PageRenderTime 78ms CodeModel.GetById 27ms RepoModel.GetById 0ms app.codeStats 0ms

/fs/btrfs/extent_io.c

https://gitlab.com/LiquidSmooth-Devices/android_kernel_htc_msm8974
C | 4300 lines | 3703 code | 578 blank | 19 comment | 749 complexity | 713a1225fd840aed76eb7dba1f1e4e2c MD5 | raw file
Possible License(s): GPL-2.0

Large files files are truncated, but you can click here to view the full file

  1. #include <linux/bitops.h>
  2. #include <linux/slab.h>
  3. #include <linux/bio.h>
  4. #include <linux/mm.h>
  5. #include <linux/pagemap.h>
  6. #include <linux/page-flags.h>
  7. #include <linux/module.h>
  8. #include <linux/spinlock.h>
  9. #include <linux/blkdev.h>
  10. #include <linux/swap.h>
  11. #include <linux/writeback.h>
  12. #include <linux/pagevec.h>
  13. #include <linux/prefetch.h>
  14. #include <linux/cleancache.h>
  15. #include "extent_io.h"
  16. #include "extent_map.h"
  17. #include "compat.h"
  18. #include "ctree.h"
  19. #include "btrfs_inode.h"
  20. #include "volumes.h"
  21. #include "check-integrity.h"
  22. #include "locking.h"
  23. static struct kmem_cache *extent_state_cache;
  24. static struct kmem_cache *extent_buffer_cache;
  25. static LIST_HEAD(buffers);
  26. static LIST_HEAD(states);
  27. #define LEAK_DEBUG 0
  28. #if LEAK_DEBUG
  29. static DEFINE_SPINLOCK(leak_lock);
  30. #endif
  31. #define BUFFER_LRU_MAX 64
  32. struct tree_entry {
  33. u64 start;
  34. u64 end;
  35. struct rb_node rb_node;
  36. };
  37. struct extent_page_data {
  38. struct bio *bio;
  39. struct extent_io_tree *tree;
  40. get_extent_t *get_extent;
  41. unsigned int extent_locked:1;
  42. unsigned int sync_io:1;
  43. };
  44. static noinline void flush_write_bio(void *data);
  45. static inline struct btrfs_fs_info *
  46. tree_fs_info(struct extent_io_tree *tree)
  47. {
  48. return btrfs_sb(tree->mapping->host->i_sb);
  49. }
  50. int __init extent_io_init(void)
  51. {
  52. extent_state_cache = kmem_cache_create("extent_state",
  53. sizeof(struct extent_state), 0,
  54. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  55. if (!extent_state_cache)
  56. return -ENOMEM;
  57. extent_buffer_cache = kmem_cache_create("extent_buffers",
  58. sizeof(struct extent_buffer), 0,
  59. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  60. if (!extent_buffer_cache)
  61. goto free_state_cache;
  62. return 0;
  63. free_state_cache:
  64. kmem_cache_destroy(extent_state_cache);
  65. return -ENOMEM;
  66. }
  67. void extent_io_exit(void)
  68. {
  69. struct extent_state *state;
  70. struct extent_buffer *eb;
  71. while (!list_empty(&states)) {
  72. state = list_entry(states.next, struct extent_state, leak_list);
  73. printk(KERN_ERR "btrfs state leak: start %llu end %llu "
  74. "state %lu in tree %p refs %d\n",
  75. (unsigned long long)state->start,
  76. (unsigned long long)state->end,
  77. state->state, state->tree, atomic_read(&state->refs));
  78. list_del(&state->leak_list);
  79. kmem_cache_free(extent_state_cache, state);
  80. }
  81. while (!list_empty(&buffers)) {
  82. eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  83. printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
  84. "refs %d\n", (unsigned long long)eb->start,
  85. eb->len, atomic_read(&eb->refs));
  86. list_del(&eb->leak_list);
  87. kmem_cache_free(extent_buffer_cache, eb);
  88. }
  89. if (extent_state_cache)
  90. kmem_cache_destroy(extent_state_cache);
  91. if (extent_buffer_cache)
  92. kmem_cache_destroy(extent_buffer_cache);
  93. }
  94. void extent_io_tree_init(struct extent_io_tree *tree,
  95. struct address_space *mapping)
  96. {
  97. tree->state = RB_ROOT;
  98. INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
  99. tree->ops = NULL;
  100. tree->dirty_bytes = 0;
  101. spin_lock_init(&tree->lock);
  102. spin_lock_init(&tree->buffer_lock);
  103. tree->mapping = mapping;
  104. }
  105. static struct extent_state *alloc_extent_state(gfp_t mask)
  106. {
  107. struct extent_state *state;
  108. #if LEAK_DEBUG
  109. unsigned long flags;
  110. #endif
  111. state = kmem_cache_alloc(extent_state_cache, mask);
  112. if (!state)
  113. return state;
  114. state->state = 0;
  115. state->private = 0;
  116. state->tree = NULL;
  117. #if LEAK_DEBUG
  118. spin_lock_irqsave(&leak_lock, flags);
  119. list_add(&state->leak_list, &states);
  120. spin_unlock_irqrestore(&leak_lock, flags);
  121. #endif
  122. atomic_set(&state->refs, 1);
  123. init_waitqueue_head(&state->wq);
  124. trace_alloc_extent_state(state, mask, _RET_IP_);
  125. return state;
  126. }
  127. void free_extent_state(struct extent_state *state)
  128. {
  129. if (!state)
  130. return;
  131. if (atomic_dec_and_test(&state->refs)) {
  132. #if LEAK_DEBUG
  133. unsigned long flags;
  134. #endif
  135. WARN_ON(state->tree);
  136. #if LEAK_DEBUG
  137. spin_lock_irqsave(&leak_lock, flags);
  138. list_del(&state->leak_list);
  139. spin_unlock_irqrestore(&leak_lock, flags);
  140. #endif
  141. trace_free_extent_state(state, _RET_IP_);
  142. kmem_cache_free(extent_state_cache, state);
  143. }
  144. }
  145. static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
  146. struct rb_node *node)
  147. {
  148. struct rb_node **p = &root->rb_node;
  149. struct rb_node *parent = NULL;
  150. struct tree_entry *entry;
  151. while (*p) {
  152. parent = *p;
  153. entry = rb_entry(parent, struct tree_entry, rb_node);
  154. if (offset < entry->start)
  155. p = &(*p)->rb_left;
  156. else if (offset > entry->end)
  157. p = &(*p)->rb_right;
  158. else
  159. return parent;
  160. }
  161. entry = rb_entry(node, struct tree_entry, rb_node);
  162. rb_link_node(node, parent, p);
  163. rb_insert_color(node, root);
  164. return NULL;
  165. }
  166. static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
  167. struct rb_node **prev_ret,
  168. struct rb_node **next_ret)
  169. {
  170. struct rb_root *root = &tree->state;
  171. struct rb_node *n = root->rb_node;
  172. struct rb_node *prev = NULL;
  173. struct rb_node *orig_prev = NULL;
  174. struct tree_entry *entry;
  175. struct tree_entry *prev_entry = NULL;
  176. while (n) {
  177. entry = rb_entry(n, struct tree_entry, rb_node);
  178. prev = n;
  179. prev_entry = entry;
  180. if (offset < entry->start)
  181. n = n->rb_left;
  182. else if (offset > entry->end)
  183. n = n->rb_right;
  184. else
  185. return n;
  186. }
  187. if (prev_ret) {
  188. orig_prev = prev;
  189. while (prev && offset > prev_entry->end) {
  190. prev = rb_next(prev);
  191. prev_entry = rb_entry(prev, struct tree_entry, rb_node);
  192. }
  193. *prev_ret = prev;
  194. prev = orig_prev;
  195. }
  196. if (next_ret) {
  197. prev_entry = rb_entry(prev, struct tree_entry, rb_node);
  198. while (prev && offset < prev_entry->start) {
  199. prev = rb_prev(prev);
  200. prev_entry = rb_entry(prev, struct tree_entry, rb_node);
  201. }
  202. *next_ret = prev;
  203. }
  204. return NULL;
  205. }
  206. static inline struct rb_node *tree_search(struct extent_io_tree *tree,
  207. u64 offset)
  208. {
  209. struct rb_node *prev = NULL;
  210. struct rb_node *ret;
  211. ret = __etree_search(tree, offset, &prev, NULL);
  212. if (!ret)
  213. return prev;
  214. return ret;
  215. }
  216. static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
  217. struct extent_state *other)
  218. {
  219. if (tree->ops && tree->ops->merge_extent_hook)
  220. tree->ops->merge_extent_hook(tree->mapping->host, new,
  221. other);
  222. }
  223. static void merge_state(struct extent_io_tree *tree,
  224. struct extent_state *state)
  225. {
  226. struct extent_state *other;
  227. struct rb_node *other_node;
  228. if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
  229. return;
  230. other_node = rb_prev(&state->rb_node);
  231. if (other_node) {
  232. other = rb_entry(other_node, struct extent_state, rb_node);
  233. if (other->end == state->start - 1 &&
  234. other->state == state->state) {
  235. merge_cb(tree, state, other);
  236. state->start = other->start;
  237. other->tree = NULL;
  238. rb_erase(&other->rb_node, &tree->state);
  239. free_extent_state(other);
  240. }
  241. }
  242. other_node = rb_next(&state->rb_node);
  243. if (other_node) {
  244. other = rb_entry(other_node, struct extent_state, rb_node);
  245. if (other->start == state->end + 1 &&
  246. other->state == state->state) {
  247. merge_cb(tree, state, other);
  248. state->end = other->end;
  249. other->tree = NULL;
  250. rb_erase(&other->rb_node, &tree->state);
  251. free_extent_state(other);
  252. }
  253. }
  254. }
  255. static void set_state_cb(struct extent_io_tree *tree,
  256. struct extent_state *state, int *bits)
  257. {
  258. if (tree->ops && tree->ops->set_bit_hook)
  259. tree->ops->set_bit_hook(tree->mapping->host, state, bits);
  260. }
  261. static void clear_state_cb(struct extent_io_tree *tree,
  262. struct extent_state *state, int *bits)
  263. {
  264. if (tree->ops && tree->ops->clear_bit_hook)
  265. tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
  266. }
  267. static void set_state_bits(struct extent_io_tree *tree,
  268. struct extent_state *state, int *bits);
  269. static int insert_state(struct extent_io_tree *tree,
  270. struct extent_state *state, u64 start, u64 end,
  271. int *bits)
  272. {
  273. struct rb_node *node;
  274. if (end < start) {
  275. printk(KERN_ERR "btrfs end < start %llu %llu\n",
  276. (unsigned long long)end,
  277. (unsigned long long)start);
  278. WARN_ON(1);
  279. }
  280. state->start = start;
  281. state->end = end;
  282. set_state_bits(tree, state, bits);
  283. node = tree_insert(&tree->state, end, &state->rb_node);
  284. if (node) {
  285. struct extent_state *found;
  286. found = rb_entry(node, struct extent_state, rb_node);
  287. printk(KERN_ERR "btrfs found node %llu %llu on insert of "
  288. "%llu %llu\n", (unsigned long long)found->start,
  289. (unsigned long long)found->end,
  290. (unsigned long long)start, (unsigned long long)end);
  291. return -EEXIST;
  292. }
  293. state->tree = tree;
  294. merge_state(tree, state);
  295. return 0;
  296. }
  297. static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
  298. u64 split)
  299. {
  300. if (tree->ops && tree->ops->split_extent_hook)
  301. tree->ops->split_extent_hook(tree->mapping->host, orig, split);
  302. }
  303. static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
  304. struct extent_state *prealloc, u64 split)
  305. {
  306. struct rb_node *node;
  307. split_cb(tree, orig, split);
  308. prealloc->start = orig->start;
  309. prealloc->end = split - 1;
  310. prealloc->state = orig->state;
  311. orig->start = split;
  312. node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
  313. if (node) {
  314. free_extent_state(prealloc);
  315. return -EEXIST;
  316. }
  317. prealloc->tree = tree;
  318. return 0;
  319. }
  320. static struct extent_state *next_state(struct extent_state *state)
  321. {
  322. struct rb_node *next = rb_next(&state->rb_node);
  323. if (next)
  324. return rb_entry(next, struct extent_state, rb_node);
  325. else
  326. return NULL;
  327. }
  328. static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
  329. struct extent_state *state,
  330. int *bits, int wake)
  331. {
  332. struct extent_state *next;
  333. int bits_to_clear = *bits & ~EXTENT_CTLBITS;
  334. if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
  335. u64 range = state->end - state->start + 1;
  336. WARN_ON(range > tree->dirty_bytes);
  337. tree->dirty_bytes -= range;
  338. }
  339. clear_state_cb(tree, state, bits);
  340. state->state &= ~bits_to_clear;
  341. if (wake)
  342. wake_up(&state->wq);
  343. if (state->state == 0) {
  344. next = next_state(state);
  345. if (state->tree) {
  346. rb_erase(&state->rb_node, &tree->state);
  347. state->tree = NULL;
  348. free_extent_state(state);
  349. } else {
  350. WARN_ON(1);
  351. }
  352. } else {
  353. merge_state(tree, state);
  354. next = next_state(state);
  355. }
  356. return next;
  357. }
  358. static struct extent_state *
  359. alloc_extent_state_atomic(struct extent_state *prealloc)
  360. {
  361. if (!prealloc)
  362. prealloc = alloc_extent_state(GFP_ATOMIC);
  363. return prealloc;
  364. }
  365. void extent_io_tree_panic(struct extent_io_tree *tree, int err)
  366. {
  367. btrfs_panic(tree_fs_info(tree), err, "Locking error: "
  368. "Extent tree was modified by another "
  369. "thread while locked.");
  370. }
  371. int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
  372. int bits, int wake, int delete,
  373. struct extent_state **cached_state,
  374. gfp_t mask)
  375. {
  376. struct extent_state *state;
  377. struct extent_state *cached;
  378. struct extent_state *prealloc = NULL;
  379. struct rb_node *node;
  380. u64 last_end;
  381. int err;
  382. int clear = 0;
  383. if (delete)
  384. bits |= ~EXTENT_CTLBITS;
  385. bits |= EXTENT_FIRST_DELALLOC;
  386. if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
  387. clear = 1;
  388. again:
  389. if (!prealloc && (mask & __GFP_WAIT)) {
  390. prealloc = alloc_extent_state(mask);
  391. if (!prealloc)
  392. return -ENOMEM;
  393. }
  394. spin_lock(&tree->lock);
  395. if (cached_state) {
  396. cached = *cached_state;
  397. if (clear) {
  398. *cached_state = NULL;
  399. cached_state = NULL;
  400. }
  401. if (cached && cached->tree && cached->start <= start &&
  402. cached->end > start) {
  403. if (clear)
  404. atomic_dec(&cached->refs);
  405. state = cached;
  406. goto hit_next;
  407. }
  408. if (clear)
  409. free_extent_state(cached);
  410. }
  411. node = tree_search(tree, start);
  412. if (!node)
  413. goto out;
  414. state = rb_entry(node, struct extent_state, rb_node);
  415. hit_next:
  416. if (state->start > end)
  417. goto out;
  418. WARN_ON(state->end < start);
  419. last_end = state->end;
  420. if (!(state->state & bits)) {
  421. state = next_state(state);
  422. goto next;
  423. }
  424. if (state->start < start) {
  425. prealloc = alloc_extent_state_atomic(prealloc);
  426. BUG_ON(!prealloc);
  427. err = split_state(tree, state, prealloc, start);
  428. if (err)
  429. extent_io_tree_panic(tree, err);
  430. prealloc = NULL;
  431. if (err)
  432. goto out;
  433. if (state->end <= end) {
  434. clear_state_bit(tree, state, &bits, wake);
  435. if (last_end == (u64)-1)
  436. goto out;
  437. start = last_end + 1;
  438. }
  439. goto search_again;
  440. }
  441. if (state->start <= end && state->end > end) {
  442. prealloc = alloc_extent_state_atomic(prealloc);
  443. BUG_ON(!prealloc);
  444. err = split_state(tree, state, prealloc, end + 1);
  445. if (err)
  446. extent_io_tree_panic(tree, err);
  447. if (wake)
  448. wake_up(&state->wq);
  449. clear_state_bit(tree, prealloc, &bits, wake);
  450. prealloc = NULL;
  451. goto out;
  452. }
  453. state = clear_state_bit(tree, state, &bits, wake);
  454. next:
  455. if (last_end == (u64)-1)
  456. goto out;
  457. start = last_end + 1;
  458. if (start <= end && state && !need_resched())
  459. goto hit_next;
  460. goto search_again;
  461. out:
  462. spin_unlock(&tree->lock);
  463. if (prealloc)
  464. free_extent_state(prealloc);
  465. return 0;
  466. search_again:
  467. if (start > end)
  468. goto out;
  469. spin_unlock(&tree->lock);
  470. if (mask & __GFP_WAIT)
  471. cond_resched();
  472. goto again;
  473. }
  474. static void wait_on_state(struct extent_io_tree *tree,
  475. struct extent_state *state)
  476. __releases(tree->lock)
  477. __acquires(tree->lock)
  478. {
  479. DEFINE_WAIT(wait);
  480. prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
  481. spin_unlock(&tree->lock);
  482. schedule();
  483. spin_lock(&tree->lock);
  484. finish_wait(&state->wq, &wait);
  485. }
  486. void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
  487. {
  488. struct extent_state *state;
  489. struct rb_node *node;
  490. spin_lock(&tree->lock);
  491. again:
  492. while (1) {
  493. node = tree_search(tree, start);
  494. if (!node)
  495. break;
  496. state = rb_entry(node, struct extent_state, rb_node);
  497. if (state->start > end)
  498. goto out;
  499. if (state->state & bits) {
  500. start = state->start;
  501. atomic_inc(&state->refs);
  502. wait_on_state(tree, state);
  503. free_extent_state(state);
  504. goto again;
  505. }
  506. start = state->end + 1;
  507. if (start > end)
  508. break;
  509. cond_resched_lock(&tree->lock);
  510. }
  511. out:
  512. spin_unlock(&tree->lock);
  513. }
  514. static void set_state_bits(struct extent_io_tree *tree,
  515. struct extent_state *state,
  516. int *bits)
  517. {
  518. int bits_to_set = *bits & ~EXTENT_CTLBITS;
  519. set_state_cb(tree, state, bits);
  520. if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
  521. u64 range = state->end - state->start + 1;
  522. tree->dirty_bytes += range;
  523. }
  524. state->state |= bits_to_set;
  525. }
  526. static void cache_state(struct extent_state *state,
  527. struct extent_state **cached_ptr)
  528. {
  529. if (cached_ptr && !(*cached_ptr)) {
  530. if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
  531. *cached_ptr = state;
  532. atomic_inc(&state->refs);
  533. }
  534. }
  535. }
  536. static void uncache_state(struct extent_state **cached_ptr)
  537. {
  538. if (cached_ptr && (*cached_ptr)) {
  539. struct extent_state *state = *cached_ptr;
  540. *cached_ptr = NULL;
  541. free_extent_state(state);
  542. }
  543. }
  544. static int __must_check
  545. __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
  546. int bits, int exclusive_bits, u64 *failed_start,
  547. struct extent_state **cached_state, gfp_t mask)
  548. {
  549. struct extent_state *state;
  550. struct extent_state *prealloc = NULL;
  551. struct rb_node *node;
  552. int err = 0;
  553. u64 last_start;
  554. u64 last_end;
  555. bits |= EXTENT_FIRST_DELALLOC;
  556. again:
  557. if (!prealloc && (mask & __GFP_WAIT)) {
  558. prealloc = alloc_extent_state(mask);
  559. BUG_ON(!prealloc);
  560. }
  561. spin_lock(&tree->lock);
  562. if (cached_state && *cached_state) {
  563. state = *cached_state;
  564. if (state->start <= start && state->end > start &&
  565. state->tree) {
  566. node = &state->rb_node;
  567. goto hit_next;
  568. }
  569. }
  570. node = tree_search(tree, start);
  571. if (!node) {
  572. prealloc = alloc_extent_state_atomic(prealloc);
  573. BUG_ON(!prealloc);
  574. err = insert_state(tree, prealloc, start, end, &bits);
  575. if (err)
  576. extent_io_tree_panic(tree, err);
  577. prealloc = NULL;
  578. goto out;
  579. }
  580. state = rb_entry(node, struct extent_state, rb_node);
  581. hit_next:
  582. last_start = state->start;
  583. last_end = state->end;
  584. if (state->start == start && state->end <= end) {
  585. struct rb_node *next_node;
  586. if (state->state & exclusive_bits) {
  587. *failed_start = state->start;
  588. err = -EEXIST;
  589. goto out;
  590. }
  591. set_state_bits(tree, state, &bits);
  592. cache_state(state, cached_state);
  593. merge_state(tree, state);
  594. if (last_end == (u64)-1)
  595. goto out;
  596. start = last_end + 1;
  597. next_node = rb_next(&state->rb_node);
  598. if (next_node && start < end && prealloc && !need_resched()) {
  599. state = rb_entry(next_node, struct extent_state,
  600. rb_node);
  601. if (state->start == start)
  602. goto hit_next;
  603. }
  604. goto search_again;
  605. }
  606. if (state->start < start) {
  607. if (state->state & exclusive_bits) {
  608. *failed_start = start;
  609. err = -EEXIST;
  610. goto out;
  611. }
  612. prealloc = alloc_extent_state_atomic(prealloc);
  613. BUG_ON(!prealloc);
  614. err = split_state(tree, state, prealloc, start);
  615. if (err)
  616. extent_io_tree_panic(tree, err);
  617. prealloc = NULL;
  618. if (err)
  619. goto out;
  620. if (state->end <= end) {
  621. set_state_bits(tree, state, &bits);
  622. cache_state(state, cached_state);
  623. merge_state(tree, state);
  624. if (last_end == (u64)-1)
  625. goto out;
  626. start = last_end + 1;
  627. }
  628. goto search_again;
  629. }
  630. if (state->start > start) {
  631. u64 this_end;
  632. if (end < last_start)
  633. this_end = end;
  634. else
  635. this_end = last_start - 1;
  636. prealloc = alloc_extent_state_atomic(prealloc);
  637. BUG_ON(!prealloc);
  638. err = insert_state(tree, prealloc, start, this_end,
  639. &bits);
  640. if (err)
  641. extent_io_tree_panic(tree, err);
  642. cache_state(prealloc, cached_state);
  643. prealloc = NULL;
  644. start = this_end + 1;
  645. goto search_again;
  646. }
  647. if (state->start <= end && state->end > end) {
  648. if (state->state & exclusive_bits) {
  649. *failed_start = start;
  650. err = -EEXIST;
  651. goto out;
  652. }
  653. prealloc = alloc_extent_state_atomic(prealloc);
  654. BUG_ON(!prealloc);
  655. err = split_state(tree, state, prealloc, end + 1);
  656. if (err)
  657. extent_io_tree_panic(tree, err);
  658. set_state_bits(tree, prealloc, &bits);
  659. cache_state(prealloc, cached_state);
  660. merge_state(tree, prealloc);
  661. prealloc = NULL;
  662. goto out;
  663. }
  664. goto search_again;
  665. out:
  666. spin_unlock(&tree->lock);
  667. if (prealloc)
  668. free_extent_state(prealloc);
  669. return err;
  670. search_again:
  671. if (start > end)
  672. goto out;
  673. spin_unlock(&tree->lock);
  674. if (mask & __GFP_WAIT)
  675. cond_resched();
  676. goto again;
  677. }
  678. int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
  679. u64 *failed_start, struct extent_state **cached_state,
  680. gfp_t mask)
  681. {
  682. return __set_extent_bit(tree, start, end, bits, 0, failed_start,
  683. cached_state, mask);
  684. }
  685. int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
  686. int bits, int clear_bits, gfp_t mask)
  687. {
  688. struct extent_state *state;
  689. struct extent_state *prealloc = NULL;
  690. struct rb_node *node;
  691. int err = 0;
  692. u64 last_start;
  693. u64 last_end;
  694. again:
  695. if (!prealloc && (mask & __GFP_WAIT)) {
  696. prealloc = alloc_extent_state(mask);
  697. if (!prealloc)
  698. return -ENOMEM;
  699. }
  700. spin_lock(&tree->lock);
  701. node = tree_search(tree, start);
  702. if (!node) {
  703. prealloc = alloc_extent_state_atomic(prealloc);
  704. if (!prealloc) {
  705. err = -ENOMEM;
  706. goto out;
  707. }
  708. err = insert_state(tree, prealloc, start, end, &bits);
  709. prealloc = NULL;
  710. if (err)
  711. extent_io_tree_panic(tree, err);
  712. goto out;
  713. }
  714. state = rb_entry(node, struct extent_state, rb_node);
  715. hit_next:
  716. last_start = state->start;
  717. last_end = state->end;
  718. if (state->start == start && state->end <= end) {
  719. struct rb_node *next_node;
  720. set_state_bits(tree, state, &bits);
  721. clear_state_bit(tree, state, &clear_bits, 0);
  722. if (last_end == (u64)-1)
  723. goto out;
  724. start = last_end + 1;
  725. next_node = rb_next(&state->rb_node);
  726. if (next_node && start < end && prealloc && !need_resched()) {
  727. state = rb_entry(next_node, struct extent_state,
  728. rb_node);
  729. if (state->start == start)
  730. goto hit_next;
  731. }
  732. goto search_again;
  733. }
  734. if (state->start < start) {
  735. prealloc = alloc_extent_state_atomic(prealloc);
  736. if (!prealloc) {
  737. err = -ENOMEM;
  738. goto out;
  739. }
  740. err = split_state(tree, state, prealloc, start);
  741. if (err)
  742. extent_io_tree_panic(tree, err);
  743. prealloc = NULL;
  744. if (err)
  745. goto out;
  746. if (state->end <= end) {
  747. set_state_bits(tree, state, &bits);
  748. clear_state_bit(tree, state, &clear_bits, 0);
  749. if (last_end == (u64)-1)
  750. goto out;
  751. start = last_end + 1;
  752. }
  753. goto search_again;
  754. }
  755. if (state->start > start) {
  756. u64 this_end;
  757. if (end < last_start)
  758. this_end = end;
  759. else
  760. this_end = last_start - 1;
  761. prealloc = alloc_extent_state_atomic(prealloc);
  762. if (!prealloc) {
  763. err = -ENOMEM;
  764. goto out;
  765. }
  766. err = insert_state(tree, prealloc, start, this_end,
  767. &bits);
  768. if (err)
  769. extent_io_tree_panic(tree, err);
  770. prealloc = NULL;
  771. start = this_end + 1;
  772. goto search_again;
  773. }
  774. if (state->start <= end && state->end > end) {
  775. prealloc = alloc_extent_state_atomic(prealloc);
  776. if (!prealloc) {
  777. err = -ENOMEM;
  778. goto out;
  779. }
  780. err = split_state(tree, state, prealloc, end + 1);
  781. if (err)
  782. extent_io_tree_panic(tree, err);
  783. set_state_bits(tree, prealloc, &bits);
  784. clear_state_bit(tree, prealloc, &clear_bits, 0);
  785. prealloc = NULL;
  786. goto out;
  787. }
  788. goto search_again;
  789. out:
  790. spin_unlock(&tree->lock);
  791. if (prealloc)
  792. free_extent_state(prealloc);
  793. return err;
  794. search_again:
  795. if (start > end)
  796. goto out;
  797. spin_unlock(&tree->lock);
  798. if (mask & __GFP_WAIT)
  799. cond_resched();
  800. goto again;
  801. }
  802. int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
  803. gfp_t mask)
  804. {
  805. return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
  806. NULL, mask);
  807. }
  808. int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
  809. int bits, gfp_t mask)
  810. {
  811. return set_extent_bit(tree, start, end, bits, NULL,
  812. NULL, mask);
  813. }
  814. int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
  815. int bits, gfp_t mask)
  816. {
  817. return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
  818. }
  819. int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
  820. struct extent_state **cached_state, gfp_t mask)
  821. {
  822. return set_extent_bit(tree, start, end,
  823. EXTENT_DELALLOC | EXTENT_UPTODATE,
  824. NULL, cached_state, mask);
  825. }
  826. int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
  827. gfp_t mask)
  828. {
  829. return clear_extent_bit(tree, start, end,
  830. EXTENT_DIRTY | EXTENT_DELALLOC |
  831. EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
  832. }
  833. int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
  834. gfp_t mask)
  835. {
  836. return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
  837. NULL, mask);
  838. }
  839. int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
  840. struct extent_state **cached_state, gfp_t mask)
  841. {
  842. return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
  843. cached_state, mask);
  844. }
  845. static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
  846. u64 end, struct extent_state **cached_state,
  847. gfp_t mask)
  848. {
  849. return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
  850. cached_state, mask);
  851. }
  852. int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
  853. int bits, struct extent_state **cached_state)
  854. {
  855. int err;
  856. u64 failed_start;
  857. while (1) {
  858. err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
  859. EXTENT_LOCKED, &failed_start,
  860. cached_state, GFP_NOFS);
  861. if (err == -EEXIST) {
  862. wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
  863. start = failed_start;
  864. } else
  865. break;
  866. WARN_ON(start > end);
  867. }
  868. return err;
  869. }
  870. int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
  871. {
  872. return lock_extent_bits(tree, start, end, 0, NULL);
  873. }
  874. int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
  875. {
  876. int err;
  877. u64 failed_start;
  878. err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
  879. &failed_start, NULL, GFP_NOFS);
  880. if (err == -EEXIST) {
  881. if (failed_start > start)
  882. clear_extent_bit(tree, start, failed_start - 1,
  883. EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
  884. return 0;
  885. }
  886. return 1;
  887. }
  888. int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
  889. struct extent_state **cached, gfp_t mask)
  890. {
  891. return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
  892. mask);
  893. }
  894. int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
  895. {
  896. return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
  897. GFP_NOFS);
  898. }
  899. static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
  900. {
  901. unsigned long index = start >> PAGE_CACHE_SHIFT;
  902. unsigned long end_index = end >> PAGE_CACHE_SHIFT;
  903. struct page *page;
  904. while (index <= end_index) {
  905. page = find_get_page(tree->mapping, index);
  906. BUG_ON(!page);
  907. set_page_writeback(page);
  908. page_cache_release(page);
  909. index++;
  910. }
  911. return 0;
  912. }
  913. struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
  914. u64 start, int bits)
  915. {
  916. struct rb_node *node;
  917. struct extent_state *state;
  918. node = tree_search(tree, start);
  919. if (!node)
  920. goto out;
  921. while (1) {
  922. state = rb_entry(node, struct extent_state, rb_node);
  923. if (state->end >= start && (state->state & bits))
  924. return state;
  925. node = rb_next(node);
  926. if (!node)
  927. break;
  928. }
  929. out:
  930. return NULL;
  931. }
  932. int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
  933. u64 *start_ret, u64 *end_ret, int bits)
  934. {
  935. struct extent_state *state;
  936. int ret = 1;
  937. spin_lock(&tree->lock);
  938. state = find_first_extent_bit_state(tree, start, bits);
  939. if (state) {
  940. *start_ret = state->start;
  941. *end_ret = state->end;
  942. ret = 0;
  943. }
  944. spin_unlock(&tree->lock);
  945. return ret;
  946. }
  947. static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
  948. u64 *start, u64 *end, u64 max_bytes,
  949. struct extent_state **cached_state)
  950. {
  951. struct rb_node *node;
  952. struct extent_state *state;
  953. u64 cur_start = *start;
  954. u64 found = 0;
  955. u64 total_bytes = 0;
  956. spin_lock(&tree->lock);
  957. node = tree_search(tree, cur_start);
  958. if (!node) {
  959. if (!found)
  960. *end = (u64)-1;
  961. goto out;
  962. }
  963. while (1) {
  964. state = rb_entry(node, struct extent_state, rb_node);
  965. if (found && (state->start != cur_start ||
  966. (state->state & EXTENT_BOUNDARY))) {
  967. goto out;
  968. }
  969. if (!(state->state & EXTENT_DELALLOC)) {
  970. if (!found)
  971. *end = state->end;
  972. goto out;
  973. }
  974. if (!found) {
  975. *start = state->start;
  976. *cached_state = state;
  977. atomic_inc(&state->refs);
  978. }
  979. found++;
  980. *end = state->end;
  981. cur_start = state->end + 1;
  982. node = rb_next(node);
  983. if (!node)
  984. break;
  985. total_bytes += state->end - state->start + 1;
  986. if (total_bytes >= max_bytes)
  987. break;
  988. }
  989. out:
  990. spin_unlock(&tree->lock);
  991. return found;
  992. }
  993. static noinline void __unlock_for_delalloc(struct inode *inode,
  994. struct page *locked_page,
  995. u64 start, u64 end)
  996. {
  997. int ret;
  998. struct page *pages[16];
  999. unsigned long index = start >> PAGE_CACHE_SHIFT;
  1000. unsigned long end_index = end >> PAGE_CACHE_SHIFT;
  1001. unsigned long nr_pages = end_index - index + 1;
  1002. int i;
  1003. if (index == locked_page->index && end_index == index)
  1004. return;
  1005. while (nr_pages > 0) {
  1006. ret = find_get_pages_contig(inode->i_mapping, index,
  1007. min_t(unsigned long, nr_pages,
  1008. ARRAY_SIZE(pages)), pages);
  1009. for (i = 0; i < ret; i++) {
  1010. if (pages[i] != locked_page)
  1011. unlock_page(pages[i]);
  1012. page_cache_release(pages[i]);
  1013. }
  1014. nr_pages -= ret;
  1015. index += ret;
  1016. cond_resched();
  1017. }
  1018. }
  1019. static noinline int lock_delalloc_pages(struct inode *inode,
  1020. struct page *locked_page,
  1021. u64 delalloc_start,
  1022. u64 delalloc_end)
  1023. {
  1024. unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
  1025. unsigned long start_index = index;
  1026. unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
  1027. unsigned long pages_locked = 0;
  1028. struct page *pages[16];
  1029. unsigned long nrpages;
  1030. int ret;
  1031. int i;
  1032. if (index == locked_page->index && index == end_index)
  1033. return 0;
  1034. nrpages = end_index - index + 1;
  1035. while (nrpages > 0) {
  1036. ret = find_get_pages_contig(inode->i_mapping, index,
  1037. min_t(unsigned long,
  1038. nrpages, ARRAY_SIZE(pages)), pages);
  1039. if (ret == 0) {
  1040. ret = -EAGAIN;
  1041. goto done;
  1042. }
  1043. for (i = 0; i < ret; i++) {
  1044. if (pages[i] != locked_page) {
  1045. lock_page(pages[i]);
  1046. if (!PageDirty(pages[i]) ||
  1047. pages[i]->mapping != inode->i_mapping) {
  1048. ret = -EAGAIN;
  1049. unlock_page(pages[i]);
  1050. page_cache_release(pages[i]);
  1051. goto done;
  1052. }
  1053. }
  1054. page_cache_release(pages[i]);
  1055. pages_locked++;
  1056. }
  1057. nrpages -= ret;
  1058. index += ret;
  1059. cond_resched();
  1060. }
  1061. ret = 0;
  1062. done:
  1063. if (ret && pages_locked) {
  1064. __unlock_for_delalloc(inode, locked_page,
  1065. delalloc_start,
  1066. ((u64)(start_index + pages_locked - 1)) <<
  1067. PAGE_CACHE_SHIFT);
  1068. }
  1069. return ret;
  1070. }
  1071. static noinline u64 find_lock_delalloc_range(struct inode *inode,
  1072. struct extent_io_tree *tree,
  1073. struct page *locked_page,
  1074. u64 *start, u64 *end,
  1075. u64 max_bytes)
  1076. {
  1077. u64 delalloc_start;
  1078. u64 delalloc_end;
  1079. u64 found;
  1080. struct extent_state *cached_state = NULL;
  1081. int ret;
  1082. int loops = 0;
  1083. again:
  1084. delalloc_start = *start;
  1085. delalloc_end = 0;
  1086. found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
  1087. max_bytes, &cached_state);
  1088. if (!found || delalloc_end <= *start) {
  1089. *start = delalloc_start;
  1090. *end = delalloc_end;
  1091. free_extent_state(cached_state);
  1092. return found;
  1093. }
  1094. if (delalloc_start < *start)
  1095. delalloc_start = *start;
  1096. if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
  1097. delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
  1098. ret = lock_delalloc_pages(inode, locked_page,
  1099. delalloc_start, delalloc_end);
  1100. if (ret == -EAGAIN) {
  1101. free_extent_state(cached_state);
  1102. if (!loops) {
  1103. unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
  1104. max_bytes = PAGE_CACHE_SIZE - offset;
  1105. loops = 1;
  1106. goto again;
  1107. } else {
  1108. found = 0;
  1109. goto out_failed;
  1110. }
  1111. }
  1112. BUG_ON(ret);
  1113. lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
  1114. ret = test_range_bit(tree, delalloc_start, delalloc_end,
  1115. EXTENT_DELALLOC, 1, cached_state);
  1116. if (!ret) {
  1117. unlock_extent_cached(tree, delalloc_start, delalloc_end,
  1118. &cached_state, GFP_NOFS);
  1119. __unlock_for_delalloc(inode, locked_page,
  1120. delalloc_start, delalloc_end);
  1121. cond_resched();
  1122. goto again;
  1123. }
  1124. free_extent_state(cached_state);
  1125. *start = delalloc_start;
  1126. *end = delalloc_end;
  1127. out_failed:
  1128. return found;
  1129. }
  1130. int extent_clear_unlock_delalloc(struct inode *inode,
  1131. struct extent_io_tree *tree,
  1132. u64 start, u64 end, struct page *locked_page,
  1133. unsigned long op)
  1134. {
  1135. int ret;
  1136. struct page *pages[16];
  1137. unsigned long index = start >> PAGE_CACHE_SHIFT;
  1138. unsigned long end_index = end >> PAGE_CACHE_SHIFT;
  1139. unsigned long nr_pages = end_index - index + 1;
  1140. int i;
  1141. int clear_bits = 0;
  1142. if (op & EXTENT_CLEAR_UNLOCK)
  1143. clear_bits |= EXTENT_LOCKED;
  1144. if (op & EXTENT_CLEAR_DIRTY)
  1145. clear_bits |= EXTENT_DIRTY;
  1146. if (op & EXTENT_CLEAR_DELALLOC)
  1147. clear_bits |= EXTENT_DELALLOC;
  1148. clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
  1149. if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
  1150. EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
  1151. EXTENT_SET_PRIVATE2)))
  1152. return 0;
  1153. while (nr_pages > 0) {
  1154. ret = find_get_pages_contig(inode->i_mapping, index,
  1155. min_t(unsigned long,
  1156. nr_pages, ARRAY_SIZE(pages)), pages);
  1157. for (i = 0; i < ret; i++) {
  1158. if (op & EXTENT_SET_PRIVATE2)
  1159. SetPagePrivate2(pages[i]);
  1160. if (pages[i] == locked_page) {
  1161. page_cache_release(pages[i]);
  1162. continue;
  1163. }
  1164. if (op & EXTENT_CLEAR_DIRTY)
  1165. clear_page_dirty_for_io(pages[i]);
  1166. if (op & EXTENT_SET_WRITEBACK)
  1167. set_page_writeback(pages[i]);
  1168. if (op & EXTENT_END_WRITEBACK)
  1169. end_page_writeback(pages[i]);
  1170. if (op & EXTENT_CLEAR_UNLOCK_PAGE)
  1171. unlock_page(pages[i]);
  1172. page_cache_release(pages[i]);
  1173. }
  1174. nr_pages -= ret;
  1175. index += ret;
  1176. cond_resched();
  1177. }
  1178. return 0;
  1179. }
  1180. u64 count_range_bits(struct extent_io_tree *tree,
  1181. u64 *start, u64 search_end, u64 max_bytes,
  1182. unsigned long bits, int contig)
  1183. {
  1184. struct rb_node *node;
  1185. struct extent_state *state;
  1186. u64 cur_start = *start;
  1187. u64 total_bytes = 0;
  1188. u64 last = 0;
  1189. int found = 0;
  1190. if (search_end <= cur_start) {
  1191. WARN_ON(1);
  1192. return 0;
  1193. }
  1194. spin_lock(&tree->lock);
  1195. if (cur_start == 0 && bits == EXTENT_DIRTY) {
  1196. total_bytes = tree->dirty_bytes;
  1197. goto out;
  1198. }
  1199. node = tree_search(tree, cur_start);
  1200. if (!node)
  1201. goto out;
  1202. while (1) {
  1203. state = rb_entry(node, struct extent_state, rb_node);
  1204. if (state->start > search_end)
  1205. break;
  1206. if (contig && found && state->start > last + 1)
  1207. break;
  1208. if (state->end >= cur_start && (state->state & bits) == bits) {
  1209. total_bytes += min(search_end, state->end) + 1 -
  1210. max(cur_start, state->start);
  1211. if (total_bytes >= max_bytes)
  1212. break;
  1213. if (!found) {
  1214. *start = max(cur_start, state->start);
  1215. found = 1;
  1216. }
  1217. last = state->end;
  1218. } else if (contig && found) {
  1219. break;
  1220. }
  1221. node = rb_next(node);
  1222. if (!node)
  1223. break;
  1224. }
  1225. out:
  1226. spin_unlock(&tree->lock);
  1227. return total_bytes;
  1228. }
  1229. int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
  1230. {
  1231. struct rb_node *node;
  1232. struct extent_state *state;
  1233. int ret = 0;
  1234. spin_lock(&tree->lock);
  1235. node = tree_search(tree, start);
  1236. if (!node) {
  1237. ret = -ENOENT;
  1238. goto out;
  1239. }
  1240. state = rb_entry(node, struct extent_state, rb_node);
  1241. if (state->start != start) {
  1242. ret = -ENOENT;
  1243. goto out;
  1244. }
  1245. state->private = private;
  1246. out:
  1247. spin_unlock(&tree->lock);
  1248. return ret;
  1249. }
  1250. int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
  1251. {
  1252. struct rb_node *node;
  1253. struct extent_state *state;
  1254. int ret = 0;
  1255. spin_lock(&tree->lock);
  1256. node = tree_search(tree, start);
  1257. if (!node) {
  1258. ret = -ENOENT;
  1259. goto out;
  1260. }
  1261. state = rb_entry(node, struct extent_state, rb_node);
  1262. if (state->start != start) {
  1263. ret = -ENOENT;
  1264. goto out;
  1265. }
  1266. *private = state->private;
  1267. out:
  1268. spin_unlock(&tree->lock);
  1269. return ret;
  1270. }
  1271. int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
  1272. int bits, int filled, struct extent_state *cached)
  1273. {
  1274. struct extent_state *state = NULL;
  1275. struct rb_node *node;
  1276. int bitset = 0;
  1277. spin_lock(&tree->lock);
  1278. if (cached && cached->tree && cached->start <= start &&
  1279. cached->end > start)
  1280. node = &cached->rb_node;
  1281. else
  1282. node = tree_search(tree, start);
  1283. while (node && start <= end) {
  1284. state = rb_entry(node, struct extent_state, rb_node);
  1285. if (filled && state->start > start) {
  1286. bitset = 0;
  1287. break;
  1288. }
  1289. if (state->start > end)
  1290. break;
  1291. if (state->state & bits) {
  1292. bitset = 1;
  1293. if (!filled)
  1294. break;
  1295. } else if (filled) {
  1296. bitset = 0;
  1297. break;
  1298. }
  1299. if (state->end == (u64)-1)
  1300. break;
  1301. start = state->end + 1;
  1302. if (start > end)
  1303. break;
  1304. node = rb_next(node);
  1305. if (!node) {
  1306. if (filled)
  1307. bitset = 0;
  1308. break;
  1309. }
  1310. }
  1311. spin_unlock(&tree->lock);
  1312. return bitset;
  1313. }
  1314. static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
  1315. {
  1316. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  1317. u64 end = start + PAGE_CACHE_SIZE - 1;
  1318. if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
  1319. SetPageUptodate(page);
  1320. }
  1321. static void check_page_locked(struct extent_io_tree *tree, struct page *page)
  1322. {
  1323. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  1324. u64 end = start + PAGE_CACHE_SIZE - 1;
  1325. if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
  1326. unlock_page(page);
  1327. }
  1328. static void check_page_writeback(struct extent_io_tree *tree,
  1329. struct page *page)
  1330. {
  1331. end_page_writeback(page);
  1332. }
  1333. struct io_failure_record {
  1334. struct page *page;
  1335. u64 start;
  1336. u64 len;
  1337. u64 logical;
  1338. unsigned long bio_flags;
  1339. int this_mirror;
  1340. int failed_mirror;
  1341. int in_validation;
  1342. };
  1343. static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
  1344. int did_repair)
  1345. {
  1346. int ret;
  1347. int err = 0;
  1348. struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
  1349. set_state_private(failure_tree, rec->start, 0);
  1350. ret = clear_extent_bits(failure_tree, rec->start,
  1351. rec->start + rec->len - 1,
  1352. EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
  1353. if (ret)
  1354. err = ret;
  1355. if (did_repair) {
  1356. ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
  1357. rec->start + rec->len - 1,
  1358. EXTENT_DAMAGED, GFP_NOFS);
  1359. if (ret && !err)
  1360. err = ret;
  1361. }
  1362. kfree(rec);
  1363. return err;
  1364. }
  1365. static void repair_io_failure_callback(struct bio *bio, int err)
  1366. {
  1367. complete(bio->bi_private);
  1368. }
  1369. int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
  1370. u64 length, u64 logical, struct page *page,
  1371. int mirror_num)
  1372. {
  1373. struct bio *bio;
  1374. struct btrfs_device *dev;
  1375. DECLARE_COMPLETION_ONSTACK(compl);
  1376. u64 map_length = 0;
  1377. u64 sector;
  1378. struct btrfs_bio *bbio = NULL;
  1379. int ret;
  1380. BUG_ON(!mirror_num);
  1381. bio = bio_alloc(GFP_NOFS, 1);
  1382. if (!bio)
  1383. return -EIO;
  1384. bio->bi_private = &compl;
  1385. bio->bi_end_io = repair_io_failure_callback;
  1386. bio->bi_size = 0;
  1387. map_length = length;
  1388. ret = btrfs_map_block(map_tree, WRITE, logical,
  1389. &map_length, &bbio, mirror_num);
  1390. if (ret) {
  1391. bio_put(bio);
  1392. return -EIO;
  1393. }
  1394. BUG_ON(mirror_num != bbio->mirror_num);
  1395. sector = bbio->stripes[mirror_num-1].physical >> 9;
  1396. bio->bi_sector = sector;
  1397. dev = bbio->stripes[mirror_num-1].dev;
  1398. kfree(bbio);
  1399. if (!dev || !dev->bdev || !dev->writeable) {
  1400. bio_put(bio);
  1401. return -EIO;
  1402. }
  1403. bio->bi_bdev = dev->bdev;
  1404. bio_add_page(bio, page, length, start-page_offset(page));
  1405. btrfsic_submit_bio(WRITE_SYNC, bio);
  1406. wait_for_completion(&compl);
  1407. if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  1408. bio_put(bio);
  1409. return -EIO;
  1410. }
  1411. printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
  1412. "sector %llu)\n", page->mapping->host->i_ino, start,
  1413. dev->name, sector);
  1414. bio_put(bio);
  1415. return 0;
  1416. }
  1417. int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
  1418. int mirror_num)
  1419. {
  1420. struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
  1421. u64 start = eb->start;
  1422. unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
  1423. int ret = 0;
  1424. for (i = 0; i < num_pages; i++) {
  1425. struct page *p = extent_buffer_page(eb, i);
  1426. ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
  1427. start, p, mirror_num);
  1428. if (ret)
  1429. break;
  1430. start += PAGE_CACHE_SIZE;
  1431. }
  1432. return ret;
  1433. }
  1434. static int clean_io_failure(u64 start, struct page *page)
  1435. {
  1436. u64 private;
  1437. u64 private_failure;
  1438. struct io_failure_record *failrec;
  1439. struct btrfs_mapping_tree *map_tree;
  1440. struct extent_state *state;
  1441. int num_copies;
  1442. int did_repair = 0;
  1443. int ret;
  1444. struct inode *inode = page->mapping->host;
  1445. private = 0;
  1446. ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
  1447. (u64)-1, 1, EXTENT_DIRTY, 0);
  1448. if (!ret)
  1449. return 0;
  1450. ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
  1451. &private_failure);
  1452. if (ret)
  1453. return 0;
  1454. failrec = (struct io_failure_record *)(unsigned long) private_failure;
  1455. BUG_ON(!failrec->this_mirror);
  1456. if (failrec->in_validation) {
  1457. pr_debug("clean_io_failure: freeing dummy error at %llu\n",
  1458. failrec->start);
  1459. did_repair = 1;
  1460. goto out;
  1461. }
  1462. spin_lock(&BTRFS_I(inode)->io_tree.lock);
  1463. state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
  1464. failrec->start,
  1465. EXTENT_LOCKED);
  1466. spin_unlock(&BTRFS_I(inode)->io_tree.lock);
  1467. if (state && state->start == failrec->start) {
  1468. map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
  1469. num_copies = btrfs_num_copies(map_tree, failrec->logical,
  1470. failrec->len);
  1471. if (num_copies > 1) {
  1472. ret = repair_io_failure(map_tree, start, failrec->len,
  1473. failrec->logical, page,
  1474. failrec->failed_mirror);
  1475. did_repair = !ret;
  1476. }
  1477. }
  1478. out:
  1479. if (!ret)
  1480. ret = free_io_failure(inode, failrec, did_repair);
  1481. return ret;
  1482. }
  1483. static int bio_readpage_error(struct bio *failed_bio, struct page *page,
  1484. u64 start, u64 end, int failed_mirror,
  1485. struct extent_state *state)
  1486. {
  1487. struct io_failure_record *failrec = NULL;
  1488. u64 private;
  1489. struct extent_map *em;
  1490. struct inode *inode = page->mapping->host;
  1491. struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
  1492. struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
  1493. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1494. struct bio *bio;
  1495. int num_copies;
  1496. int ret;
  1497. int read_mode;
  1498. u64 logical;
  1499. BUG_ON(failed_bio->bi_rw & REQ_WRITE);
  1500. ret = get_state_private(failure_tree, start, &private);
  1501. if (ret) {
  1502. failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
  1503. if (!failrec)
  1504. return -ENOMEM;
  1505. failrec->start = start;
  1506. failrec->len = end - start + 1;
  1507. failrec->this_mirror = 0;
  1508. failrec->bio_flags = 0;
  1509. failrec->in_validation = 0;
  1510. read_lock(&em_tree->lock);
  1511. em = lookup_extent_mapping(em_tree, start, failrec->len);
  1512. if (!em) {
  1513. read_unlock(&em_tree->lock);
  1514. kfree(failrec);
  1515. return -EIO;
  1516. }
  1517. if (em->start > start || em->start + em->len < start) {
  1518. free_extent_map(em);
  1519. em = NULL;
  1520. }
  1521. read_unlock(&em_tree->lock);
  1522. if (!em || IS_ERR(em)) {
  1523. kfree(failrec);
  1524. return -EIO;
  1525. }
  1526. logical = start - em->start;
  1527. logical = em->block_start + logical;
  1528. if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
  1529. logical = em->block_start;
  1530. failrec->bio_flags = EXTENT_BIO_COMPRESSED;
  1531. extent_set_compress_type(&failrec->bio_flags,
  1532. em->compress_type);
  1533. }
  1534. pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
  1535. "len=%llu\n", logical, start, failrec->len);
  1536. failrec->logical = logical;
  1537. free_extent_map(em);
  1538. ret = set_extent_bits(failure_tree, start, end,
  1539. EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
  1540. if (ret >= 0)
  1541. ret = set_state_private(failure_tree, start,
  1542. (u64)(unsigned long)failrec);
  1543. if (ret >= 0)
  1544. ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
  1545. GFP_NOFS);
  1546. if (ret < 0) {
  1547. kfree(failrec);
  1548. return ret;
  1549. }
  1550. } else {
  1551. failrec = (struct io_failure_record *)(unsigned long)private;
  1552. pr_debug("bio_readpage_error: (found) logical=%llu, "
  1553. "start=%llu, len=%llu, validation=%d\n",
  1554. failrec->logical, failrec->start, failrec->len,
  1555. failrec->in_validation);
  1556. }
  1557. num_copies = btrfs_num_copies(
  1558. &BTRFS_I(inode)->root->fs_info->mapping_tree,
  1559. failrec->logical, failrec->len);
  1560. if (num_copies == 1) {
  1561. pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
  1562. "state=%p, num_copies=%d, next_mirror %d, "
  1563. "failed_mirror %d\n", state, num_copies,
  1564. failrec->this_mirror, failed_mirror);
  1565. free_io_failure(inode, failrec, 0);
  1566. return -EIO;
  1567. }
  1568. if (!state) {
  1569. spin_lock(&tree->lock);
  1570. state = find_first_extent_bit_state(tree, failrec->start,
  1571. EXTENT_LOCKED);
  1572. if (state && state->start != failrec->start)
  1573. state = NULL;
  1574. spin_unlock(&tree->lock);
  1575. }
  1576. if (failed_bio->bi_vcnt > 1) {
  1577. BUG_ON(failrec->in_validation);
  1578. failrec->in_validation = 1;
  1579. failrec->this_mirror = failed_mirror;
  1580. read_mode = READ_SYNC | REQ_FAILFAST_DEV;
  1581. } else {
  1582. if (failrec->in_validation) {
  1583. BUG_ON(failrec->this_mirror != failed_mirror);
  1584. failrec->in_validation = 0;
  1585. failrec->this_mirror = 0;
  1586. }
  1587. failrec->failed_mirror = failed_mirror;
  1588. failrec->this_mirror++;
  1589. if (failrec->this_mirror == failed_mirror)
  1590. failrec->this_mirror++;
  1591. read_mode = READ_SYNC;
  1592. }
  1593. if (!state || failrec->this_mirror > num_copies) {
  1594. pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
  1595. "next_mirror %d, failed_mirror %d\n", state,
  1596. num_copies, failrec->this_mirror, failed_mirror);
  1597. free_io_failure(inode, failrec, 0);
  1598. return -EIO;
  1599. }
  1600. bio = bio_alloc(GFP_NOFS, 1);
  1601. if (!bio) {
  1602. free_io_failure(inode, failrec, 0);
  1603. return -EIO;
  1604. }
  1605. bio->bi_private = state;
  1606. bio->bi_end_io = failed_bio->bi_end_io;
  1607. bio->bi_sector = failrec->logical >> 9;
  1608. bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  1609. bio->bi_size = 0;
  1610. bio_add_page(bio, page, failrec->len, start - page_offset(page));
  1611. pr_debug("bio_readpage_error: submitting new read[%#x] to "
  1612. "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
  1613. failrec->this_mirror, num_copies, failrec->in_validation);
  1614. ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
  1615. failrec->this_mirror,
  1616. failrec->bio_flags, 0);
  1617. return ret;
  1618. }
  1619. int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
  1620. {
  1621. int uptodate = (err == 0);
  1622. struct extent_io_tree *tree;
  1623. int ret;
  1624. tree = &BTRFS_I(page->mapping->host)->io_tree;
  1625. if (tree->ops && tree->ops->writepage_end_io_hook) {
  1626. ret = tree->ops->writepage_end_io_hook(page, start,
  1627. end, NULL, uptodate);
  1628. if (ret)
  1629. uptodate = 0;
  1630. }
  1631. if (!uptodate && tree->ops &&
  1632. tree->ops->writepage_io_failed_hook) {
  1633. ret = tree->ops->writepage_io_failed_hook(NULL, page,
  1634. start, end, NULL);
  1635. if (ret == 0)
  1636. return 1;
  1637. }
  1638. if (!uptodate) {
  1639. clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
  1640. ClearPageUptodate(page);
  1641. SetPageError(page);
  1642. }
  1643. return 0;
  1644. }
  1645. static void end_bio_extent_writepage(struct bio *bio, int err)
  1646. {
  1647. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  1648. struct extent_io_tree *tree;
  1649. u64 start;
  1650. u64 end;
  1651. int whole_page;
  1652. do {
  1653. struct page *page = bvec->bv_page;
  1654. tree = &BTRFS_I(page->mapping->host)->io_tree;
  1655. start = ((u64)page->index << PAGE_CACHE_SHIFT) +
  1656. bvec->bv_offset;
  1657. end = start + bvec->bv_len - 1;
  1658. if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
  1659. whole_page = 1;
  1660. else
  1661. whole_page = 0;
  1662. if (--bvec >= bio->bi_io_vec)
  1663. prefetchw(&bvec->bv_page->flags);
  1664. if (end_extent_writepage(page, err, start, end))
  1665. continue;
  1666. if (whole_page)
  1667. end_page_writeback(page);
  1668. else
  1669. check_page_writeback(tree, page);
  1670. } while (bvec >= bio->bi_io_vec);
  1671. bio_put(bio);
  1672. }
  1673. static void end_bio_extent_readpage(struct bio *bio, int err)
  1674. {
  1675. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1676. struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
  1677. struct bio_vec *bvec = bio->bi_io_vec;
  1678. struct extent_io_tree *tree;
  1679. u64 start;
  1680. u64 end;
  1681. int whole_page;
  1682. int mirror;
  1683. int ret;
  1684. if (err)
  1685. uptodate = 0;
  1686. do {
  1687. struct page *page = bvec->bv_page;
  1688. struct extent_state *cached = NULL;
  1689. struct extent_state *state;
  1690. pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
  1691. "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
  1692. (long int)bio->bi_bdev);
  1693. tree = &BTRFS_I(page->mapping->host)->io_tree;
  1694. start = ((u64)page->index << PAGE_CACHE_SHIFT) +
  1695. bvec->bv_offset;
  1696. end = start + bvec->bv_len - 1;
  1697. if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
  1698. whole_page = 1;
  1699. else
  1700. whole_page = 0;
  1701. if (++bvec <= bvec_end)
  1702. prefetchw(&bvec->bv_page->flags);
  1703. spin_lock(&tree->lock);
  1704. state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
  1705. if (state && state->start == start) {
  1706. cache_state(state, &cached);
  1707. }
  1708. spin_unlock(&tree->lock);
  1709. mirror = (int)(unsigned long)bio->bi_bdev;
  1710. if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
  1711. ret = tree->ops->readpage_end_io_hook(page, start, end,
  1712. state, mirror);
  1713. if (ret)
  1714. uptodate = 0;
  1715. else
  1716. clean_io_failure(start, page);
  1717. }
  1718. if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
  1719. ret = tree->ops->readpage_io_failed_hook(page, mirror);
  1720. if (!ret && !err &&
  1721. test_bit(BIO_UPTODATE, &bio->bi_flags))
  1722. uptodate = 1;
  1723. } else if (!uptodate) {
  1724. ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
  1725. if (ret == 0) {
  1726. uptodate =
  1727. test_bit(BIO_UPTODATE, &bio->bi_flags);
  1728. if (err)
  1729. uptodate = 0;
  1730. uncache_state(&cached);
  1731. continue;
  1732. }
  1733. }
  1734. if (uptodate && tree->track_uptodate) {
  1735. set_extent_uptodate(tree, start, end, &cached,
  1736. GFP_ATOMIC);
  1737. }
  1738. unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
  1739. if (whole_page) {
  1740. if (uptodate) {
  1741. SetPageUptodate(page);
  1742. } else {
  1743. ClearPageUptodate(page);
  1744. SetPageError(page);
  1745. }
  1746. unlock_page(page);
  1747. } else {
  1748. if (uptodate) {
  1749. check_page_uptodate(tree, page);
  1750. } else {
  1751. ClearPageUptodate(page);
  1752. SetPageError(page);
  1753. }
  1754. check_page_locked(tree, page);
  1755. }
  1756. } while (bvec <= bvec_end);
  1757. bio_put(bio);
  1758. }
  1759. struct bio *
  1760. btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
  1761. gfp_t gfp_flags)
  1762. {
  1763. struct bio *bio;
  1764. bio = bio_alloc(gfp_flags, nr_vecs);
  1765. if (bio == NULL && (current->flags & PF_MEMALLOC)) {
  1766. while (!bio && (nr_vecs /= 2))
  1767. bio = bio_alloc(gfp_flags, nr_vecs);
  1768. }
  1769. if (bio) {
  1770. bio->bi_size = 0;
  1771. bio->bi_bdev = bdev;
  1772. bio->bi_sector = first_sector;
  1773. }
  1774. return bio;
  1775. }
  1776. static int __must_check submit_one_bio(int rw, struct bio *bio,
  1777. int mirror_num, unsigned long bio_flags)
  1778. {
  1779. int ret = 0;
  1780. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  1781. struct page *page = bvec->bv_page;
  1782. struct extent_io_tree *tree = bio->bi_private;
  1783. u64 start;
  1784. start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
  1785. bio->bi_private = NULL;
  1786. bio_get(bio);
  1787. if (tree->ops && tree->ops->submit_bio_hook)
  1788. ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
  1789. mirror_num, bio_flags, start);
  1790. else
  1791. btrfsic_submit_bio(rw, bio);
  1792. if (bio_flagged(bio, BIO_EOPNOTSUPP))
  1793. ret = -EOPNOTSUPP;
  1794. bio_put(bio);
  1795. return ret;
  1796. }
  1797. static int merge_bio(struct extent_io_tree *tree, struct page *page,
  1798. unsigned long offset, size_t size, struct bio *bio,
  1799. unsigned long bio_flags)
  1800. {
  1801. int ret = 0;
  1802. if (tree->ops && tree->ops->merge_bio_hook)
  1803. ret = tree->ops->merge_bio_hook(page, offset, size, bio,
  1804. bio_flags);
  1805. BUG_ON(ret < 0);
  1806. return ret;
  1807. }
  1808. static int submit_extent_page(int rw, struct extent_io_tree *tree,
  1809. struct page *page, sector_t sector,
  1810. size_t size, unsigned long offset,
  1811. struct block_device *bdev,
  1812. struct bio **bio_ret,
  1813. unsigned long max_pages,
  1814. bio_end_io_t end_io_func,
  1815. int mirror_num,
  1816. unsigned long prev_bio_flags,
  1817. unsigned long bio_flags)
  1818. {
  1819. int ret = 0;
  1820. struct bio *bio;
  1821. int nr;
  1822. int contig = 0;
  1823. int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
  1824. int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
  1825. size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
  1826. if (bio_ret && *bio_ret) {
  1827. bio = *bio_ret;
  1828. if (old_compressed)
  1829. contig = bio->bi_sector == sector;
  1830. else
  1831. contig = bio->bi_sector + (bio->bi_size >> 9) ==
  1832. sector;
  1833. if (prev_bio_flags != bio_flags || !contig ||
  1834. merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
  1835. bio_add_page(bio, page, page_size, off

Large files files are truncated, but you can click here to view the full file