></a>07921 weight(4) = 32.0D+00 / d
  7986. <a name="l07922"></a>07922 weight(5) = 7.0D+00 / d
  7987. <a name="l07923"></a>07923
  7988. <a name="l07924"></a>07924 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  7989. <a name="l07925"></a>07925
  7990. <a name="l07926"></a>07926 d = 144.0D+00
  7991. <a name="l07927"></a>07927
  7992. <a name="l07928"></a>07928 weight(1) = 19.0D+00 / d
  7993. <a name="l07929"></a>07929 weight(2) = 75.0D+00 / d
  7994. <a name="l07930"></a>07930 weight(3) = 50.0D+00 / d
  7995. <a name="l07931"></a>07931 weight(4) = 50.0D+00 / d
  7996. <a name="l07932"></a>07932 weight(5) = 75.0D+00 / d
  7997. <a name="l07933"></a>07933 weight(6) = 19.0D+00 / d
  7998. <a name="l07934"></a>07934
  7999. <a name="l07935"></a>07935 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  8000. <a name="l07936"></a>07936
  8001. <a name="l07937"></a>07937 d = 420.0D+00
  8002. <a name="l07938"></a>07938
  8003. <a name="l07939"></a>07939 weight(1) = 41.0D+00 / d
  8004. <a name="l07940"></a>07940 weight(2) = 216.0D+00 / d
  8005. <a name="l07941"></a>07941 weight(3) = 27.0D+00 / d
  8006. <a name="l07942"></a>07942 weight(4) = 272.0D+00 / d
  8007. <a name="l07943"></a>07943 weight(5) = 27.0D+00 / d
  8008. <a name="l07944"></a>07944 weight(6) = 216.0D+00 / d
  8009. <a name="l07945"></a>07945 weight(7) = 41.0D+00 / d
  8010. <a name="l07946"></a>07946
  8011. <a name="l07947"></a>07947 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  8012. <a name="l07948"></a>07948
  8013. <a name="l07949"></a>07949 d = 8640.0D+00
  8014. <a name="l07950"></a>07950
  8015. <a name="l07951"></a>07951 weight(1) = 751.0D+00 / d
  8016. <a name="l07952"></a>07952 weight(2) = 3577.0D+00 / d
  8017. <a name="l07953"></a>07953 weight(3) = 1323.0D+00 / d
  8018. <a name="l07954"></a>07954 weight(4) = 2989.0D+00 / d
  8019. <a name="l07955"></a>07955 weight(5) = 2989.0D+00 / d
  8020. <a name="l07956"></a>07956 weight(6) = 1323.0D+00 / d
  8021. <a name="l07957"></a>07957 weight(7) = 3577.0D+00 / d
  8022. <a name="l07958"></a>07958 weight(8) = 751.0D+00 / d
  8023. <a name="l07959"></a>07959
  8024. <a name="l07960"></a>07960 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 9 ) <span class="keyword">then</span>
  8025. <a name="l07961"></a>07961
  8026. <a name="l07962"></a>07962 d = 14175.0D+00
  8027. <a name="l07963"></a>07963
  8028. <a name="l07964"></a>07964 weight(1) = 989.0D+00 / d
  8029. <a name="l07965"></a>07965 weight(2) = 5888.0D+00 / d
  8030. <a name="l07966"></a>07966 weight(3) = - 928.0D+00 / d
  8031. <a name="l07967"></a>07967 weight(4) = 10496.0D+00 / d
  8032. <a name="l07968"></a>07968 weight(5) = - 4540.0D+00 / d
  8033. <a name="l07969"></a>07969 weight(6) = 10496.0D+00 / d
  8034. <a name="l07970"></a>07970 weight(7) = - 928.0D+00 / d
  8035. <a name="l07971"></a>07971 weight(8) = 5888.0D+00 / d
  8036. <a name="l07972"></a>07972 weight(9) = 989.0D+00 / d
  8037. <a name="l07973"></a>07973
  8038. <a name="l07974"></a>07974 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 10 ) <span class="keyword">then</span>
  8039. <a name="l07975"></a>07975
  8040. <a name="l07976"></a>07976 d = 44800.0D+00
  8041. <a name="l07977"></a>07977
  8042. <a name="l07978"></a>07978 weight(1) = 2857.0D+00 / d
  8043. <a name="l07979"></a>07979 weight(2) = 15741.0D+00 / d
  8044. <a name="l07980"></a>07980 weight(3) = 1080.0D+00 / d
  8045. <a name="l07981"></a>07981 weight(4) = 19344.0D+00 / d
  8046. <a name="l07982"></a>07982 weight(5) = 5778.0D+00 / d
  8047. <a name="l07983"></a>07983 weight(6) = 5778.0D+00 / d
  8048. <a name="l07984"></a>07984 weight(7) = 19344.0D+00 / d
  8049. <a name="l07985"></a>07985 weight(8) = 1080.0D+00 / d
  8050. <a name="l07986"></a>07986 weight(9) = 15741.0D+00 / d
  8051. <a name="l07987"></a>07987 weight(10) = 2857.0D+00 / d
  8052. <a name="l07988"></a>07988
  8053. <a name="l07989"></a>07989 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 11 ) <span class="keyword">then</span>
  8054. <a name="l07990"></a>07990
  8055. <a name="l07991"></a>07991 d = 299376.0D+00
  8056. <a name="l07992"></a>07992
  8057. <a name="l07993"></a>07993 weight(1) = 16067.0D+00 / d
  8058. <a name="l07994"></a>07994 weight(2) = 106300.0D+00 / d
  8059. <a name="l07995"></a>07995 weight(3) = - 48525.0D+00 / d
  8060. <a name="l07996"></a>07996 weight(4) = 272400.0D+00 / d
  8061. <a name="l07997"></a>07997 weight(5) = - 260550.0D+00 / d
  8062. <a name="l07998"></a>07998 weight(6) = 427368.0D+00 / d
  8063. <a name="l07999"></a>07999 weight(7) = - 260550.0D+00 / d
  8064. <a name="l08000"></a>08000 weight(8) = 272400.0D+00 / d
  8065. <a name="l08001"></a>08001 weight(9) = - 48525.0D+00 / d
  8066. <a name="l08002"></a>08002 weight(10) = 106300.0D+00 / d
  8067. <a name="l08003"></a>08003 weight(11) = 16067.0D+00 / d
  8068. <a name="l08004"></a>08004
  8069. <a name="l08005"></a>08005 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 12 ) <span class="keyword">then</span>
  8070. <a name="l08006"></a>08006
  8071. <a name="l08007"></a>08007 d = 43545600.0D+00
  8072. <a name="l08008"></a>08008
  8073. <a name="l08009"></a>08009 weight(1) = 2171465.0D+00 / d
  8074. <a name="l08010"></a>08010 weight(2) = 13486539.0D+00 / d
  8075. <a name="l08011"></a>08011 weight(3) = - 3237113.0D+00 / d
  8076. <a name="l08012"></a>08012 weight(4) = 25226685.0D+00 / d
  8077. <a name="l08013"></a>08013 weight(5) = - 9595542.0D+00 / d
  8078. <a name="l08014"></a>08014 weight(6) = 15493566.0D+00 / d
  8079. <a name="l08015"></a>08015 weight(7) = 15493566.0D+00 / d
  8080. <a name="l08016"></a>08016 weight(8) = - 9595542.0D+00 / d
  8081. <a name="l08017"></a>08017 weight(9) = 25226685.0D+00 / d
  8082. <a name="l08018"></a>08018 weight(10) = - 3237113.0D+00 / d
  8083. <a name="l08019"></a>08019 weight(11) = 13486539.0D+00 / d
  8084. <a name="l08020"></a>08020 weight(12) = 2171465.0D+00 / d
  8085. <a name="l08021"></a>08021
  8086. <a name="l08022"></a>08022 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 13 ) <span class="keyword">then</span>
  8087. <a name="l08023"></a>08023
  8088. <a name="l08024"></a>08024 d = 31531500.0D+00
  8089. <a name="l08025"></a>08025
  8090. <a name="l08026"></a>08026 weight(1) = 1364651.0D+00 / d
  8091. <a name="l08027"></a>08027 weight(2) = 9903168.0D+00 / d
  8092. <a name="l08028"></a>08028 weight(3) = - 7587864.0D+00 / d
  8093. <a name="l08029"></a>08029 weight(4) = 35725120.0D+00 / d
  8094. <a name="l08030"></a>08030 weight(5) = - 51491295.0D+00 / d
  8095. <a name="l08031"></a>08031 weight(6) = 87516288.0D+00 / d
  8096. <a name="l08032"></a>08032 weight(7) = - 87797136.0D+00 / d
  8097. <a name="l08033"></a>08033 weight(8) = 87516288.0D+00 / d
  8098. <a name="l08034"></a>08034 weight(9) = - 51491295.0D+00 / d
  8099. <a name="l08035"></a>08035 weight(10) = 35725120.0D+00 / d
  8100. <a name="l08036"></a>08036 weight(11) = - 7587864.0D+00 / d
  8101. <a name="l08037"></a>08037 weight(12) = 9903168.0D+00 / d
  8102. <a name="l08038"></a>08038 weight(13) = 1364651.0D+00 / d
  8103. <a name="l08039"></a>08039
  8104. <a name="l08040"></a>08040 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 14 ) <span class="keyword">then</span>
  8105. <a name="l08041"></a>08041
  8106. <a name="l08042"></a>08042 d = 150885504000.0D+00
  8107. <a name="l08043"></a>08043
  8108. <a name="l08044"></a>08044 weight(1) = 6137698213.0D+00 / d
  8109. <a name="l08045"></a>08045 weight(2) = 42194238652.0D+00 / d
  8110. <a name="l08046"></a>08046 weight(3) = - 23361540993.0D+00 / d
  8111. <a name="l08047"></a>08047 weight(4) = 116778274403.0D+00 / d
  8112. <a name="l08048"></a>08048 weight(5) = - 113219777650.0D+00 / d
  8113. <a name="l08049"></a>08049 weight(6) = 154424590209.0D+00 / d
  8114. <a name="l08050"></a>08050 weight(7) = - 32067978834.0D+00 / d
  8115. <a name="l08051"></a>08051 weight(8) = - 32067978834.0D+00 / d
  8116. <a name="l08052"></a>08052 weight(9) = 154424590209.0D+00 / d
  8117. <a name="l08053"></a>08053 weight(10) = - 113219777650.0D+00 / d
  8118. <a name="l08054"></a>08054 weight(11) = 116778274403.0D+00 / d
  8119. <a name="l08055"></a>08055 weight(12) = - 23361540993.0D+00 / d
  8120. <a name="l08056"></a>08056 weight(13) = 42194238652.0D+00 / d
  8121. <a name="l08057"></a>08057 weight(14) = 6137698213.0D+00 / d
  8122. <a name="l08058"></a>08058
  8123. <a name="l08059"></a>08059 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 15 ) <span class="keyword">then</span>
  8124. <a name="l08060"></a>08060
  8125. <a name="l08061"></a>08061 d = 2501928000.0D+00
  8126. <a name="l08062"></a>08062
  8127. <a name="l08063"></a>08063 weight(1) = 90241897.0D+00 / d
  8128. <a name="l08064"></a>08064 weight(2) = 710986864.0D+00 / d
  8129. <a name="l08065"></a>08065 weight(3) = - 770720657.0D+00 / d
  8130. <a name="l08066"></a>08066 weight(4) = 3501442784.0D+00 / d
  8131. <a name="l08067"></a>08067 weight(5) = - 6625093363.0D+00 / d
  8132. <a name="l08068"></a>08068 weight(6) = 12630121616.0D+00 / d
  8133. <a name="l08069"></a>08069 weight(7) = - 16802270373.0D+00 / d
  8134. <a name="l08070"></a>08070 weight(8) = 19534438464.0D+00 / d
  8135. <a name="l08071"></a>08071 weight(9) = - 16802270373.0D+00 / d
  8136. <a name="l08072"></a>08072 weight(10) = 12630121616.0D+00 / d
  8137. <a name="l08073"></a>08073 weight(11) = - 6625093363.0D+00 / d
  8138. <a name="l08074"></a>08074 weight(12) = 3501442784.0D+00 / d
  8139. <a name="l08075"></a>08075 weight(13) = - 770720657.0D+00 / d
  8140. <a name="l08076"></a>08076 weight(14) = 710986864.0D+00 / d
  8141. <a name="l08077"></a>08077 weight(15) = 90241897.0D+00 / d
  8142. <a name="l08078"></a>08078
  8143. <a name="l08079"></a>08079 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 16 ) <span class="keyword">then</span>
  8144. <a name="l08080"></a>08080
  8145. <a name="l08081"></a>08081 d = 3099672576.0D+00
  8146. <a name="l08082"></a>08082
  8147. <a name="l08083"></a>08083 weight(1) = 105930069.0D+00 / d
  8148. <a name="l08084"></a>08084 weight(2) = 796661595.0D+00 / d
  8149. <a name="l08085"></a>08085 weight(3) = - 698808195.0D+00 / d
  8150. <a name="l08086"></a>08086 weight(4) = 3143332755.0D+00 / d
  8151. <a name="l08087"></a>08087 weight(5) = - 4688522055.0D+00 / d
  8152. <a name="l08088"></a>08088 weight(6) = 7385654007.0D+00 / d
  8153. <a name="l08089"></a>08089 weight(7) = - 6000998415.0D+00 / d
  8154. <a name="l08090"></a>08090 weight(8) = 3056422815.0D+00 / d
  8155. <a name="l08091"></a>08091 weight(9) = 3056422815.0D+00 / d
  8156. <a name="l08092"></a>08092 weight(10) = - 6000998415.0D+00 / d
  8157. <a name="l08093"></a>08093 weight(11) = 7385654007.0D+00 / d
  8158. <a name="l08094"></a>08094 weight(12) = - 4688522055.0D+00 / d
  8159. <a name="l08095"></a>08095 weight(13) = 3143332755.0D+00 / d
  8160. <a name="l08096"></a>08096 weight(14) = - 698808195.0D+00 / d
  8161. <a name="l08097"></a>08097 weight(15) = 796661595.0D+00 / d
  8162. <a name="l08098"></a>08098 weight(16) = 105930069.0D+00 / d
  8163. <a name="l08099"></a>08099
  8164. <a name="l08100"></a>08100 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 17 ) <span class="keyword">then</span>
  8165. <a name="l08101"></a>08101
  8166. <a name="l08102"></a>08102 d = 488462349375.0D+00
  8167. <a name="l08103"></a>08103
  8168. <a name="l08104"></a>08104 weight(1) = 15043611773.0D+00 / d
  8169. <a name="l08105"></a>08105 weight(2) = 127626606592.0D+00 / d
  8170. <a name="l08106"></a>08106 weight(3) = - 179731134720.0D+00 / d
  8171. <a name="l08107"></a>08107 weight(4) = 832211855360.0D+00 / d
  8172. <a name="l08108"></a>08108 weight(5) = - 1929498607520.0D+00 / d
  8173. <a name="l08109"></a>08109 weight(6) = 4177588893696.0D+00 / d
  8174. <a name="l08110"></a>08110 weight(7) = - 6806534407936.0D+00 / d
  8175. <a name="l08111"></a>08111 weight(8) = 9368875018240.0D+00 / d
  8176. <a name="l08112"></a>08112 weight(9) = - 10234238972220.0D+00 / d
  8177. <a name="l08113"></a>08113 weight(10) = 9368875018240.0D+00 / d
  8178. <a name="l08114"></a>08114 weight(11) = - 6806534407936.0D+00 / d
  8179. <a name="l08115"></a>08115 weight(12) = 4177588893696.0D+00 / d
  8180. <a name="l08116"></a>08116 weight(13) = - 1929498607520.0D+00 / d
  8181. <a name="l08117"></a>08117 weight(14) = 832211855360.0D+00 / d
  8182. <a name="l08118"></a>08118 weight(15) = - 179731134720.0D+00 / d
  8183. <a name="l08119"></a>08119 weight(16) = 127626606592.0D+00 / d
  8184. <a name="l08120"></a>08120 weight(17) = 15043611773.0D+00 / d
  8185. <a name="l08121"></a>08121
  8186. <a name="l08122"></a>08122 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 18 ) <span class="keyword">then</span>
  8187. <a name="l08123"></a>08123
  8188. <a name="l08124"></a>08124 d = 1883051089920000.0D+00
  8189. <a name="l08125"></a>08125
  8190. <a name="l08126"></a>08126 weight(1) = 55294720874657.0D+00 / d
  8191. <a name="l08127"></a>08127 weight(2) = 450185515446285.0D+00 / d
  8192. <a name="l08128"></a>08128 weight(3) = - 542023437008852.0D+00 / d
  8193. <a name="l08129"></a>08129 weight(4) = 2428636525764260.0D+00 / d
  8194. <a name="l08130"></a>08130 weight(5) = - 4768916800123440.0D+00 / d
  8195. <a name="l08131"></a>08131 weight(6) = 8855416648684984.0D+00 / d
  8196. <a name="l08132"></a>08132 weight(7) = - 10905371859796660.0D+00 / d
  8197. <a name="l08133"></a>08133 weight(8) = 10069615750132836.0D+00 / d
  8198. <a name="l08134"></a>08134 weight(9) = - 3759785974054070.0D+00 / d
  8199. <a name="l08135"></a>08135 weight(10) = - 3759785974054070.0D+00 / d
  8200. <a name="l08136"></a>08136 weight(11) = 10069615750132836.0D+00 / d
  8201. <a name="l08137"></a>08137 weight(12) = - 10905371859796660.0D+00 / d
  8202. <a name="l08138"></a>08138 weight(13) = 8855416648684984.0D+00 / d
  8203. <a name="l08139"></a>08139 weight(14) = - 4768916800123440.0D+00 / d
  8204. <a name="l08140"></a>08140 weight(15) = 2428636525764260.0D+00 / d
  8205. <a name="l08141"></a>08141 weight(16) = - 542023437008852.0D+00 / d
  8206. <a name="l08142"></a>08142 weight(17) = 450185515446285.0D+00 / d
  8207. <a name="l08143"></a>08143 weight(18) = 55294720874657.0D+00 / d
  8208. <a name="l08144"></a>08144
  8209. <a name="l08145"></a>08145 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 19 ) <span class="keyword">then</span>
  8210. <a name="l08146"></a>08146
  8211. <a name="l08147"></a>08147 d = 7604556960000.0D+00
  8212. <a name="l08148"></a>08148
  8213. <a name="l08149"></a>08149 weight(1) = 203732352169.0D+00 / d
  8214. <a name="l08150"></a>08150 weight(2) = 1848730221900.0D+00 / d
  8215. <a name="l08151"></a>08151 weight(3) = - 3212744374395.0D+00 / d
  8216. <a name="l08152"></a>08152 weight(4) = 15529830312096.0D+00 / d
  8217. <a name="l08153"></a>08153 weight(5) = - 42368630685840.0D+00 / d
  8218. <a name="l08154"></a>08154 weight(6) = 103680563465808.0D+00 / d
  8219. <a name="l08155"></a>08155 weight(7) = - 198648429867720.0D+00 / d
  8220. <a name="l08156"></a>08156 weight(8) = 319035784479840.0D+00 / d
  8221. <a name="l08157"></a>08157 weight(9) = - 419127951114198.0D+00 / d
  8222. <a name="l08158"></a>08158 weight(10) = 461327344340680.0D+00 / d
  8223. <a name="l08159"></a>08159 weight(11) = - 419127951114198.0D+00 / d
  8224. <a name="l08160"></a>08160 weight(12) = 319035784479840.0D+00 / d
  8225. <a name="l08161"></a>08161 weight(13) = - 198648429867720.0D+00 / d
  8226. <a name="l08162"></a>08162 weight(14) = 103680563465808.0D+00 / d
  8227. <a name="l08163"></a>08163 weight(15) = - 42368630685840.0D+00 / d
  8228. <a name="l08164"></a>08164 weight(16) = 15529830312096.0D+00 / d
  8229. <a name="l08165"></a>08165 weight(17) = - 3212744374395.0D+00 / d
  8230. <a name="l08166"></a>08166 weight(18) = 1848730221900.0D+00 / d
  8231. <a name="l08167"></a>08167 weight(19) = 203732352169.0D+00 / d
  8232. <a name="l08168"></a>08168
  8233. <a name="l08169"></a>08169 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 20 ) <span class="keyword">then</span>
  8234. <a name="l08170"></a>08170
  8235. <a name="l08171"></a>08171 d = 2688996956405760000.0D+00
  8236. <a name="l08172"></a>08172
  8237. <a name="l08173"></a>08173 weight(1) = 69028763155644023.0D+00 / d
  8238. <a name="l08174"></a>08174 weight(2) = 603652082270808125.0D+00 / d
  8239. <a name="l08175"></a>08175 weight(3) = - 926840515700222955.0D+00 / d
  8240. <a name="l08176"></a>08176 weight(4) = 4301581538450500095.0D+00 / d
  8241. <a name="l08177"></a>08177 weight(5) = - 10343692234243192788.0D+00 / d
  8242. <a name="l08178"></a>08178 weight(6) = 22336420328479961316.0D+00 / d
  8243. <a name="l08179"></a>08179 weight(7) = - 35331888421114781580.0D+00 / d
  8244. <a name="l08180"></a>08180 weight(8) = 43920768370565135580.0D+00 / d
  8245. <a name="l08181"></a>08181 weight(9) = - 37088370261379851390.0D+00 / d
  8246. <a name="l08182"></a>08182 weight(10) = 15148337305921759574.0D+00 / d
  8247. <a name="l08183"></a>08183 weight(11) = 15148337305921759574.0D+00 / d
  8248. <a name="l08184"></a>08184 weight(12) = - 37088370261379851390.0D+00 / d
  8249. <a name="l08185"></a>08185 weight(13) = 43920768370565135580.0D+00 / d
  8250. <a name="l08186"></a>08186 weight(14) = - 35331888421114781580.0D+00 / d
  8251. <a name="l08187"></a>08187 weight(15) = 22336420328479961316.0D+00 / d
  8252. <a name="l08188"></a>08188 weight(16) = - 10343692234243192788.0D+00 / d
  8253. <a name="l08189"></a>08189 weight(17) = 4301581538450500095.0D+00 / d
  8254. <a name="l08190"></a>08190 weight(18) = - 926840515700222955.0D+00 / d
  8255. <a name="l08191"></a>08191 weight(19) = 603652082270808125.0D+00 / d
  8256. <a name="l08192"></a>08192 weight(20) = 69028763155644023.0D+00 / d
  8257. <a name="l08193"></a>08193
  8258. <a name="l08194"></a>08194 <span class="keyword">else</span>
  8259. <a name="l08195"></a>08195
  8260. <a name="l08196"></a>08196 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  8261. <a name="l08197"></a>08197 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;NCC_SET - Fatal error!&#39;</span>
  8262. <a name="l08198"></a>08198 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  8263. <a name="l08199"></a>08199 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; Legal values are 2 through 20.&#39;</span>
  8264. <a name="l08200"></a>08200 stop
  8265. <a name="l08201"></a>08201
  8266. <a name="l08202"></a>08202 <span class="keyword">end if</span>
  8267. <a name="l08203"></a>08203 <span class="comment">!</span>
  8268. <a name="l08204"></a>08204 <span class="comment">! The abscissas are uniformly spaced.</span>
  8269. <a name="l08205"></a>08205 <span class="comment">!</span>
  8270. <a name="l08206"></a>08206 <span class="keyword">do</span> i = 1, norder
  8271. <a name="l08207"></a>08207 xtab(i) = dble ( 2 * i - 1 - norder ) / dble ( norder - 1 )
  8272. <a name="l08208"></a>08208 <span class="keyword">end do</span>
  8273. <a name="l08209"></a>08209
  8274. <a name="l08210"></a>08210 return
  8275. <a name="l08211"></a>08211 <span class="keyword">end</span>
  8276. <a name="l08212"></a><a class="code" href="quadrule_8f90.html#a2ab54bf6aad3867d7b66db6bc056b420">08212</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a2ab54bf6aad3867d7b66db6bc056b420">nco_com</a> ( norder, xtab, weight )
  8277. <a name="l08213"></a>08213 <span class="comment">!</span>
  8278. <a name="l08214"></a>08214 <span class="comment">!*******************************************************************************</span>
  8279. <a name="l08215"></a>08215 <span class="comment">!</span>
  8280. <a name="l08216"></a>08216 <span class="comment">!! NCO_COM computes the coefficients of a Newton-Cotes open quadrature rule.</span>
  8281. <a name="l08217"></a>08217 <span class="comment">!</span>
  8282. <a name="l08218"></a>08218 <span class="comment">!</span>
  8283. <a name="l08219"></a>08219 <span class="comment">! Definition:</span>
  8284. <a name="l08220"></a>08220 <span class="comment">!</span>
  8285. <a name="l08221"></a>08221 <span class="comment">! For the interval [-1,1], the Newton-Cotes open quadrature rule</span>
  8286. <a name="l08222"></a>08222 <span class="comment">! estimates</span>
  8287. <a name="l08223"></a>08223 <span class="comment">!</span>
  8288. <a name="l08224"></a>08224 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) F(X) dX</span>
  8289. <a name="l08225"></a>08225 <span class="comment">!</span>
  8290. <a name="l08226"></a>08226 <span class="comment">! using NORDER equally spaced abscissas XTAB(I) and a weight vector</span>
  8291. <a name="l08227"></a>08227 <span class="comment">! WEIGHT(I):</span>
  8292. <a name="l08228"></a>08228 <span class="comment">!</span>
  8293. <a name="l08229"></a>08229 <span class="comment">! Sum ( I = 1 to N ) WEIGHT(I) * F ( XTAB(I) ).</span>
  8294. <a name="l08230"></a>08230 <span class="comment">!</span>
  8295. <a name="l08231"></a>08231 <span class="comment">! For the OPEN rule, the abscissas do not include A and B.</span>
  8296. <a name="l08232"></a>08232 <span class="comment">!</span>
  8297. <a name="l08233"></a>08233 <span class="comment">! Modified:</span>
  8298. <a name="l08234"></a>08234 <span class="comment">!</span>
  8299. <a name="l08235"></a>08235 <span class="comment">! 25 September 1998</span>
  8300. <a name="l08236"></a>08236 <span class="comment">!</span>
  8301. <a name="l08237"></a>08237 <span class="comment">! Author:</span>
  8302. <a name="l08238"></a>08238 <span class="comment">!</span>
  8303. <a name="l08239"></a>08239 <span class="comment">! John Burkardt</span>
  8304. <a name="l08240"></a>08240 <span class="comment">!</span>
  8305. <a name="l08241"></a>08241 <span class="comment">! Parameters:</span>
  8306. <a name="l08242"></a>08242 <span class="comment">!</span>
  8307. <a name="l08243"></a>08243 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  8308. <a name="l08244"></a>08244 <span class="comment">!</span>
  8309. <a name="l08245"></a>08245 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  8310. <a name="l08246"></a>08246 <span class="comment">!</span>
  8311. <a name="l08247"></a>08247 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  8312. <a name="l08248"></a>08248 <span class="comment">!</span>
  8313. <a name="l08249"></a>08249 <span class="keyword">implicit none</span>
  8314. <a name="l08250"></a>08250 <span class="comment">!</span>
  8315. <a name="l08251"></a>08251 <span class="keywordtype">integer</span> norder
  8316. <a name="l08252"></a>08252 <span class="comment">!</span>
  8317. <a name="l08253"></a>08253 <span class="keywordtype">double precision</span> a
  8318. <a name="l08254"></a>08254 <span class="keywordtype">double precision</span> b
  8319. <a name="l08255"></a>08255 <span class="keywordtype">integer</span> i
  8320. <a name="l08256"></a>08256 <span class="keywordtype">double precision</span> weight(norder)
  8321. <a name="l08257"></a>08257 <span class="keywordtype">double precision</span> xtab(norder)
  8322. <a name="l08258"></a>08258 <span class="comment">!</span>
  8323. <a name="l08259"></a>08259 a = -1.0D+00
  8324. <a name="l08260"></a>08260 b = 1.0D+00
  8325. <a name="l08261"></a>08261
  8326. <a name="l08262"></a>08262 <span class="keyword">do</span> i = 1, norder
  8327. <a name="l08263"></a>08263 xtab(i) = ( dble ( norder + 1 - i ) * a + dble ( i ) * b ) &amp;
  8328. <a name="l08264"></a>08264 / dble ( norder + 1 )
  8329. <a name="l08265"></a>08265 <span class="keyword">end do</span>
  8330. <a name="l08266"></a>08266
  8331. <a name="l08267"></a>08267 call <a class="code" href="quadrule_8f90.html#a0b336aacd3856d5d5e724522dd3e6e8a">nc_com </a>( norder, a, b, xtab, weight )
  8332. <a name="l08268"></a>08268
  8333. <a name="l08269"></a>08269 return
  8334. <a name="l08270"></a>08270 <span class="keyword">end</span>
  8335. <a name="l08271"></a><a class="code" href="quadrule_8f90.html#a27acf87e9cb1d5f166f347d6e2650710">08271</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a27acf87e9cb1d5f166f347d6e2650710">nco_set</a> ( norder, xtab, weight )
  8336. <a name="l08272"></a>08272 <span class="comment">!</span>
  8337. <a name="l08273"></a>08273 <span class="comment">!*******************************************************************************</span>
  8338. <a name="l08274"></a>08274 <span class="comment">!</span>
  8339. <a name="l08275"></a>08275 <span class="comment">!! NCO_SET sets abscissas and weights for open Newton-Cotes quadrature.</span>
  8340. <a name="l08276"></a>08276 <span class="comment">!</span>
  8341. <a name="l08277"></a>08277 <span class="comment">!</span>
  8342. <a name="l08278"></a>08278 <span class="comment">! Integration interval:</span>
  8343. <a name="l08279"></a>08279 <span class="comment">!</span>
  8344. <a name="l08280"></a>08280 <span class="comment">! [ -1, 1 ]</span>
  8345. <a name="l08281"></a>08281 <span class="comment">!</span>
  8346. <a name="l08282"></a>08282 <span class="comment">! Weight function:</span>
  8347. <a name="l08283"></a>08283 <span class="comment">!</span>
  8348. <a name="l08284"></a>08284 <span class="comment">! 1.0D+00</span>
  8349. <a name="l08285"></a>08285 <span class="comment">!</span>
  8350. <a name="l08286"></a>08286 <span class="comment">! Integral to approximate:</span>
  8351. <a name="l08287"></a>08287 <span class="comment">!</span>
  8352. <a name="l08288"></a>08288 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) F(X) dX</span>
  8353. <a name="l08289"></a>08289 <span class="comment">!</span>
  8354. <a name="l08290"></a>08290 <span class="comment">! Approximate integral:</span>
  8355. <a name="l08291"></a>08291 <span class="comment">!</span>
  8356. <a name="l08292"></a>08292 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  8357. <a name="l08293"></a>08293 <span class="comment">!</span>
  8358. <a name="l08294"></a>08294 <span class="comment">! Note:</span>
  8359. <a name="l08295"></a>08295 <span class="comment">!</span>
  8360. <a name="l08296"></a>08296 <span class="comment">! The open Newton-Cotes rules use equally spaced abscissas, and</span>
  8361. <a name="l08297"></a>08297 <span class="comment">! hence may be used with equally spaced data.</span>
  8362. <a name="l08298"></a>08298 <span class="comment">!</span>
  8363. <a name="l08299"></a>08299 <span class="comment">! The rules are called &quot;open&quot; because they do not include the interval</span>
  8364. <a name="l08300"></a>08300 <span class="comment">! endpoints.</span>
  8365. <a name="l08301"></a>08301 <span class="comment">!</span>
  8366. <a name="l08302"></a>08302 <span class="comment">! Most of the rules involve negative weights. These can produce loss</span>
  8367. <a name="l08303"></a>08303 <span class="comment">! of accuracy due to the subtraction of large, nearly equal quantities.</span>
  8368. <a name="l08304"></a>08304 <span class="comment">!</span>
  8369. <a name="l08305"></a>08305 <span class="comment">! Reference:</span>
  8370. <a name="l08306"></a>08306 <span class="comment">!</span>
  8371. <a name="l08307"></a>08307 <span class="comment">! Abramowitz and Stegun,</span>
  8372. <a name="l08308"></a>08308 <span class="comment">! Handbook of Mathematical Functions,</span>
  8373. <a name="l08309"></a>08309 <span class="comment">! National Bureau of Standards, 1964.</span>
  8374. <a name="l08310"></a>08310 <span class="comment">!</span>
  8375. <a name="l08311"></a>08311 <span class="comment">! Daniel Zwillinger, editor,</span>
  8376. <a name="l08312"></a>08312 <span class="comment">! Standard Mathematical Tables and Formulae,</span>
  8377. <a name="l08313"></a>08313 <span class="comment">! 30th Edition,</span>
  8378. <a name="l08314"></a>08314 <span class="comment">! CRC Press, 1996.</span>
  8379. <a name="l08315"></a>08315 <span class="comment">!</span>
  8380. <a name="l08316"></a>08316 <span class="comment">! Modified:</span>
  8381. <a name="l08317"></a>08317 <span class="comment">!</span>
  8382. <a name="l08318"></a>08318 <span class="comment">! 15 September 1998</span>
  8383. <a name="l08319"></a>08319 <span class="comment">!</span>
  8384. <a name="l08320"></a>08320 <span class="comment">! Author:</span>
  8385. <a name="l08321"></a>08321 <span class="comment">!</span>
  8386. <a name="l08322"></a>08322 <span class="comment">! John Burkardt</span>
  8387. <a name="l08323"></a>08323 <span class="comment">!</span>
  8388. <a name="l08324"></a>08324 <span class="comment">! Parameters:</span>
  8389. <a name="l08325"></a>08325 <span class="comment">!</span>
  8390. <a name="l08326"></a>08326 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  8391. <a name="l08327"></a>08327 <span class="comment">! NORDER must be between 1 and 7, and 9.</span>
  8392. <a name="l08328"></a>08328 <span class="comment">!</span>
  8393. <a name="l08329"></a>08329 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  8394. <a name="l08330"></a>08330 <span class="comment">!</span>
  8395. <a name="l08331"></a>08331 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  8396. <a name="l08332"></a>08332 <span class="comment">! The weights are rational, symmetric, and should sum to 2.</span>
  8397. <a name="l08333"></a>08333 <span class="comment">! Some weights may be negative.</span>
  8398. <a name="l08334"></a>08334 <span class="comment">!</span>
  8399. <a name="l08335"></a>08335 <span class="keyword">implicit none</span>
  8400. <a name="l08336"></a>08336 <span class="comment">!</span>
  8401. <a name="l08337"></a>08337 <span class="keywordtype">integer</span> norder
  8402. <a name="l08338"></a>08338 <span class="comment">!</span>
  8403. <a name="l08339"></a>08339 <span class="keywordtype">double precision</span> d
  8404. <a name="l08340"></a>08340 <span class="keywordtype">integer</span> i
  8405. <a name="l08341"></a>08341 <span class="keywordtype">double precision</span> weight(norder)
  8406. <a name="l08342"></a>08342 <span class="keywordtype">double precision</span> xtab(norder)
  8407. <a name="l08343"></a>08343 <span class="comment">!</span>
  8408. <a name="l08344"></a>08344 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  8409. <a name="l08345"></a>08345
  8410. <a name="l08346"></a>08346 weight(1) = 2.0D+00
  8411. <a name="l08347"></a>08347
  8412. <a name="l08348"></a>08348 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  8413. <a name="l08349"></a>08349
  8414. <a name="l08350"></a>08350 weight(1) = 1.0D+00
  8415. <a name="l08351"></a>08351 weight(2) = 1.0D+00
  8416. <a name="l08352"></a>08352
  8417. <a name="l08353"></a>08353 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  8418. <a name="l08354"></a>08354
  8419. <a name="l08355"></a>08355 d = 3.0D+00
  8420. <a name="l08356"></a>08356
  8421. <a name="l08357"></a>08357 weight(1) = 4.0D+00 / d
  8422. <a name="l08358"></a>08358 weight(2) = - 2.0D+00 / d
  8423. <a name="l08359"></a>08359 weight(3) = 4.0D+00 / d
  8424. <a name="l08360"></a>08360
  8425. <a name="l08361"></a>08361 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  8426. <a name="l08362"></a>08362
  8427. <a name="l08363"></a>08363 d = 12.0D+00
  8428. <a name="l08364"></a>08364
  8429. <a name="l08365"></a>08365 weight(1) = 11.0D+00 / d
  8430. <a name="l08366"></a>08366 weight(2) = 1.0D+00 / d
  8431. <a name="l08367"></a>08367 weight(3) = 1.0D+00 / d
  8432. <a name="l08368"></a>08368 weight(4) = 11.0D+00 / d
  8433. <a name="l08369"></a>08369
  8434. <a name="l08370"></a>08370 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  8435. <a name="l08371"></a>08371
  8436. <a name="l08372"></a>08372 d = 10.0D+00
  8437. <a name="l08373"></a>08373
  8438. <a name="l08374"></a>08374 weight(1) = 11.0D+00 / d
  8439. <a name="l08375"></a>08375 weight(2) = - 14.0D+00 / d
  8440. <a name="l08376"></a>08376 weight(3) = 26.0D+00 / d
  8441. <a name="l08377"></a>08377 weight(4) = - 14.0D+00 / d
  8442. <a name="l08378"></a>08378 weight(5) = 11.0D+00 / d
  8443. <a name="l08379"></a>08379
  8444. <a name="l08380"></a>08380 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  8445. <a name="l08381"></a>08381
  8446. <a name="l08382"></a>08382 d = 1440.0D+00
  8447. <a name="l08383"></a>08383
  8448. <a name="l08384"></a>08384 weight(1) = 1222.0D+00 / d
  8449. <a name="l08385"></a>08385 weight(2) = - 906.0D+00 / d
  8450. <a name="l08386"></a>08386 weight(3) = 1124.0D+00 / d
  8451. <a name="l08387"></a>08387 weight(4) = 1124.0D+00 / d
  8452. <a name="l08388"></a>08388 weight(5) = - 906.0D+00 / d
  8453. <a name="l08389"></a>08389 weight(6) = 1222.0D+00 / d
  8454. <a name="l08390"></a>08390
  8455. <a name="l08391"></a>08391 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  8456. <a name="l08392"></a>08392
  8457. <a name="l08393"></a>08393 d = 945.0D+00
  8458. <a name="l08394"></a>08394
  8459. <a name="l08395"></a>08395 weight(1) = 920.0D+00 / d
  8460. <a name="l08396"></a>08396 weight(2) = - 1908.0D+00 / d
  8461. <a name="l08397"></a>08397 weight(3) = 4392.0D+00 / d
  8462. <a name="l08398"></a>08398 weight(4) = - 4918.0D+00 / d
  8463. <a name="l08399"></a>08399 weight(5) = 4392.0D+00 / d
  8464. <a name="l08400"></a>08400 weight(6) = - 1908.0D+00 / d
  8465. <a name="l08401"></a>08401 weight(7) = 920.0D+00 / d
  8466. <a name="l08402"></a>08402
  8467. <a name="l08403"></a>08403 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 9 ) <span class="keyword">then</span>
  8468. <a name="l08404"></a>08404
  8469. <a name="l08405"></a>08405 d = 4536.0D+00
  8470. <a name="l08406"></a>08406
  8471. <a name="l08407"></a>08407 weight(1) = 4045.0D+00 / d
  8472. <a name="l08408"></a>08408 weight(2) = - 11690.0D+00 / d
  8473. <a name="l08409"></a>08409 weight(3) = 33340.0D+00 / d
  8474. <a name="l08410"></a>08410 weight(4) = - 55070.0D+00 / d
  8475. <a name="l08411"></a>08411 weight(5) = 67822.0D+00 / d
  8476. <a name="l08412"></a>08412 weight(6) = - 55070.0D+00 / d
  8477. <a name="l08413"></a>08413 weight(7) = 33340.0D+00 / d
  8478. <a name="l08414"></a>08414 weight(8) = - 11690.0D+00 / d
  8479. <a name="l08415"></a>08415 weight(9) = 4045.0D+00 / d
  8480. <a name="l08416"></a>08416
  8481. <a name="l08417"></a>08417 <span class="keyword">else</span>
  8482. <a name="l08418"></a>08418
  8483. <a name="l08419"></a>08419 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  8484. <a name="l08420"></a>08420 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;NCO_SET - Fatal error!&#39;</span>
  8485. <a name="l08421"></a>08421 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  8486. <a name="l08422"></a>08422 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; Legal values are 1 to 7, and 9.&#39;</span>
  8487. <a name="l08423"></a>08423 stop
  8488. <a name="l08424"></a>08424
  8489. <a name="l08425"></a>08425 <span class="keyword">end if</span>
  8490. <a name="l08426"></a>08426 <span class="comment">!</span>
  8491. <a name="l08427"></a>08427 <span class="comment">! Set the abscissas.</span>
  8492. <a name="l08428"></a>08428 <span class="comment">!</span>
  8493. <a name="l08429"></a>08429 <span class="keyword">do</span> i = 1, norder
  8494. <a name="l08430"></a>08430 xtab(i) = dble ( 2 * i - norder - 1 ) / dble ( norder + 1 )
  8495. <a name="l08431"></a>08431 <span class="keyword">end do</span>
  8496. <a name="l08432"></a>08432
  8497. <a name="l08433"></a>08433 return
  8498. <a name="l08434"></a>08434 <span class="keyword">end</span>
  8499. <a name="l08435"></a><a class="code" href="quadrule_8f90.html#a0e44da10711c05b4fb80b5add1efa261">08435</a> <span class="keyword">function </span><a class="code" href="quadrule_8f90.html#a0e44da10711c05b4fb80b5add1efa261">r_pi</a> ( )
  8500. <a name="l08436"></a>08436 <span class="comment">!</span>
  8501. <a name="l08437"></a>08437 <span class="comment">!*******************************************************************************</span>
  8502. <a name="l08438"></a>08438 <span class="comment">!</span>
  8503. <a name="l08439"></a>08439 <span class="comment">!! R_PI returns the value of pi as a real quantity.</span>
  8504. <a name="l08440"></a>08440 <span class="comment">!</span>
  8505. <a name="l08441"></a>08441 <span class="comment">!</span>
  8506. <a name="l08442"></a>08442 <span class="comment">! Modified:</span>
  8507. <a name="l08443"></a>08443 <span class="comment">!</span>
  8508. <a name="l08444"></a>08444 <span class="comment">! 28 April 2000</span>
  8509. <a name="l08445"></a>08445 <span class="comment">!</span>
  8510. <a name="l08446"></a>08446 <span class="comment">! Author:</span>
  8511. <a name="l08447"></a>08447 <span class="comment">!</span>
  8512. <a name="l08448"></a>08448 <span class="comment">! John Burkardt</span>
  8513. <a name="l08449"></a>08449 <span class="comment">!</span>
  8514. <a name="l08450"></a>08450 <span class="comment">! Parameters:</span>
  8515. <a name="l08451"></a>08451 <span class="comment">!</span>
  8516. <a name="l08452"></a>08452 <span class="comment">! Output, real PI, the value of pi.</span>
  8517. <a name="l08453"></a>08453 <span class="comment">!</span>
  8518. <a name="l08454"></a>08454 <span class="keyword">implicit none</span>
  8519. <a name="l08455"></a>08455 <span class="comment">!</span>
  8520. <a name="l08456"></a>08456 <span class="keywordtype">real</span> r_pi
  8521. <a name="l08457"></a>08457 <span class="comment">!</span>
  8522. <a name="l08458"></a>08458 r_pi = 3.14159265358979323846264338327950288419716939937510E+00
  8523. <a name="l08459"></a>08459
  8524. <a name="l08460"></a>08460 return
  8525. <a name="l08461"></a>08461 <span class="keyword">end</span>
  8526. <a name="l08462"></a><a class="code" href="quadrule_8f90.html#a707a104aaec64bd98bd8996e11171677">08462</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a707a104aaec64bd98bd8996e11171677">radau_set</a> ( norder, xtab, weight )
  8527. <a name="l08463"></a>08463 <span class="comment">!</span>
  8528. <a name="l08464"></a>08464 <span class="comment">!*******************************************************************************</span>
  8529. <a name="l08465"></a>08465 <span class="comment">!</span>
  8530. <a name="l08466"></a>08466 <span class="comment">!! RADAU_SET sets abscissas and weights for Radau quadrature.</span>
  8531. <a name="l08467"></a>08467 <span class="comment">!</span>
  8532. <a name="l08468"></a>08468 <span class="comment">!</span>
  8533. <a name="l08469"></a>08469 <span class="comment">! Integration interval:</span>
  8534. <a name="l08470"></a>08470 <span class="comment">!</span>
  8535. <a name="l08471"></a>08471 <span class="comment">! [ -1, 1 ]</span>
  8536. <a name="l08472"></a>08472 <span class="comment">!</span>
  8537. <a name="l08473"></a>08473 <span class="comment">! Weight function:</span>
  8538. <a name="l08474"></a>08474 <span class="comment">!</span>
  8539. <a name="l08475"></a>08475 <span class="comment">! 1.0D+00</span>
  8540. <a name="l08476"></a>08476 <span class="comment">!</span>
  8541. <a name="l08477"></a>08477 <span class="comment">! Integral to approximate:</span>
  8542. <a name="l08478"></a>08478 <span class="comment">!</span>
  8543. <a name="l08479"></a>08479 <span class="comment">! Integral ( -1 &lt;= X &lt;= 1 ) F(X) dX</span>
  8544. <a name="l08480"></a>08480 <span class="comment">!</span>
  8545. <a name="l08481"></a>08481 <span class="comment">! Approximate integral:</span>
  8546. <a name="l08482"></a>08482 <span class="comment">!</span>
  8547. <a name="l08483"></a>08483 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * F ( XTAB(I) )</span>
  8548. <a name="l08484"></a>08484 <span class="comment">!</span>
  8549. <a name="l08485"></a>08485 <span class="comment">! Precision:</span>
  8550. <a name="l08486"></a>08486 <span class="comment">!</span>
  8551. <a name="l08487"></a>08487 <span class="comment">! The quadrature rule will integrate exactly all polynomials up to</span>
  8552. <a name="l08488"></a>08488 <span class="comment">! X**(2*NORDER-2).</span>
  8553. <a name="l08489"></a>08489 <span class="comment">!</span>
  8554. <a name="l08490"></a>08490 <span class="comment">! Note:</span>
  8555. <a name="l08491"></a>08491 <span class="comment">!</span>
  8556. <a name="l08492"></a>08492 <span class="comment">! The Radau rule is distinguished by the fact that the left endpoint</span>
  8557. <a name="l08493"></a>08493 <span class="comment">! (-1) is always an abscissa.</span>
  8558. <a name="l08494"></a>08494 <span class="comment">!</span>
  8559. <a name="l08495"></a>08495 <span class="comment">! Reference:</span>
  8560. <a name="l08496"></a>08496 <span class="comment">!</span>
  8561. <a name="l08497"></a>08497 <span class="comment">! Abramowitz and Stegun,</span>
  8562. <a name="l08498"></a>08498 <span class="comment">! Handbook of Mathematical Functions,</span>
  8563. <a name="l08499"></a>08499 <span class="comment">! National Bureau of Standards, 1964.</span>
  8564. <a name="l08500"></a>08500 <span class="comment">!</span>
  8565. <a name="l08501"></a>08501 <span class="comment">! Arthur Stroud and Don Secrest,</span>
  8566. <a name="l08502"></a>08502 <span class="comment">! Gaussian Quadrature Formulas,</span>
  8567. <a name="l08503"></a>08503 <span class="comment">! Prentice Hall, 1966.</span>
  8568. <a name="l08504"></a>08504 <span class="comment">!</span>
  8569. <a name="l08505"></a>08505 <span class="comment">! Daniel Zwillinger, editor,</span>
  8570. <a name="l08506"></a>08506 <span class="comment">! Standard Mathematical Tables and Formulae,</span>
  8571. <a name="l08507"></a>08507 <span class="comment">! 30th Edition,</span>
  8572. <a name="l08508"></a>08508 <span class="comment">! CRC Press, 1996.</span>
  8573. <a name="l08509"></a>08509 <span class="comment">!</span>
  8574. <a name="l08510"></a>08510 <span class="comment">! Modified:</span>
  8575. <a name="l08511"></a>08511 <span class="comment">!</span>
  8576. <a name="l08512"></a>08512 <span class="comment">! 16 September 1998</span>
  8577. <a name="l08513"></a>08513 <span class="comment">!</span>
  8578. <a name="l08514"></a>08514 <span class="comment">! Author:</span>
  8579. <a name="l08515"></a>08515 <span class="comment">!</span>
  8580. <a name="l08516"></a>08516 <span class="comment">! John Burkardt</span>
  8581. <a name="l08517"></a>08517 <span class="comment">!</span>
  8582. <a name="l08518"></a>08518 <span class="comment">! Parameters:</span>
  8583. <a name="l08519"></a>08519 <span class="comment">!</span>
  8584. <a name="l08520"></a>08520 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  8585. <a name="l08521"></a>08521 <span class="comment">! NORDER must be between 1 and 15.</span>
  8586. <a name="l08522"></a>08522 <span class="comment">!</span>
  8587. <a name="l08523"></a>08523 <span class="comment">! Output, double precision XTAB(NORDER), the abscissas of the rule.</span>
  8588. <a name="l08524"></a>08524 <span class="comment">!</span>
  8589. <a name="l08525"></a>08525 <span class="comment">! Output, double precision WEIGHT(NORDER), the weights of the rule.</span>
  8590. <a name="l08526"></a>08526 <span class="comment">! The weights are positive. The weights are not symmetric.</span>
  8591. <a name="l08527"></a>08527 <span class="comment">! The weights should sum to 2. WEIGHT(1) should equal 2 / NORDER**2.</span>
  8592. <a name="l08528"></a>08528 <span class="comment">!</span>
  8593. <a name="l08529"></a>08529 <span class="keyword">implicit none</span>
  8594. <a name="l08530"></a>08530 <span class="comment">!</span>
  8595. <a name="l08531"></a>08531 <span class="keywordtype">integer</span> norder
  8596. <a name="l08532"></a>08532 <span class="comment">!</span>
  8597. <a name="l08533"></a>08533 <span class="keywordtype">double precision</span> xtab(norder)
  8598. <a name="l08534"></a>08534 <span class="keywordtype">double precision</span> weight(norder)
  8599. <a name="l08535"></a>08535 <span class="comment">!</span>
  8600. <a name="l08536"></a>08536 <span class="keyword">if</span> ( norder == 1 ) <span class="keyword">then</span>
  8601. <a name="l08537"></a>08537
  8602. <a name="l08538"></a>08538 xtab(1) = - 1.0D+00
  8603. <a name="l08539"></a>08539 weight(1) = 2.0D+00
  8604. <a name="l08540"></a>08540
  8605. <a name="l08541"></a>08541 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 2 ) <span class="keyword">then</span>
  8606. <a name="l08542"></a>08542
  8607. <a name="l08543"></a>08543 xtab(1) = - 1.0D+00
  8608. <a name="l08544"></a>08544 xtab(2) = 1.0D+00 / 3.0D+00
  8609. <a name="l08545"></a>08545
  8610. <a name="l08546"></a>08546 weight(1) = 0.5D+00
  8611. <a name="l08547"></a>08547 weight(2) = 1.5D+00
  8612. <a name="l08548"></a>08548
  8613. <a name="l08549"></a>08549 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 3 ) <span class="keyword">then</span>
  8614. <a name="l08550"></a>08550
  8615. <a name="l08551"></a>08551 xtab(1) = - 1.0D+00
  8616. <a name="l08552"></a>08552 xtab(2) = - 0.289897948556635619639456814941D+00
  8617. <a name="l08553"></a>08553 xtab(3) = 0.689897948556635619639456814941D+00
  8618. <a name="l08554"></a>08554
  8619. <a name="l08555"></a>08555 weight(1) = 0.222222222222222222222222222222D+00
  8620. <a name="l08556"></a>08556 weight(2) = 0.102497165237684322767762689304D+01
  8621. <a name="l08557"></a>08557 weight(3) = 0.752806125400934550100150884739D+00
  8622. <a name="l08558"></a>08558
  8623. <a name="l08559"></a>08559 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 4 ) <span class="keyword">then</span>
  8624. <a name="l08560"></a>08560
  8625. <a name="l08561"></a>08561 xtab(1) = - 1.0D+00
  8626. <a name="l08562"></a>08562 xtab(2) = - 0.575318923521694112050483779752D+00
  8627. <a name="l08563"></a>08563 xtab(3) = 0.181066271118530578270147495862D+00
  8628. <a name="l08564"></a>08564 xtab(4) = 0.822824080974592105208907712461D+00
  8629. <a name="l08565"></a>08565
  8630. <a name="l08566"></a>08566 weight(1) = 0.125D+00
  8631. <a name="l08567"></a>08567 weight(2) = 0.657688639960119487888578442146D+00
  8632. <a name="l08568"></a>08568 weight(3) = 0.776386937686343761560464613780D+00
  8633. <a name="l08569"></a>08569 weight(4) = 0.440924422353536750550956944074D+00
  8634. <a name="l08570"></a>08570
  8635. <a name="l08571"></a>08571 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 5 ) <span class="keyword">then</span>
  8636. <a name="l08572"></a>08572
  8637. <a name="l08573"></a>08573 xtab(1) = - 1.0D+00
  8638. <a name="l08574"></a>08574 xtab(2) = - 0.720480271312438895695825837750D+00
  8639. <a name="l08575"></a>08575 xtab(3) = - 0.167180864737833640113395337326D+00
  8640. <a name="l08576"></a>08576 xtab(4) = 0.446313972723752344639908004629D+00
  8641. <a name="l08577"></a>08577 xtab(5) = 0.885791607770964635613757614892D+00
  8642. <a name="l08578"></a>08578
  8643. <a name="l08579"></a>08579 weight(1) = 0.08D+00
  8644. <a name="l08580"></a>08580 weight(2) = 0.446207802167141488805120436457D+00
  8645. <a name="l08581"></a>08581 weight(3) = 0.623653045951482508163709823153D+00
  8646. <a name="l08582"></a>08582 weight(4) = 0.562712030298924120384345300681D+00
  8647. <a name="l08583"></a>08583 weight(5) = 0.287427121582451882646824439708D+00
  8648. <a name="l08584"></a>08584
  8649. <a name="l08585"></a>08585 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 6 ) <span class="keyword">then</span>
  8650. <a name="l08586"></a>08586
  8651. <a name="l08587"></a>08587 xtab(1) = - 1.0D+00
  8652. <a name="l08588"></a>08588 xtab(2) = - 0.802929828402347147753002204224D+00
  8653. <a name="l08589"></a>08589 xtab(3) = - 0.390928546707272189029229647442D+00
  8654. <a name="l08590"></a>08590 xtab(4) = 0.124050379505227711989974959990D+00
  8655. <a name="l08591"></a>08591 xtab(5) = 0.603973164252783654928415726409D+00
  8656. <a name="l08592"></a>08592 xtab(6) = 0.920380285897062515318386619813D+00
  8657. <a name="l08593"></a>08593
  8658. <a name="l08594"></a>08594 weight(1) = 0.555555555555555555555555555556D-01
  8659. <a name="l08595"></a>08595 weight(2) = 0.319640753220510966545779983796D+00
  8660. <a name="l08596"></a>08596 weight(3) = 0.485387188468969916159827915587D+00
  8661. <a name="l08597"></a>08597 weight(4) = 0.520926783189574982570229406570D+00
  8662. <a name="l08598"></a>08598 weight(5) = 0.416901334311907738959406382743D+00
  8663. <a name="l08599"></a>08599 weight(6) = 0.201588385253480840209200755749D+00
  8664. <a name="l08600"></a>08600
  8665. <a name="l08601"></a>08601 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 7 ) <span class="keyword">then</span>
  8666. <a name="l08602"></a>08602
  8667. <a name="l08603"></a>08603 xtab(1) = - 1.0D+00
  8668. <a name="l08604"></a>08604 xtab(2) = - 0.853891342639482229703747931639D+00
  8669. <a name="l08605"></a>08605 xtab(3) = - 0.538467724060109001833766720231D+00
  8670. <a name="l08606"></a>08606 xtab(4) = - 0.117343037543100264162786683611D+00
  8671. <a name="l08607"></a>08607 xtab(5) = 0.326030619437691401805894055838D+00
  8672. <a name="l08608"></a>08608 xtab(6) = 0.703842800663031416300046295008D+00
  8673. <a name="l08609"></a>08609 xtab(7) = 0.941367145680430216055899446174D+00
  8674. <a name="l08610"></a>08610
  8675. <a name="l08611"></a>08611 weight(1) = 0.408163265306122448979591836735D-01
  8676. <a name="l08612"></a>08612 weight(2) = 0.239227489225312405787077480770D+00
  8677. <a name="l08613"></a>08613 weight(3) = 0.380949873644231153805938347876D+00
  8678. <a name="l08614"></a>08614 weight(4) = 0.447109829014566469499348953642D+00
  8679. <a name="l08615"></a>08615 weight(5) = 0.424703779005955608398308039150D+00
  8680. <a name="l08616"></a>08616 weight(6) = 0.318204231467301481744870434470D+00
  8681. <a name="l08617"></a>08617 weight(7) = 0.148988471112020635866497560418D+00
  8682. <a name="l08618"></a>08618
  8683. <a name="l08619"></a>08619 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 8 ) <span class="keyword">then</span>
  8684. <a name="l08620"></a>08620
  8685. <a name="l08621"></a>08621 xtab(1) = - 1.0D+00
  8686. <a name="l08622"></a>08622 xtab(2) = - 0.887474878926155707068695617935D+00
  8687. <a name="l08623"></a>08623 xtab(3) = - 0.639518616526215270024840114382D+00
  8688. <a name="l08624"></a>08624 xtab(4) = - 0.294750565773660725252184459658D+00
  8689. <a name="l08625"></a>08625 xtab(5) = 0.943072526611107660028971153047D-01
  8690. <a name="l08626"></a>08626 xtab(6) = 0.468420354430821063046421216613D+00
  8691. <a name="l08627"></a>08627 xtab(7) = 0.770641893678191536180719525865D+00
  8692. <a name="l08628"></a>08628 xtab(8) = 0.955041227122575003782349000858D+00
  8693. <a name="l08629"></a>08629
  8694. <a name="l08630"></a>08630 weight(1) = 0.03125D+00
  8695. <a name="l08631"></a>08631 weight(2) = 0.185358154802979278540728972699D+00
  8696. <a name="l08632"></a>08632 weight(3) = 0.304130620646785128975743291400D+00
  8697. <a name="l08633"></a>08633 weight(4) = 0.376517545389118556572129261442D+00
  8698. <a name="l08634"></a>08634 weight(5) = 0.391572167452493593082499534004D+00
  8699. <a name="l08635"></a>08635 weight(6) = 0.347014795634501280228675918422D+00
  8700. <a name="l08636"></a>08636 weight(7) = 0.249647901329864963257869293513D+00
  8701. <a name="l08637"></a>08637 weight(8) = 0.114508814744257199342353728520D+00
  8702. <a name="l08638"></a>08638
  8703. <a name="l08639"></a>08639 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 9 ) <span class="keyword">then</span>
  8704. <a name="l08640"></a>08640
  8705. <a name="l08641"></a>08641 xtab(1) = - 1.0D+00
  8706. <a name="l08642"></a>08642 xtab(2) = - 0.910732089420060298533757956283D+00
  8707. <a name="l08643"></a>08643 xtab(3) = - 0.711267485915708857029562959544D+00
  8708. <a name="l08644"></a>08644 xtab(4) = - 0.426350485711138962102627520502D+00
  8709. <a name="l08645"></a>08645 xtab(5) = - 0.903733696068532980645444599064D-01
  8710. <a name="l08646"></a>08646 xtab(6) = 0.256135670833455395138292079035D+00
  8711. <a name="l08647"></a>08647 xtab(7) = 0.571383041208738483284917464837D+00
  8712. <a name="l08648"></a>08648 xtab(8) = 0.817352784200412087992517083851D+00
  8713. <a name="l08649"></a>08649 xtab(9) = 0.964440169705273096373589797925D+00
  8714. <a name="l08650"></a>08650
  8715. <a name="l08651"></a>08651 weight(1) = 0.246913580246913580246913580247D-01
  8716. <a name="l08652"></a>08652 weight(2) = 0.147654019046315385819588499802D+00
  8717. <a name="l08653"></a>08653 weight(3) = 0.247189378204593052361239794969D+00
  8718. <a name="l08654"></a>08654 weight(4) = 0.316843775670437978338000849642D+00
  8719. <a name="l08655"></a>08655 weight(5) = 0.348273002772966594071991031186D+00
  8720. <a name="l08656"></a>08656 weight(6) = 0.337693966975929585803724239792D+00
  8721. <a name="l08657"></a>08657 weight(7) = 0.286386696357231171146705637752D+00
  8722. <a name="l08658"></a>08658 weight(8) = 0.200553298024551957421165090417D+00
  8723. <a name="l08659"></a>08659 weight(9) = 0.907145049232829170128934984159D-01
  8724. <a name="l08660"></a>08660
  8725. <a name="l08661"></a>08661 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 10 ) <span class="keyword">then</span>
  8726. <a name="l08662"></a>08662
  8727. <a name="l08663"></a>08663 xtab(1) = - 1.0D+00
  8728. <a name="l08664"></a>08664 xtab(2) = - 0.927484374233581078117671398464D+00
  8729. <a name="l08665"></a>08665 xtab(3) = - 0.763842042420002599615429776011D+00
  8730. <a name="l08666"></a>08666 xtab(4) = - 0.525646030370079229365386614293D+00
  8731. <a name="l08667"></a>08667 xtab(5) = - 0.236234469390588049278459503207D+00
  8732. <a name="l08668"></a>08668 xtab(6) = 0.760591978379781302337137826389D-01
  8733. <a name="l08669"></a>08669 xtab(7) = 0.380664840144724365880759065541D+00
  8734. <a name="l08670"></a>08670 xtab(8) = 0.647766687674009436273648507855D+00
  8735. <a name="l08671"></a>08671 xtab(9) = 0.851225220581607910728163628088D+00
  8736. <a name="l08672"></a>08672 xtab(10) = 0.971175180702246902734346518378D+00
  8737. <a name="l08673"></a>08673
  8738. <a name="l08674"></a>08674 weight(1) = 0.02D+00
  8739. <a name="l08675"></a>08675 weight(2) = 0.120296670557481631517310522702D+00
  8740. <a name="l08676"></a>08676 weight(3) = 0.204270131879000675555788672223D+00
  8741. <a name="l08677"></a>08677 weight(4) = 0.268194837841178696058554475262D+00
  8742. <a name="l08678"></a>08678 weight(5) = 0.305859287724422621016275475401D+00
  8743. <a name="l08679"></a>08679 weight(6) = 0.313582457226938376695902847302D+00
  8744. <a name="l08680"></a>08680 weight(7) = 0.290610164832918311146863077963D+00
  8745. <a name="l08681"></a>08681 weight(8) = 0.239193431714379713376571966160D+00
  8746. <a name="l08682"></a>08682 weight(9) = 0.164376012736921475701681668908D+00
  8747. <a name="l08683"></a>08683 weight(10) = 0.736170054867584989310512940790D-01
  8748. <a name="l08684"></a>08684
  8749. <a name="l08685"></a>08685 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 11 ) <span class="keyword">then</span>
  8750. <a name="l08686"></a>08686
  8751. <a name="l08687"></a>08687 xtab(1) = - 1.0D+00
  8752. <a name="l08688"></a>08688 xtab(2) = - 0.939941935677027005913871284731D+00
  8753. <a name="l08689"></a>08689 xtab(3) = - 0.803421975580293540697597956820D+00
  8754. <a name="l08690"></a>08690 xtab(4) = - 0.601957842073797690275892603234D+00
  8755. <a name="l08691"></a>08691 xtab(5) = - 0.351888923353330214714301017870D+00
  8756. <a name="l08692"></a>08692 xtab(6) = - 0.734775314313212657461903554238D-01
  8757. <a name="l08693"></a>08693 xtab(7) = 0.210720306228426314076095789845D+00
  8758. <a name="l08694"></a>08694 xtab(8) = 0.477680647983087519467896683890D+00
  8759. <a name="l08695"></a>08695 xtab(9) = 0.705777100713859519144801128840D+00
  8760. <a name="l08696"></a>08696 xtab(10) = 0.876535856245703748954741265611D+00
  8761. <a name="l08697"></a>08697 xtab(11) = 0.976164773135168806180508826082D+00
  8762. <a name="l08698"></a>08698
  8763. <a name="l08699"></a>08699 weight(1) = 0.165289256198347107438016528926D-01
  8764. <a name="l08700"></a>08700 weight(2) = 0.998460819079680638957534695802D-01
  8765. <a name="l08701"></a>08701 weight(3) = 0.171317619206659836486712649042D+00
  8766. <a name="l08702"></a>08702 weight(4) = 0.228866123848976624401683231126D+00
  8767. <a name="l08703"></a>08703 weight(5) = 0.267867086189684177806638163355D+00
  8768. <a name="l08704"></a>08704 weight(6) = 0.285165563941007337460004408915D+00
  8769. <a name="l08705"></a>08705 weight(7) = 0.279361333103383045188962195720D+00
  8770. <a name="l08706"></a>08706 weight(8) = 0.250925377697128394649140267633D+00
  8771. <a name="l08707"></a>08707 weight(9) = 0.202163108540024418349931754266D+00
  8772. <a name="l08708"></a>08708 weight(10) = 0.137033682133202256310153880580D+00
  8773. <a name="l08709"></a>08709 weight(11) = 0.609250978121311347072183268883D-01
  8774. <a name="l08710"></a>08710
  8775. <a name="l08711"></a>08711 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 12 ) <span class="keyword">then</span>
  8776. <a name="l08712"></a>08712
  8777. <a name="l08713"></a>08713 xtab(1) = - 1.0D+00
  8778. <a name="l08714"></a>08714 xtab(2) = - 0.949452759204959300493337627077D+00
  8779. <a name="l08715"></a>08715 xtab(3) = - 0.833916773105189706586269254036D+00
  8780. <a name="l08716"></a>08716 xtab(4) = - 0.661649799245637148061133087811D+00
  8781. <a name="l08717"></a>08717 xtab(5) = - 0.444406569781935851126642615609D+00
  8782. <a name="l08718"></a>08718 xtab(6) = - 0.196994559534278366455441427346D+00
  8783. <a name="l08719"></a>08719 xtab(7) = 0.637247738208319158337792384845D-01
  8784. <a name="l08720"></a>08720 xtab(8) = 0.319983684170669623532789532206D+00
  8785. <a name="l08721"></a>08721 xtab(9) = 0.554318785912324288984337093085D+00
  8786. <a name="l08722"></a>08722 xtab(10) = 0.750761549711113852529400825472D+00
  8787. <a name="l08723"></a>08723 xtab(11) = 0.895929097745638894832914608454D+00
  8788. <a name="l08724"></a>08724 xtab(12) = 0.979963439076639188313950540264D+00
  8789. <a name="l08725"></a>08725
  8790. <a name="l08726"></a>08726 weight(1) = 0.138888888888888888888888888888D-01
  8791. <a name="l08727"></a>08727 weight(2) = 0.841721349386809762415796536813D-01
  8792. <a name="l08728"></a>08728 weight(3) = 0.145563668853995128522547654706D+00
  8793. <a name="l08729"></a>08729 weight(4) = 0.196998534826089634656049637969D+00
  8794. <a name="l08730"></a>08730 weight(5) = 0.235003115144985839348633985940D+00
  8795. <a name="l08731"></a>08731 weight(6) = 0.256991338152707776127974253598D+00
  8796. <a name="l08732"></a>08732 weight(7) = 0.261465660552133103438074715743D+00
  8797. <a name="l08733"></a>08733 weight(8) = 0.248121560804009959403073107079D+00
  8798. <a name="l08734"></a>08734 weight(9) = 0.217868879026192438848747482023D+00
  8799. <a name="l08735"></a>08735 weight(10) = 0.172770639313308564306065766966D+00
  8800. <a name="l08736"></a>08736 weight(11) = 0.115907480291738392750341908272D+00
  8801. <a name="l08737"></a>08737 weight(12) = 0.512480992072692974680229451351D-01
  8802. <a name="l08738"></a>08738
  8803. <a name="l08739"></a>08739 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 13 ) <span class="keyword">then</span>
  8804. <a name="l08740"></a>08740
  8805. <a name="l08741"></a>08741 xtab(1) = - 1.0D+00
  8806. <a name="l08742"></a>08742 xtab(2) = - 0.956875873668299278183813833834D+00
  8807. <a name="l08743"></a>08743 xtab(3) = - 0.857884202528822035697620310269D+00
  8808. <a name="l08744"></a>08744 xtab(4) = - 0.709105087529871761580423832811D+00
  8809. <a name="l08745"></a>08745 xtab(5) = - 0.519197779050454107485205148087D+00
  8810. <a name="l08746"></a>08746 xtab(6) = - 0.299201300554509985532583446686D+00
  8811. <a name="l08747"></a>08747 xtab(7) = - 0.619016986256353412578604857936D-01
  8812. <a name="l08748"></a>08748 xtab(8) = 0.178909837597084635021931298881D+00
  8813. <a name="l08749"></a>08749 xtab(9) = 0.409238231474839556754166331248D+00
  8814. <a name="l08750"></a>08750 xtab(10) = 0.615697890940291918017885487543D+00
  8815. <a name="l08751"></a>08751 xtab(11) = 0.786291018233046684731786459135D+00
  8816. <a name="l08752"></a>08752 xtab(12) = 0.911107073689184553949066402429D+00
  8817. <a name="l08753"></a>08753 xtab(13) = 0.982921890023145161262671078244D+00
  8818. <a name="l08754"></a>08754
  8819. <a name="l08755"></a>08755 weight(1) = 0.118343195266272189349112426036D-01
  8820. <a name="l08756"></a>08756 weight(2) = 0.719024162924955289397537405641D-01
  8821. <a name="l08757"></a>08757 weight(3) = 0.125103834331152358133769287976D+00
  8822. <a name="l08758"></a>08758 weight(4) = 0.171003460470616642463758674512D+00
  8823. <a name="l08759"></a>08759 weight(5) = 0.206960611455877074631132560829D+00
  8824. <a name="l08760"></a>08760 weight(6) = 0.230888862886995434012203758668D+00
  8825. <a name="l08761"></a>08761 weight(7) = 0.241398342287691148630866924129D+00
  8826. <a name="l08762"></a>08762 weight(8) = 0.237878547660712031342685189180D+00
  8827. <a name="l08763"></a>08763 weight(9) = 0.220534229288451464691077164199D+00
  8828. <a name="l08764"></a>08764 weight(10) = 0.190373715559631732254759820746D+00
  8829. <a name="l08765"></a>08765 weight(11) = 0.149150950090000205151491864242D+00
  8830. <a name="l08766"></a>08766 weight(12) = 0.992678068818470859847363877478D-01
  8831. <a name="l08767"></a>08767 weight(13) = 0.437029032679020748288533846051D-01
  8832. <a name="l08768"></a>08768
  8833. <a name="l08769"></a>08769 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 14 ) <span class="keyword">then</span>
  8834. <a name="l08770"></a>08770
  8835. <a name="l08771"></a>08771 xtab(1) = - 1.0D+00
  8836. <a name="l08772"></a>08772 xtab(2) = - 0.962779269978024297120561244319D+00
  8837. <a name="l08773"></a>08773 xtab(3) = - 0.877048918201462024795266773531D+00
  8838. <a name="l08774"></a>08774 xtab(4) = - 0.747389642613378838735429134263D+00
  8839. <a name="l08775"></a>08775 xtab(5) = - 0.580314056546874971105726664999D+00
  8840. <a name="l08776"></a>08776 xtab(6) = - 0.384202003439203313794083903375D+00
  8841. <a name="l08777"></a>08777 xtab(7) = - 0.168887928042680911008441695622D+00
  8842. <a name="l08778"></a>08778 xtab(8) = 0.548312279917645496498107146428D-01
  8843. <a name="l08779"></a>08779 xtab(9) = 0.275737205435522399182637403545D+00
  8844. <a name="l08780"></a>08780 xtab(10) = 0.482752918588474966820418534355D+00
  8845. <a name="l08781"></a>08781 xtab(11) = 0.665497977216884537008955042481D+00
  8846. <a name="l08782"></a>08782 xtab(12) = 0.814809550601994729434217249123D+00
  8847. <a name="l08783"></a>08783 xtab(13) = 0.923203722520643299246334950272D+00
  8848. <a name="l08784"></a>08784 xtab(14) = 0.985270697947821356698617003172D+00
  8849. <a name="l08785"></a>08785
  8850. <a name="l08786"></a>08786 weight(1) = 0.102040816326530612244897959184D-01
  8851. <a name="l08787"></a>08787 weight(2) = 0.621220169077714601661329164668D-01
  8852. <a name="l08788"></a>08788 weight(3) = 0.108607722744362826826720935229D+00
  8853. <a name="l08789"></a>08789 weight(4) = 0.149620539353121355950520836946D+00
  8854. <a name="l08790"></a>08790 weight(5) = 0.183127002125729654123867302103D+00
  8855. <a name="l08791"></a>08791 weight(6) = 0.207449763335175672668082886489D+00
  8856. <a name="l08792"></a>08792 weight(7) = 0.221369811499570948931671683021D+00
  8857. <a name="l08793"></a>08793 weight(8) = 0.224189348002707794238414632220D+00
  8858. <a name="l08794"></a>08794 weight(9) = 0.215767100604618851381187446115D+00
  8859. <a name="l08795"></a>08795 weight(10) = 0.196525518452982430324613091930D+00
  8860. <a name="l08796"></a>08796 weight(11) = 0.167429727891086278990102277038D+00
  8861. <a name="l08797"></a>08797 weight(12) = 0.129939668737342347807425737146D+00
  8862. <a name="l08798"></a>08798 weight(13) = 0.859405354429804030893077310866D-01
  8863. <a name="l08799"></a>08799 weight(14) = 0.377071632698969142774627282919D-01
  8864. <a name="l08800"></a>08800
  8865. <a name="l08801"></a>08801 <span class="keyword">else</span> <span class="keyword">if</span> ( norder == 15 ) <span class="keyword">then</span>
  8866. <a name="l08802"></a>08802
  8867. <a name="l08803"></a>08803 xtab(1) = - 1.0D+00
  8868. <a name="l08804"></a>08804 xtab(2) = - 0.967550468197200476562456018282D+00
  8869. <a name="l08805"></a>08805 xtab(3) = - 0.892605400120550767066811886849D+00
  8870. <a name="l08806"></a>08806 xtab(4) = - 0.778685617639031079381743321893D+00
  8871. <a name="l08807"></a>08807 xtab(5) = - 0.630779478886949283946148437224D+00
  8872. <a name="l08808"></a>08808 xtab(6) = - 0.455352905778529370872053455981D+00
  8873. <a name="l08809"></a>08809 xtab(7) = - 0.260073376740807915768961188263D+00
  8874. <a name="l08810"></a>08810 xtab(8) = - 0.534757226797460641074538896258D-01
  8875. <a name="l08811"></a>08811 xtab(9) = 0.155410685384859484319182024964D+00
  8876. <a name="l08812"></a>08812 xtab(10) = 0.357456512022127651195319205174D+00
  8877. <a name="l08813"></a>08813 xtab(11) = 0.543831458701484016930711802760D+00
  8878. <a name="l08814"></a>08814 xtab(12) = 0.706390264637572540152679669478D+00
  8879. <a name="l08815"></a>08815 xtab(13) = 0.838029000636089631215097384520D+00
  8880. <a name="l08816"></a>08816 xtab(14) = 0.932997190935973719928072142859D+00
  8881. <a name="l08817"></a>08817 xtab(15) = 0.987166478414363086378359071811D+00
  8882. <a name="l08818"></a>08818
  8883. <a name="l08819"></a>08819 weight(1) = 0.888888888888888888888888888889D-02
  8884. <a name="l08820"></a>08820 weight(2) = 0.542027800486444943382142368018D-01
  8885. <a name="l08821"></a>08821 weight(3) = 0.951295994604808992038477266346D-01
  8886. <a name="l08822"></a>08822 weight(4) = 0.131875462504951632186262157944D+00
  8887. <a name="l08823"></a>08823 weight(5) = 0.162854477303832629448732245828D+00
  8888. <a name="l08824"></a>08824 weight(6) = 0.186715145839450908083795103799D+00
  8889. <a name="l08825"></a>08825 weight(7) = 0.202415187030618429872703310435D+00
  8890. <a name="l08826"></a>08826 weight(8) = 0.209268608147694581430889790306D+00
  8891. <a name="l08827"></a>08827 weight(9) = 0.206975960249553755479027321787D+00
  8892. <a name="l08828"></a>08828 weight(10) = 0.195637503045116116473556617575D+00
  8893. <a name="l08829"></a>08829 weight(11) = 0.175748872642447685670310440476D+00
  8894. <a name="l08830"></a>08830 weight(12) = 0.148179527003467253924682058743D+00
  8895. <a name="l08831"></a>08831 weight(13) = 0.114135203489752753013075582569D+00
  8896. <a name="l08832"></a>08832 weight(14) = 0.751083927605064397329716653914D-01
  8897. <a name="l08833"></a>08833 weight(15) = 0.328643915845935322530428528231D-01
  8898. <a name="l08834"></a>08834
  8899. <a name="l08835"></a>08835 <span class="keyword">else</span>
  8900. <a name="l08836"></a>08836
  8901. <a name="l08837"></a>08837 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  8902. <a name="l08838"></a>08838 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;RADAU_SET - Fatal error!&#39;</span>
  8903. <a name="l08839"></a>08839 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Illegal value of NORDER = &#39;</span>, norder
  8904. <a name="l08840"></a>08840 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; Legal values are 1 to 15.&#39;</span>
  8905. <a name="l08841"></a>08841 stop
  8906. <a name="l08842"></a>08842
  8907. <a name="l08843"></a>08843 <span class="keyword">end if</span>
  8908. <a name="l08844"></a>08844
  8909. <a name="l08845"></a>08845 return
  8910. <a name="l08846"></a>08846 <span class="keyword">end</span>
  8911. <a name="l08847"></a><a class="code" href="quadrule_8f90.html#aaa549734d177cfe892a84e25e267ee4d">08847</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#aaa549734d177cfe892a84e25e267ee4d">rule_adjust</a> ( a, b, c, d, norder, x, w )
  8912. <a name="l08848"></a>08848 <span class="comment">!</span>
  8913. <a name="l08849"></a>08849 <span class="comment">!*******************************************************************************</span>
  8914. <a name="l08850"></a>08850 <span class="comment">!</span>
  8915. <a name="l08851"></a>08851 <span class="comment">!! RULE_ADJUST maps a quadrature rule from [A,B] to [C,D].</span>
  8916. <a name="l08852"></a>08852 <span class="comment">!</span>
  8917. <a name="l08853"></a>08853 <span class="comment">!</span>
  8918. <a name="l08854"></a>08854 <span class="comment">! Discussion:</span>
  8919. <a name="l08855"></a>08855 <span class="comment">!</span>
  8920. <a name="l08856"></a>08856 <span class="comment">! Most quadrature rules are defined on a special interval, like</span>
  8921. <a name="l08857"></a>08857 <span class="comment">! [-1,1] or [0,1]. To integrate over an interval, the abscissas</span>
  8922. <a name="l08858"></a>08858 <span class="comment">! and weights must be adjusted. This can be done on the fly,</span>
  8923. <a name="l08859"></a>08859 <span class="comment">! or by calling this routine.</span>
  8924. <a name="l08860"></a>08860 <span class="comment">!</span>
  8925. <a name="l08861"></a>08861 <span class="comment">! If the weight function W(X) is not 1, then the W vector will</span>
  8926. <a name="l08862"></a>08862 <span class="comment">! require further adjustment by the user.</span>
  8927. <a name="l08863"></a>08863 <span class="comment">!</span>
  8928. <a name="l08864"></a>08864 <span class="comment">! Modified:</span>
  8929. <a name="l08865"></a>08865 <span class="comment">!</span>
  8930. <a name="l08866"></a>08866 <span class="comment">! 06 December 2000</span>
  8931. <a name="l08867"></a>08867 <span class="comment">!</span>
  8932. <a name="l08868"></a>08868 <span class="comment">! Author:</span>
  8933. <a name="l08869"></a>08869 <span class="comment">!</span>
  8934. <a name="l08870"></a>08870 <span class="comment">! John Burkardt</span>
  8935. <a name="l08871"></a>08871 <span class="comment">!</span>
  8936. <a name="l08872"></a>08872 <span class="comment">! Parameters:</span>
  8937. <a name="l08873"></a>08873 <span class="comment">!</span>
  8938. <a name="l08874"></a>08874 <span class="comment">! Input, double precision A, B, the endpoints of the definition interval.</span>
  8939. <a name="l08875"></a>08875 <span class="comment">!</span>
  8940. <a name="l08876"></a>08876 <span class="comment">! Input, double precision C, D, the endpoints of the integration interval.</span>
  8941. <a name="l08877"></a>08877 <span class="comment">!</span>
  8942. <a name="l08878"></a>08878 <span class="comment">! Input, integer NORDER, the number of abscissas and weights.</span>
  8943. <a name="l08879"></a>08879 <span class="comment">!</span>
  8944. <a name="l08880"></a>08880 <span class="comment">! Input/output, double precision X(NORDER), W(NORDER), the abscissas</span>
  8945. <a name="l08881"></a>08881 <span class="comment">! and weights.</span>
  8946. <a name="l08882"></a>08882 <span class="comment">!</span>
  8947. <a name="l08883"></a>08883 <span class="keyword">implicit none</span>
  8948. <a name="l08884"></a>08884 <span class="comment">!</span>
  8949. <a name="l08885"></a>08885 <span class="keywordtype">integer</span> norder
  8950. <a name="l08886"></a>08886 <span class="comment">!</span>
  8951. <a name="l08887"></a>08887 <span class="keywordtype">double precision</span> a
  8952. <a name="l08888"></a>08888 <span class="keywordtype">double precision</span> b
  8953. <a name="l08889"></a>08889 <span class="keywordtype">double precision</span> c
  8954. <a name="l08890"></a>08890 <span class="keywordtype">double precision</span> d
  8955. <a name="l08891"></a>08891 <span class="keywordtype">double precision</span> w(norder)
  8956. <a name="l08892"></a>08892 <span class="keywordtype">double precision</span> x(norder)
  8957. <a name="l08893"></a>08893 <span class="comment">!</span>
  8958. <a name="l08894"></a>08894 x(1:norder) = ( ( b - x(1:norder) ) * c + ( x(1:norder) - a ) * d ) &amp;
  8959. <a name="l08895"></a>08895 / ( b - a )
  8960. <a name="l08896"></a>08896
  8961. <a name="l08897"></a>08897 w(1:norder) = ( ( d - c ) / ( b - a ) ) * w(1:norder)
  8962. <a name="l08898"></a>08898
  8963. <a name="l08899"></a>08899 return
  8964. <a name="l08900"></a>08900 <span class="keyword">end</span>
  8965. <a name="l08901"></a><a class="code" href="quadrule_8f90.html#adae6ebad1d51cf128e8f0247ef582ac9">08901</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#adae6ebad1d51cf128e8f0247ef582ac9">summer</a> ( func, norder, xtab, weight, result )
  8966. <a name="l08902"></a>08902 <span class="comment">!</span>
  8967. <a name="l08903"></a>08903 <span class="comment">!*******************************************************************************</span>
  8968. <a name="l08904"></a>08904 <span class="comment">!</span>
  8969. <a name="l08905"></a>08905 <span class="comment">!! SUMMER carries out a quadrature rule over a single interval.</span>
  8970. <a name="l08906"></a>08906 <span class="comment">!</span>
  8971. <a name="l08907"></a>08907 <span class="comment">!</span>
  8972. <a name="l08908"></a>08908 <span class="comment">! Formula:</span>
  8973. <a name="l08909"></a>08909 <span class="comment">!</span>
  8974. <a name="l08910"></a>08910 <span class="comment">! RESULT = SUM ( 1 &lt;= I &lt;= NORDER ) WEIGHT(I) * FUNC ( XTAB(I) )</span>
  8975. <a name="l08911"></a>08911 <span class="comment">!</span>
  8976. <a name="l08912"></a>08912 <span class="comment">! Modified:</span>
  8977. <a name="l08913"></a>08913 <span class="comment">!</span>
  8978. <a name="l08914"></a>08914 <span class="comment">! 16 September 1998</span>
  8979. <a name="l08915"></a>08915 <span class="comment">!</span>
  8980. <a name="l08916"></a>08916 <span class="comment">! Author:</span>
  8981. <a name="l08917"></a>08917 <span class="comment">!</span>
  8982. <a name="l08918"></a>08918 <span class="comment">! John Burkardt</span>
  8983. <a name="l08919"></a>08919 <span class="comment">!</span>
  8984. <a name="l08920"></a>08920 <span class="comment">! Parameters:</span>
  8985. <a name="l08921"></a>08921 <span class="comment">!</span>
  8986. <a name="l08922"></a>08922 <span class="comment">! Input, external FUNC, the name of the FORTRAN function which</span>
  8987. <a name="l08923"></a>08923 <span class="comment">! evaluates the integrand. The function must have the form</span>
  8988. <a name="l08924"></a>08924 <span class="comment">! double precision func ( x ).</span>
  8989. <a name="l08925"></a>08925 <span class="comment">!</span>
  8990. <a name="l08926"></a>08926 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  8991. <a name="l08927"></a>08927 <span class="comment">!</span>
  8992. <a name="l08928"></a>08928 <span class="comment">! Input, double precision XTAB(NORDER), the abscissas of the rule.</span>
  8993. <a name="l08929"></a>08929 <span class="comment">!</span>
  8994. <a name="l08930"></a>08930 <span class="comment">! Input, double precision WEIGHT(NORDER), the weights of the rule.</span>
  8995. <a name="l08931"></a>08931 <span class="comment">!</span>
  8996. <a name="l08932"></a>08932 <span class="comment">! Output, double precision RESULT, the approximate value of the integral.</span>
  8997. <a name="l08933"></a>08933 <span class="comment">!</span>
  8998. <a name="l08934"></a>08934 <span class="keyword">implicit none</span>
  8999. <a name="l08935"></a>08935 <span class="comment">!</span>
  9000. <a name="l08936"></a>08936 <span class="keywordtype">integer</span> norder
  9001. <a name="l08937"></a>08937 <span class="comment">!</span>
  9002. <a name="l08938"></a>08938 <span class="keywordtype">double precision</span>, <span class="keywordtype">external</span> :: func
  9003. <a name="l08939"></a>08939 <span class="keywordtype">integer</span> i
  9004. <a name="l08940"></a>08940 <span class="keywordtype">double precision</span> result
  9005. <a name="l08941"></a>08941 <span class="keywordtype">double precision</span> weight(norder)
  9006. <a name="l08942"></a>08942 <span class="keywordtype">double precision</span> xtab(norder)
  9007. <a name="l08943"></a>08943 <span class="comment">!</span>
  9008. <a name="l08944"></a>08944 <span class="keyword">if</span> ( norder &lt; 1 ) <span class="keyword">then</span>
  9009. <a name="l08945"></a>08945 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  9010. <a name="l08946"></a>08946 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;SUMMER - Fatal error!&#39;</span>
  9011. <a name="l08947"></a>08947 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; NORDER must be at least 1.&#39;</span>
  9012. <a name="l08948"></a>08948 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; The input value was NORDER = &#39;</span>, norder
  9013. <a name="l08949"></a>08949 stop
  9014. <a name="l08950"></a>08950 <span class="keyword">end if</span>
  9015. <a name="l08951"></a>08951
  9016. <a name="l08952"></a>08952 result = 0.0D+00
  9017. <a name="l08953"></a>08953 <span class="keyword">do</span> i = 1, norder
  9018. <a name="l08954"></a>08954 result = result + weight(i) * func ( xtab(i) )
  9019. <a name="l08955"></a>08955 <span class="keyword">end do</span>
  9020. <a name="l08956"></a>08956
  9021. <a name="l08957"></a>08957 return
  9022. <a name="l08958"></a>08958 <span class="keyword">end</span>
  9023. <a name="l08959"></a><a class="code" href="quadrule_8f90.html#ae2cd4600769ef44fbc01ccd971c0fc73">08959</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#ae2cd4600769ef44fbc01ccd971c0fc73">summer_gk</a> ( func, norderg, weightg, resultg, norderk, xtabk, &amp;
  9024. <a name="l08960"></a>08960 weightk, resultk )
  9025. <a name="l08961"></a>08961 <span class="comment">!</span>
  9026. <a name="l08962"></a>08962 <span class="comment">!*******************************************************************************</span>
  9027. <a name="l08963"></a>08963 <span class="comment">!</span>
  9028. <a name="l08964"></a>08964 <span class="comment">!! SUMMER_GK carries out Gauss-Kronrod quadrature over a single interval.</span>
  9029. <a name="l08965"></a>08965 <span class="comment">!</span>
  9030. <a name="l08966"></a>08966 <span class="comment">!</span>
  9031. <a name="l08967"></a>08967 <span class="comment">! Note:</span>
  9032. <a name="l08968"></a>08968 <span class="comment">!</span>
  9033. <a name="l08969"></a>08969 <span class="comment">! The abscissas for the Gauss-Legendre rule of order NORDERG are</span>
  9034. <a name="l08970"></a>08970 <span class="comment">! not required, since they are assumed to be the even-indexed</span>
  9035. <a name="l08971"></a>08971 <span class="comment">! entries of the corresponding Kronrod rule.</span>
  9036. <a name="l08972"></a>08972 <span class="comment">!</span>
  9037. <a name="l08973"></a>08973 <span class="comment">! Modified:</span>
  9038. <a name="l08974"></a>08974 <span class="comment">!</span>
  9039. <a name="l08975"></a>08975 <span class="comment">! 16 September 1998</span>
  9040. <a name="l08976"></a>08976 <span class="comment">!</span>
  9041. <a name="l08977"></a>08977 <span class="comment">! Author:</span>
  9042. <a name="l08978"></a>08978 <span class="comment">!</span>
  9043. <a name="l08979"></a>08979 <span class="comment">! John Burkardt</span>
  9044. <a name="l08980"></a>08980 <span class="comment">!</span>
  9045. <a name="l08981"></a>08981 <span class="comment">! Parameters:</span>
  9046. <a name="l08982"></a>08982 <span class="comment">!</span>
  9047. <a name="l08983"></a>08983 <span class="comment">! Input, external FUNC, the name of the FORTRAN function which</span>
  9048. <a name="l08984"></a>08984 <span class="comment">! evaluates the integrand. The function must have the form</span>
  9049. <a name="l08985"></a>08985 <span class="comment">! double precision func ( x ).</span>
  9050. <a name="l08986"></a>08986 <span class="comment">!</span>
  9051. <a name="l08987"></a>08987 <span class="comment">! Input, integer NORDERG, the order of the Gauss-Legendre rule.</span>
  9052. <a name="l08988"></a>08988 <span class="comment">!</span>
  9053. <a name="l08989"></a>08989 <span class="comment">! Input, double precision WEIGHTG(NORDERG), the weights of the</span>
  9054. <a name="l08990"></a>08990 <span class="comment">! Gauss-Legendre rule.</span>
  9055. <a name="l08991"></a>08991 <span class="comment">!</span>
  9056. <a name="l08992"></a>08992 <span class="comment">! Output, double precision RESULTG, the approximate value of the</span>
  9057. <a name="l08993"></a>08993 <span class="comment">! integral, based on the Gauss-Legendre rule.</span>
  9058. <a name="l08994"></a>08994 <span class="comment">!</span>
  9059. <a name="l08995"></a>08995 <span class="comment">! Input, integer NORDERK, the order of the Kronrod rule. NORDERK</span>
  9060. <a name="l08996"></a>08996 <span class="comment">! must equal 2 * NORDERG + 1.</span>
  9061. <a name="l08997"></a>08997 <span class="comment">!</span>
  9062. <a name="l08998"></a>08998 <span class="comment">! Input, double precision XTABK(NORDERK), the abscissas of the Kronrod rule.</span>
  9063. <a name="l08999"></a>08999 <span class="comment">!</span>
  9064. <a name="l09000"></a>09000 <span class="comment">! Input, double precision WEIGHTK(NORDERK), the weights of the Kronrod rule.</span>
  9065. <a name="l09001"></a>09001 <span class="comment">!</span>
  9066. <a name="l09002"></a>09002 <span class="comment">! Output, double precision RESULTK, the approximate value of the integral,</span>
  9067. <a name="l09003"></a>09003 <span class="comment">! based on the Kronrod rule.</span>
  9068. <a name="l09004"></a>09004 <span class="comment">!</span>
  9069. <a name="l09005"></a>09005 <span class="keyword">implicit none</span>
  9070. <a name="l09006"></a>09006 <span class="comment">!</span>
  9071. <a name="l09007"></a>09007 <span class="keywordtype">integer</span> norderg
  9072. <a name="l09008"></a>09008 <span class="keywordtype">integer</span> norderk
  9073. <a name="l09009"></a>09009 <span class="comment">!</span>
  9074. <a name="l09010"></a>09010 <span class="keywordtype">double precision</span> fk
  9075. <a name="l09011"></a>09011 <span class="keywordtype">double precision</span>, <span class="keywordtype">external</span> :: func
  9076. <a name="l09012"></a>09012 <span class="keywordtype">integer</span> i
  9077. <a name="l09013"></a>09013 <span class="keywordtype">double precision</span> resultg
  9078. <a name="l09014"></a>09014 <span class="keywordtype">double precision</span> resultk
  9079. <a name="l09015"></a>09015 <span class="keywordtype">double precision</span> weightg(norderg)
  9080. <a name="l09016"></a>09016 <span class="keywordtype">double precision</span> weightk(norderk)
  9081. <a name="l09017"></a>09017 <span class="keywordtype">double precision</span> xtabk(norderk)
  9082. <a name="l09018"></a>09018 <span class="comment">!</span>
  9083. <a name="l09019"></a>09019 <span class="keyword">if</span> ( norderk /= 2 * norderg + 1 ) <span class="keyword">then</span>
  9084. <a name="l09020"></a>09020 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  9085. <a name="l09021"></a>09021 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;SUMMER_GK - Fatal error!&#39;</span>
  9086. <a name="l09022"></a>09022 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; NORDERK must equal 2 * NORDERG + 1.&#39;</span>
  9087. <a name="l09023"></a>09023 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; The input value was NORDERG = &#39;</span>, norderg
  9088. <a name="l09024"></a>09024 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; The input value was NORDERK = &#39;</span>, norderk
  9089. <a name="l09025"></a>09025 stop
  9090. <a name="l09026"></a>09026 <span class="keyword">end if</span>
  9091. <a name="l09027"></a>09027
  9092. <a name="l09028"></a>09028 resultg = 0.0D+00
  9093. <a name="l09029"></a>09029 resultk = 0.0D+00
  9094. <a name="l09030"></a>09030
  9095. <a name="l09031"></a>09031 <span class="keyword">do</span> i = 1, norderk
  9096. <a name="l09032"></a>09032
  9097. <a name="l09033"></a>09033 fk = func ( xtabk(i) )
  9098. <a name="l09034"></a>09034
  9099. <a name="l09035"></a>09035 resultk = resultk + weightk(i) * fk
  9100. <a name="l09036"></a>09036
  9101. <a name="l09037"></a>09037 <span class="keyword">if</span> ( mod ( i, 2 ) == 0 )<span class="keyword">then</span>
  9102. <a name="l09038"></a>09038 resultg = resultg + weightg(i/2) * fk
  9103. <a name="l09039"></a>09039 <span class="keyword">end if</span>
  9104. <a name="l09040"></a>09040
  9105. <a name="l09041"></a>09041 <span class="keyword">end do</span>
  9106. <a name="l09042"></a>09042
  9107. <a name="l09043"></a>09043 return
  9108. <a name="l09044"></a>09044 <span class="keyword">end</span>
  9109. <a name="l09045"></a><a class="code" href="quadrule_8f90.html#a268ec8eaa9ed225402666340aecb03d4">09045</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a268ec8eaa9ed225402666340aecb03d4">sum_sub</a> ( func, a, b, nsub, norder, xlo, xhi, xtab, weight, result )
  9110. <a name="l09046"></a>09046 <span class="comment">!</span>
  9111. <a name="l09047"></a>09047 <span class="comment">!*******************************************************************************</span>
  9112. <a name="l09048"></a>09048 <span class="comment">!</span>
  9113. <a name="l09049"></a>09049 <span class="comment">!! SUM_SUB carries out a composite quadrature rule.</span>
  9114. <a name="l09050"></a>09050 <span class="comment">!</span>
  9115. <a name="l09051"></a>09051 <span class="comment">!</span>
  9116. <a name="l09052"></a>09052 <span class="comment">! Discussion:</span>
  9117. <a name="l09053"></a>09053 <span class="comment">!</span>
  9118. <a name="l09054"></a>09054 <span class="comment">! SUM_SUB assumes the original rule was written for [XLO,XHI].</span>
  9119. <a name="l09055"></a>09055 <span class="comment">!</span>
  9120. <a name="l09056"></a>09056 <span class="comment">! Integration interval:</span>
  9121. <a name="l09057"></a>09057 <span class="comment">!</span>
  9122. <a name="l09058"></a>09058 <span class="comment">! [ A, B ]</span>
  9123. <a name="l09059"></a>09059 <span class="comment">!</span>
  9124. <a name="l09060"></a>09060 <span class="comment">! Integral to approximate:</span>
  9125. <a name="l09061"></a>09061 <span class="comment">!</span>
  9126. <a name="l09062"></a>09062 <span class="comment">! Integral ( A &lt;= X &lt;= B ) F(X) dX</span>
  9127. <a name="l09063"></a>09063 <span class="comment">!</span>
  9128. <a name="l09064"></a>09064 <span class="comment">! Modified:</span>
  9129. <a name="l09065"></a>09065 <span class="comment">!</span>
  9130. <a name="l09066"></a>09066 <span class="comment">! 06 December 2000</span>
  9131. <a name="l09067"></a>09067 <span class="comment">!</span>
  9132. <a name="l09068"></a>09068 <span class="comment">! Author:</span>
  9133. <a name="l09069"></a>09069 <span class="comment">!</span>
  9134. <a name="l09070"></a>09070 <span class="comment">! John Burkardt</span>
  9135. <a name="l09071"></a>09071 <span class="comment">!</span>
  9136. <a name="l09072"></a>09072 <span class="comment">! Parameters:</span>
  9137. <a name="l09073"></a>09073 <span class="comment">!</span>
  9138. <a name="l09074"></a>09074 <span class="comment">! Input, external FUNC, the name of the FORTRAN function which</span>
  9139. <a name="l09075"></a>09075 <span class="comment">! evaluates the integrand. The function must have the form</span>
  9140. <a name="l09076"></a>09076 <span class="comment">! double precision func ( x ).</span>
  9141. <a name="l09077"></a>09077 <span class="comment">!</span>
  9142. <a name="l09078"></a>09078 <span class="comment">! Input, double precision A, B, the lower and upper limits of integration.</span>
  9143. <a name="l09079"></a>09079 <span class="comment">!</span>
  9144. <a name="l09080"></a>09080 <span class="comment">! Input, integer NSUB, the number of equal subintervals into</span>
  9145. <a name="l09081"></a>09081 <span class="comment">! which the finite interval (A,B) is to be subdivided for</span>
  9146. <a name="l09082"></a>09082 <span class="comment">! higher accuracy. NSUB must be at least 1.</span>
  9147. <a name="l09083"></a>09083 <span class="comment">!</span>
  9148. <a name="l09084"></a>09084 <span class="comment">! Input, integer NORDER, the order of the rule.</span>
  9149. <a name="l09085"></a>09085 <span class="comment">! NORDER must be at least 1.</span>
  9150. <a name="l09086"></a>09086 <span class="comment">!</span>
  9151. <a name="l09087"></a>09087 <span class="comment">! Input, double precision XLO, XHI, the left and right endpoints of</span>
  9152. <a name="l09088"></a>09088 <span class="comment">! the interval over which the quadrature rule was defined.</span>
  9153. <a name="l09089"></a>09089 <span class="comment">!</span>
  9154. <a name="l09090"></a>09090 <span class="comment">! Input, double precision XTAB(NORDER), the abscissas of a quadrature</span>
  9155. <a name="l09091"></a>09091 <span class="comment">! rule for the interval [XLO,XHI].</span>
  9156. <a name="l09092"></a>09092 <span class="comment">!</span>
  9157. <a name="l09093"></a>09093 <span class="comment">! Input, double precision WEIGHT(NORDER), the weights of the quadrature rule.</span>
  9158. <a name="l09094"></a>09094 <span class="comment">!</span>
  9159. <a name="l09095"></a>09095 <span class="comment">! Output, double precision RESULT, the approximate value of the integral.</span>
  9160. <a name="l09096"></a>09096 <span class="comment">!</span>
  9161. <a name="l09097"></a>09097 <span class="keyword">implicit none</span>
  9162. <a name="l09098"></a>09098 <span class="comment">!</span>
  9163. <a name="l09099"></a>09099 <span class="keywordtype">integer</span> norder
  9164. <a name="l09100"></a>09100 <span class="comment">!</span>
  9165. <a name="l09101"></a>09101 <span class="keywordtype">double precision</span> a
  9166. <a name="l09102"></a>09102 <span class="keywordtype">double precision</span> a_sub
  9167. <a name="l09103"></a>09103 <span class="keywordtype">double precision</span> b
  9168. <a name="l09104"></a>09104 <span class="keywordtype">double precision</span> b_sub
  9169. <a name="l09105"></a>09105 <span class="keywordtype">double precision</span>, <span class="keywordtype">external</span> :: func
  9170. <a name="l09106"></a>09106 <span class="keywordtype">double precision</span> h
  9171. <a name="l09107"></a>09107 <span class="keywordtype">integer</span> i
  9172. <a name="l09108"></a>09108 <span class="keywordtype">integer</span> j
  9173. <a name="l09109"></a>09109 <span class="keywordtype">integer</span> nsub
  9174. <a name="l09110"></a>09110 <span class="keywordtype">double precision</span> quad_sub
  9175. <a name="l09111"></a>09111 <span class="keywordtype">double precision</span> result
  9176. <a name="l09112"></a>09112 <span class="keywordtype">double precision</span> result_sub
  9177. <a name="l09113"></a>09113 <span class="keywordtype">double precision</span> x
  9178. <a name="l09114"></a>09114 <span class="keywordtype">double precision</span> xhi
  9179. <a name="l09115"></a>09115 <span class="keywordtype">double precision</span> xlo
  9180. <a name="l09116"></a>09116 <span class="keywordtype">double precision</span> xmid
  9181. <a name="l09117"></a>09117 <span class="keywordtype">double precision</span> xtab(norder)
  9182. <a name="l09118"></a>09118 <span class="keywordtype">double precision</span> volume
  9183. <a name="l09119"></a>09119 <span class="keywordtype">double precision</span> volume_sub
  9184. <a name="l09120"></a>09120 <span class="keywordtype">double precision</span> weight(norder)
  9185. <a name="l09121"></a>09121 <span class="comment">!</span>
  9186. <a name="l09122"></a>09122 <span class="keyword">if</span> ( a == b ) <span class="keyword">then</span>
  9187. <a name="l09123"></a>09123 result = 0.0D+00
  9188. <a name="l09124"></a>09124 return
  9189. <a name="l09125"></a>09125 <span class="keyword">end if</span>
  9190. <a name="l09126"></a>09126
  9191. <a name="l09127"></a>09127 <span class="keyword">if</span> ( norder &lt; 1 ) <span class="keyword">then</span>
  9192. <a name="l09128"></a>09128 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  9193. <a name="l09129"></a>09129 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;SUM_SUB - Fatal error!&#39;</span>
  9194. <a name="l09130"></a>09130 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Nonpositive value of NORDER = &#39;</span>, norder
  9195. <a name="l09131"></a>09131 stop
  9196. <a name="l09132"></a>09132 <span class="keyword">end if</span>
  9197. <a name="l09133"></a>09133
  9198. <a name="l09134"></a>09134 <span class="keyword">if</span> ( nsub &lt; 1 ) <span class="keyword">then</span>
  9199. <a name="l09135"></a>09135 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  9200. <a name="l09136"></a>09136 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;SUM_SUB - Fatal error!&#39;</span>
  9201. <a name="l09137"></a>09137 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; Nonpositive value of NSUB = &#39;</span>, nsub
  9202. <a name="l09138"></a>09138 stop
  9203. <a name="l09139"></a>09139 <span class="keyword">end if</span>
  9204. <a name="l09140"></a>09140
  9205. <a name="l09141"></a>09141 <span class="keyword">if</span> ( xlo == xhi ) <span class="keyword">then</span>
  9206. <a name="l09142"></a>09142 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  9207. <a name="l09143"></a>09143 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;SUM_SUB - Fatal error!&#39;</span>
  9208. <a name="l09144"></a>09144 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; XLO = XHI.&#39;</span>
  9209. <a name="l09145"></a>09145 stop
  9210. <a name="l09146"></a>09146 <span class="keyword">end if</span>
  9211. <a name="l09147"></a>09147
  9212. <a name="l09148"></a>09148 volume = 0.0D+00
  9213. <a name="l09149"></a>09149 result = 0.0D+00
  9214. <a name="l09150"></a>09150
  9215. <a name="l09151"></a>09151 <span class="keyword">do</span> j = 1, nsub
  9216. <a name="l09152"></a>09152
  9217. <a name="l09153"></a>09153 a_sub = ( dble ( nsub - j + 1 ) * a + dble ( j - 1 ) * b ) / dble ( nsub )
  9218. <a name="l09154"></a>09154 b_sub = ( dble ( nsub - j ) * a + dble ( j ) * b ) / dble ( nsub )
  9219. <a name="l09155"></a>09155
  9220. <a name="l09156"></a>09156 quad_sub = 0.0D+00
  9221. <a name="l09157"></a>09157 <span class="keyword">do</span> i = 1, norder
  9222. <a name="l09158"></a>09158 x = ( ( xhi - xtab(i) ) * a_sub + ( xtab(i) - xlo ) * b_sub ) &amp;
  9223. <a name="l09159"></a>09159 / ( xhi - xlo )
  9224. <a name="l09160"></a>09160 quad_sub = quad_sub + weight(i) * func ( x )
  9225. <a name="l09161"></a>09161 <span class="keyword">end do</span>
  9226. <a name="l09162"></a>09162
  9227. <a name="l09163"></a>09163 volume_sub = ( b - a ) / ( ( xhi - xlo ) * dble ( nsub ) )
  9228. <a name="l09164"></a>09164 result_sub = quad_sub * volume_sub
  9229. <a name="l09165"></a>09165
  9230. <a name="l09166"></a>09166 volume = volume + volume_sub
  9231. <a name="l09167"></a>09167 result = result + result_sub
  9232. <a name="l09168"></a>09168
  9233. <a name="l09169"></a>09169 <span class="keyword">end do</span>
  9234. <a name="l09170"></a>09170
  9235. <a name="l09171"></a>09171 return
  9236. <a name="l09172"></a>09172 <span class="keyword">end</span>
  9237. <a name="l09173"></a><a class="code" href="quadrule_8f90.html#a423ae8e8d1445586d8ba40e7a7e0d5f4">09173</a> <span class="keyword">subroutine </span><a class="code" href="quadrule_8f90.html#a423ae8e8d1445586d8ba40e7a7e0d5f4">sum_sub_gk</a> ( func, a, b, nsub, norderg, weightg, resultg, norderk, &amp;
  9238. <a name="l09174"></a>09174 xtabk, weightk, resultk, error )
  9239. <a name="l09175"></a>09175 <span class="comment">!</span>
  9240. <a name="l09176"></a>09176 <span class="comment">!*******************************************************************************</span>
  9241. <a name="l09177"></a>09177 <span class="comment">!</span>
  9242. <a name="l09178"></a>09178 <span class="comment">!! SUM_SUB_GK carries out a composite Gauss-Kronrod rule.</span>
  9243. <a name="l09179"></a>09179 <span class="comment">!</span>
  9244. <a name="l09180"></a>09180 <span class="comment">!</span>
  9245. <a name="l09181"></a>09181 <span class="comment">! Integration interval:</span>
  9246. <a name="l09182"></a>09182 <span class="comment">!</span>
  9247. <a name="l09183"></a>09183 <span class="comment">! [ A, B ]</span>
  9248. <a name="l09184"></a>09184 <span class="comment">!</span>
  9249. <a name="l09185"></a>09185 <span class="comment">! Integral to approximate:</span>
  9250. <a name="l09186"></a>09186 <span class="comment">!</span>
  9251. <a name="l09187"></a>09187 <span class="comment">! Integral ( A &lt;= X &lt;= B ) F(X) dX</span>
  9252. <a name="l09188"></a>09188 <span class="comment">!</span>
  9253. <a name="l09189"></a>09189 <span class="comment">! Approximate integral:</span>
  9254. <a name="l09190"></a>09190 <span class="comment">!</span>
  9255. <a name="l09191"></a>09191 <span class="comment">! H = ( B - A ) / NSUB</span>
  9256. <a name="l09192"></a>09192 <span class="comment">! XMID(J) = A + 0.5 * H * REAL ( 2 * J - 1 )</span>
  9257. <a name="l09193"></a>09193 <span class="comment">!</span>
  9258. <a name="l09194"></a>09194 <span class="comment">! Sum ( 1 &lt;= J &lt;= NSUB )</span>
  9259. <a name="l09195"></a>09195 <span class="comment">! Sum ( 1 &lt;= I &lt;= NORDERK )</span>
  9260. <a name="l09196"></a>09196 <span class="comment">! WEIGHTK(I) * F ( XMID(J) + 0.5 * H * XTABK(I) )</span>
  9261. <a name="l09197"></a>09197 <span class="comment">!</span>
  9262. <a name="l09198"></a>09198 <span class="comment">! Note:</span>
  9263. <a name="l09199"></a>09199 <span class="comment">!</span>
  9264. <a name="l09200"></a>09200 <span class="comment">! The Gauss-Legendre weights should be computed by LEGCOM or LEGSET.</span>
  9265. <a name="l09201"></a>09201 <span class="comment">! The Kronrod abscissas and weights should be computed by KRONSET.</span>
  9266. <a name="l09202"></a>09202 <span class="comment">!</span>
  9267. <a name="l09203"></a>09203 <span class="comment">! The orders of the Gauss-Legendre and Kronrod rules must satisfy</span>
  9268. <a name="l09204"></a>09204 <span class="comment">! NORDERK = 2 * NORDERG + 1.</span>
  9269. <a name="l09205"></a>09205 <span class="comment">!</span>
  9270. <a name="l09206"></a>09206 <span class="comment">! The Kronrod rule uses the abscissas of the Gauss-Legendre rule,</span>
  9271. <a name="l09207"></a>09207 <span class="comment">! plus more points, resulting in an efficient and higher order estimate.</span>
  9272. <a name="l09208"></a>09208 <span class="comment">!</span>
  9273. <a name="l09209"></a>09209 <span class="comment">! The difference between the Gauss-Legendre and Kronrod estimates</span>
  9274. <a name="l09210"></a>09210 <span class="comment">! is taken as an estimate of the error in the approximation to the</span>
  9275. <a name="l09211"></a>09211 <span class="comment">! integral.</span>
  9276. <a name="l09212"></a>09212 <span class="comment">!</span>
  9277. <a name="l09213"></a>09213 <span class="comment">! Modified:</span>
  9278. <a name="l09214"></a>09214 <span class="comment">!</span>
  9279. <a name="l09215"></a>09215 <span class="comment">! 15 September 1998</span>
  9280. <a name="l09216"></a>09216 <span class="comment">!</span>
  9281. <a name="l09217"></a>09217 <span class="comment">! Author:</span>
  9282. <a name="l09218"></a>09218 <span class="comment">!</span>
  9283. <a name="l09219"></a>09219 <span class="comment">! John Burkardt</span>
  9284. <a name="l09220"></a>09220 <span class="comment">!</span>
  9285. <a name="l09221"></a>09221 <span class="comment">! Parameters:</span>
  9286. <a name="l09222"></a>09222 <span class="comment">!</span>
  9287. <a name="l09223"></a>09223 <span class="comment">! Input, external FUNC, the name of the FORTRAN function which</span>
  9288. <a name="l09224"></a>09224 <span class="comment">! evaluates the integrand. The function must have the form</span>
  9289. <a name="l09225"></a>09225 <span class="comment">! double precision func ( x ).</span>
  9290. <a name="l09226"></a>09226 <span class="comment">!</span>
  9291. <a name="l09227"></a>09227 <span class="comment">! Input, double precision A, B, the lower and upper limits of integration.</span>
  9292. <a name="l09228"></a>09228 <span class="comment">!</span>
  9293. <a name="l09229"></a>09229 <span class="comment">! Input, integer NSUB, the number of equal subintervals into</span>
  9294. <a name="l09230"></a>09230 <span class="comment">! which the finite interval (A,B) is to be subdivided for</span>
  9295. <a name="l09231"></a>09231 <span class="comment">! higher accuracy. NSUB must be at least 1.</span>
  9296. <a name="l09232"></a>09232 <span class="comment">!</span>
  9297. <a name="l09233"></a>09233 <span class="comment">! Input, integer NORDERG, the order of the Gauss-Legendre rule.</span>
  9298. <a name="l09234"></a>09234 <span class="comment">! NORDERG must be at least 1.</span>
  9299. <a name="l09235"></a>09235 <span class="comment">!</span>
  9300. <a name="l09236"></a>09236 <span class="comment">! Input, double precision WEIGHTG(NORDERG), the weights of the</span>
  9301. <a name="l09237"></a>09237 <span class="comment">! Gauss-Legendre rule.</span>
  9302. <a name="l09238"></a>09238 <span class="comment">!</span>
  9303. <a name="l09239"></a>09239 <span class="comment">! Output, double precision RESULTG, the approximate value of the</span>
  9304. <a name="l09240"></a>09240 <span class="comment">! integral based on the Gauss-Legendre rule.</span>
  9305. <a name="l09241"></a>09241 <span class="comment">!</span>
  9306. <a name="l09242"></a>09242 <span class="comment">! Input, integer NORDERK, the order of the Kronrod rule.</span>
  9307. <a name="l09243"></a>09243 <span class="comment">! NORDERK must be at least 1.</span>
  9308. <a name="l09244"></a>09244 <span class="comment">!</span>
  9309. <a name="l09245"></a>09245 <span class="comment">! Input, double precision XTABK(NORDERK), the abscissas of the</span>
  9310. <a name="l09246"></a>09246 <span class="comment">! Kronrod rule.</span>
  9311. <a name="l09247"></a>09247 <span class="comment">!</span>
  9312. <a name="l09248"></a>09248 <span class="comment">! Input, double precision WEIGHTK(NORDERK), the weights of the</span>
  9313. <a name="l09249"></a>09249 <span class="comment">! Kronrod rule.</span>
  9314. <a name="l09250"></a>09250 <span class="comment">!</span>
  9315. <a name="l09251"></a>09251 <span class="comment">! Output, double precision RESULTK, the approximate value of the</span>
  9316. <a name="l09252"></a>09252 <span class="comment">! integral based on the Kronrod rule.</span>
  9317. <a name="l09253"></a>09253 <span class="comment">!</span>
  9318. <a name="l09254"></a>09254 <span class="comment">! Output, double precision ERROR, an estimate of the approximation</span>
  9319. <a name="l09255"></a>09255 <span class="comment">! error. This is computed by taking the sum of the absolute values of</span>
  9320. <a name="l09256"></a>09256 <span class="comment">! the differences between the Gauss-Legendre and Kronrod rules</span>
  9321. <a name="l09257"></a>09257 <span class="comment">! over each subinterval. This is usually a good estimate of</span>
  9322. <a name="l09258"></a>09258 <span class="comment">! the error in the value RESULTG. The error in the Kronrod</span>
  9323. <a name="l09259"></a>09259 <span class="comment">! estimate RESULTK is usually much smaller.</span>
  9324. <a name="l09260"></a>09260 <span class="comment">!</span>
  9325. <a name="l09261"></a>09261 <span class="keyword">implicit none</span>
  9326. <a name="l09262"></a>09262 <span class="comment">!</span>
  9327. <a name="l09263"></a>09263 <span class="keywordtype">integer</span> norderg
  9328. <a name="l09264"></a>09264 <span class="keywordtype">integer</span> norderk
  9329. <a name="l09265"></a>09265 <span class="comment">!</span>
  9330. <a name="l09266"></a>09266 <span class="keywordtype">double precision</span> a
  9331. <a name="l09267"></a>09267 <span class="keywordtype">double precision</span> b
  9332. <a name="l09268"></a>09268 <span class="keywordtype">double precision</span> error
  9333. <a name="l09269"></a>09269 <span class="keywordtype">double precision</span> fk
  9334. <a name="l09270"></a>09270 <span class="keywordtype">double precision</span>, <span class="keywordtype">external</span> :: func
  9335. <a name="l09271"></a>09271 <span class="keywordtype">double precision</span> h
  9336. <a name="l09272"></a>09272 <span class="keywordtype">integer</span> i
  9337. <a name="l09273"></a>09273 <span class="keywordtype">integer</span> j
  9338. <a name="l09274"></a>09274 <span class="keywordtype">integer</span> nsub
  9339. <a name="l09275"></a>09275 <span class="keywordtype">double precision</span> partg
  9340. <a name="l09276"></a>09276 <span class="keywordtype">double precision</span> partk
  9341. <a name="l09277"></a>09277 <span class="keywordtype">double precision</span> resultg
  9342. <a name="l09278"></a>09278 <span class="keywordtype">double precision</span> resultk
  9343. <a name="l09279"></a>09279 <span class="keywordtype">double precision</span> x
  9344. <a name="l09280"></a>09280 <span class="keywordtype">double precision</span> xmid
  9345. <a name="l09281"></a>09281 <span class="keywordtype">double precision</span> xtabk(norderk)
  9346. <a name="l09282"></a>09282 <span class="keywordtype">double precision</span> weightg(norderg)
  9347. <a name="l09283"></a>09283 <span class="keywordtype">double precision</span> weightk(norderk)
  9348. <a name="l09284"></a>09284 <span class="comment">!</span>
  9349. <a name="l09285"></a>09285 resultg = 0.0D+00
  9350. <a name="l09286"></a>09286 resultk = 0.0D+00
  9351. <a name="l09287"></a>09287 error = 0
  9352. <a name="l09288"></a>09288
  9353. <a name="l09289"></a>09289 <span class="keyword">if</span> ( a == b ) <span class="keyword">then</span>
  9354. <a name="l09290"></a>09290 return
  9355. <a name="l09291"></a>09291 <span class="keyword">end if</span>
  9356. <a name="l09292"></a>09292
  9357. <a name="l09293"></a>09293 <span class="keyword">if</span> ( norderk /= 2 * norderg + 1 ) <span class="keyword">then</span>
  9358. <a name="l09294"></a>09294 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; &#39;</span>
  9359. <a name="l09295"></a>09295 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39;SUM_SUB_GK - Fatal error!&#39;</span>
  9360. <a name="l09296"></a>09296 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a)&#39;</span> ) <span class="stringliteral">&#39; NORDERK must equal 2 * NORDERG + 1.&#39;</span>
  9361. <a name="l09297"></a>09297 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; The input value was NORDERG = &#39;</span>, norderg
  9362. <a name="l09298"></a>09298 <span class="keyword">write</span> ( *, <span class="stringliteral">&#39;(a,i6)&#39;</span> ) <span class="stringliteral">&#39; The input value was NORDERK = &#39;</span>, norderk
  9363. <a name="l09299"></a>09299 stop
  9364. <a name="l09300"></a>09300 <span class="keyword">end if</span>
  9365. <a name="l09301"></a>09301
  9366. <a name="l09302"></a>09302 h = ( b - a ) / dble ( nsub )
  9367. <a name="l09303"></a>09303
  9368. <a name="l09304"></a>09304 <span class="keyword">do</span> j = 1, nsub
  9369. <a name="l09305"></a>09305
  9370. <a name="l09306"></a>09306 xmid = a + 0.5D0 * h * dble ( 2 * j - 1 )
  9371. <a name="l09307"></a>09307
  9372. <a name="l09308"></a>09308 partg = 0.0D+00
  9373. <a name="l09309"></a>09309 partk = 0.0D+00
  9374. <a name="l09310"></a>09310
  9375. <a name="l09311"></a>09311 <span class="keyword">do</span> i = 1, norderk
  9376. <a name="l09312"></a>09312
  9377. <a name="l09313"></a>09313 x = xmid + 0.5D0 * h * xtabk(i)
  9378. <a name="l09314"></a>09314 fk = func ( x )
  9379. <a name="l09315"></a>09315 partk = partk + 0.5D0 * h * weightk(i) * fk
  9380. <a name="l09316"></a>09316
  9381. <a name="l09317"></a>09317 <span class="keyword">if</span> ( mod ( i, 2 ) == 0 ) <span class="keyword">then</span>
  9382. <a name="l09318"></a>09318 partg = partg + 0.5D0 * h * weightg(i/2) * fk
  9383. <a name="l09319"></a>09319 <span class="keyword">end if</span>
  9384. <a name="l09320"></a>09320
  9385. <a name="l09321"></a>09321 <span class="keyword">end do</span>
  9386. <a name="l09322"></a>09322
  9387. <a name="l09323"></a>09323 resultg = resultg + partg
  9388. <a name="l09324"></a>09324 resultk = resultk + partk
  9389. <a name="l09325"></a>09325 error = error + abs ( partk - partg )
  9390. <a name="l09326"></a>09326
  9391. <a name="l09327"></a>09327 <span class="keyword">end do</span>
  9392. <a name="l09328"></a>09328
  9393. <a name="l09329"></a>09329 return
  9394. <a name="l09330"></a>09330 <span class="keyword">end</span>
  9395. </pre></div></div>
  9396. </div>
  9397. <!-- window showing the filter options -->
  9398. <div id="MSearchSelectWindow"
  9399. onmouseover="return searchBox.OnSearchSelectShow()"
  9400. onmouseout="return searchBox.OnSearchSelectHide()"
  9401. onkeydown="return searchBox.OnSearchSelectKey(event)">
  9402. <a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark">&#160;</span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark">&#160;</span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark">&#160;</span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark">&#160;</span>Defines</a></div>
  9403. <!-- iframe showing the search results (closed by default) -->
  9404. <div id="MSearchResultsWindow">
  9405. <iframe src="javascript:void(0)" frameborder="0"
  9406. name="MSearchResults" id="MSearchResults">
  9407. </iframe>
  9408. </div>
  9409. <hr class="footer"/><address class="footer"><small>Generated on Wed Nov 16 2011 15:27:15 for 3DEX by&#160;
  9410. <a href="http://www.doxygen.org/index.html">
  9411. <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.7.4 </small></address>
  9412. </body>
  9413. </html>